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Preface

Mathematics departments are engaged in a debate over calculus reform. Our de-
bate, of course, is part of an ongoing one that started 300 years ago when the first
calculus textbook was published. But the current debate has sometimes turned ac-
rimonious. Tales abound of departments badly split, with instructors favoring re-
form and those favoring a traditional approach not speaking to one another.

What is arousing such passions? What do people mean when they say they are
in favor of calculus reform? As a result of talking with many instructors and read-
ing hundreds of survey responses, I have learned that different people mean differ-
ent things. They have passionately held opinions; there is common ground on some
issues, but instructors are diametrically opposed on other issues. Let's look at
some of the suggested key components of calculus reform.

Several survey respondents think that technology is the most important issue.

Certainly, those of us who have watched our students use graphing calculators or
computers know how enlivening this can be. We have seen from the looks on their
faces how these devices engage our students' attention and enable them to become
active learners. But these machines have been used by many schools with tradi-
tional curricula. For example, several traditional calculus texts (including my own
Calculus, Third Edition) make extensive use of technology. Furthermore, I know
of some very innovative reform calculus courses that use virtually no technology.
So, while technology can be a critical component for implementing the goals of
reform, I don't believe that technology itself characterizes reform.

Many people cite the Rule of Three as a key principle: "Topics should be pre-
sented geometrically, numerically, and algebraically." The implication is that, in
the past, the algebraic point of view has been predominant and the graphical and
numerical aspects have been given short shrift. More recently, the Rule of Three
has been expanded to become the RuIe of Four by emphasizing the verbal, or de-
scriptive, point of view as well. But again, I think that my traditional book Cal-
culus, Third Edition incorporates visualization and the Rule of Three. So I believe
that the Rule of Three (or Four), important guiding principle though it is, still does
not capture the most critical aspect of reform by itself.

Some respondents think that the enhanced attention to applications is a key fea-
ture and that instructors now have more freedom to choose applications for which
they themselves have enthusiasm. While this aspect is certainly true, it is just as

important in a traditional course.
So what do I think is the essence of calculus reform? In a word: concepts. We

sometimes forget that the impetus for the current reform movement came from the
Tulane Conference in January, 1986. I believe that the primary goal of reform
should be what that conference formulated as their first recommendation:

For:us otx conceptual und erstctnding
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What technology, the Rule of Four, and other aspects of reform have done is to en-
able instructors to use new tools and approaches to conceptual reasoning and
skills. Visualization, numerical and graphical experimentation, and other ap-
proaches have changed how we teach conceptual reasoning in fundamental ways.

I think that nearly everybody-from the radical reformer to the staunch tradi-
tionalist-supports the central goal of focusing on conceptual understanding. So
why are there so many heated discussions in mathematics departments? I believe
that the explanation lies in what is involved in implementing this goal. If we are
serious about emphasizing conceptual understanding, then we have to expect fac-
ulty and students to give clear explanations of what symbols mean and why things
work the way they do. That is simply not going to happen unless we take the time
to work patiently with students. We need to slow down, provide multiple ap-
proaches, and not rush through the material when a new concept is introduced. It
follows that some less conceptual traditional calculus topics will not be covered in
many courses. And that is where the controversy arises.

Most of the existing reform projects have greatly reduced the coverage of tech-
niques of integration and I agree that this is appropriate. (This book has no full
chapter on methods of integration, but substitution and parts are covered in Chap-
ter 5 and partial fractions in Appendix F.) I have also streamlined the coverage of
many other topics in order to free up time to achieve conceptual understanding.
But I have not gone as far as some other reform texts in deleting traditional topics.
In particular, I have decided to retain related rates problems, I'Hospital's Rule, and
series of constants. My premise in writing this book has been that it is possible to
achieve conceptual understanding and still retain the best traditions of traditional
calculus. I hope that this book will support a wider range of approaches to teaching
calculus and improving students'conceptual understanding in diverse college and
university settings.

Features

Conceptual Exercrses

Pages 109, 128, 140, 380,577

Pages 156, 170

Pages 129, l7l, IB0, 437

Pages 14l, 200, 544

Pages |,7, 16

Pages 379, 360, 381

The most important way to foster conceptual understanding is through the prob-
lems that we assign. To that end I have devised various types of problems. Some
exercise sets begin with requests to explain the meanings of the basic concepts of
the section. (See, for instance, the first couple of exercises in Sections 2.2,2.4,2.5,
5.3, and 8.2.) Similarly, review sections begin with a Concept Check and a True-
False Quiz. Other exercises test conceptual understanding through graphs (see

Exercises l-3 in Section 2.1 and Exercises 29-36 in Section 2.8). Another type
of exercise uses verbal description to test conceptual understanding (see Exercise 8

in Section 2.4; Exercise 46 in Section 2.8; Exercises 5,9, and 10 in Section 2.10;
and Exercise 53 in Section 5.9). I particularly value problems that combine and
compare graphical, numerical, and algebraic approaches (see Exercise 30 in Sec-
tion2.5, Exercise 39 in Section 3.1, and Exercise 2 in Section 7.6).

Real-World Data My assistants and I spent a great deal of time looking in libraries, contacting com-
panies and government agencies, and searching the Internet for interesting real-
world data to introduce, motivate, and illustrate the concepts of calculus. As a

result, many of the examples and exercises deal with functions defined by such nu-
merical data or graphs. See, for instance, Figures l, 11, and 12 in Section l.l (seis-

mograms from the Northridge earthquake), Figure 5 in Section 5.3 (San Francisco
power consumption), Exercise l0 in Section 5.1 (velocity of the space shuttle
Endeavour\. and Exercise 56 in Section 5.3 (Consumer Price Index).
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Projects One way of involving students and making them active learners is to have them
work (perhaps in groups) on extended projects that give a feeling of substantial ac-

complishment when completed. Applied Projects involve applications that are de-

signed to appeal to the imagination of students. The project after Section 7.4 asks

whether a ball thrown upward takes longer to reach its maximum height or to fall
back to its original height. (The answer might surprise you.) Laboratory Projects
involve technology; the project following Section 3.5 shows how to use B6zier
curves to design shapes that represent letters for a laser printer. Writing Projects
ask students to compare present-day methods with those of the founders of cal-
culus-Fermat's method for finding tangents, for instance. Suggested references

are supplied. Discovery Projects anticipate results to be discussed later or cover

optional topics (hyperbolic functions) or encourage discovery through pattern
recognition (see the project following Section 5.7).

Rigor I include fewer proofs than in my more traditional books, but I think it is still
worthwhile to expose students to the idea of proof and to make a clear distinction
between a proof and a plausibility argument. The important thing, I think, is to
show how to deduce something that seems less obvious from something that seems

more obvious. A good example is the use of the Mean Value Theorem to prove the

Evaluation Theorem (Part 2 of the Fundamental Theorem of Calculus). I have cho-

sen, on the other hand, not to prove the convergence tests but rather to argue intui-
tively that they are true.

Technology The availability of technology makes it not less important but more important to
clearly understand the concepts that underlie the images on the screen. But, when

properly used, graphing calculators and computers are powerful tools for discover-
ing and understanding those concepts. I assume that the student has access to ei-
ther a graphing calculator or a computer algebra system. The icon [! indicates an

example or exercise that definitely requires the use of such technology, but that is
not to say that it can't be used on the other exercises as well. The symbol ![E is
reserved for problems in which the full resources of a computer algebra system
(like Derive, Maple, Mathematica, or the Tl-92) are required. But technology
doesn't make pencil and paper obsolete. Hand calculation and sketches are often
preferable to technology for illustrating and reinforcing some concepts. Both in-
structors and students need to develop the ability to decide where the hand or the

machine is appropriate.

Students usually have difficulties with problems for which there is no single well-
defined procedure for obtaining the answer. I think nobody has improved very
much on George Polya's four-stage problem-solving strategy and, accordingly, I
have included a version of his problem-solving principles at the end of Chapter l.
They are applied, both explicitly and implicitly, throughout the book. After the

other chapters I have placed sections called Focus on Problem Solving, which fea-

ture examples of how to tackle challenging calculus problems. In selecting the

varied problems for these sections I kept in mind the following advice from David
Hilbert: 'A mathematical problem should be difficult in order to entice us, yet not

inaccessible lest it mock our efforts." When I put these challenging problems on

assignments and tests I grade them in a different way. Here I reward a student sig-

nificantly for ideas toward a solution and for recognizing which problem-solving
principles are relevant.

lx

Page 526

Page 237

Page 157

Page 414

Problem Solving

Page 87

Pages 186, 263, 344" 442, 499,556, 540
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Content

Pages 6Z 213, 300

Page 75

Pages 236, 281

Pages l5l- l8l

Page 175

Page 282

Chapter I

Functions and lnlodels

Chapter 2

Limits and Derivatives

Chapter 3

Differentiation Rules

Chapter 4

Applications of Differentlation

Chapter 5

Integrals

Chapter 6

Applications of Integration

The book begins with A Preview of Calculus, which gives an overview of the sub-
ject and includes a list of questions to motivate the study of calculus.

From the beginning, multiple representations of functions are stressed: verbal, nu-
merical, visual, and algebraic. The standard functions, including exponential and
logarithmic functions, are reviewed here from these four points of view. Paramet-
ric curves are introduced in the first chapter, partly so that curves can be drawn
easily, with technology, whenever needed throughout the text. This early place-
ment also enables inverse functions to be graphed in Section 1.6, tangents to para-
metric curves to be treated in Section 3.5, and graphing such curves to be covered
in Section 4.4. All students should read the general discussion of modeling at the
beginning of Section l.J as a background to the models that pervade the book. The
remainder of the section (on curve fitting) is optional, but some instructors may
wish to exploit the ability of the newest calculators to model data. A small number
of later exercises make use of this material (see, for example, Exercises 59 and 60
in Section 3.5 and Exercise 54 in Section 4.2).

The material on limits is motivated by a prior discussion of the tangent and veloc-
ity problems. Limits are treated from descriptive, graphical, numerical, and alge-
braic points of view. (The precise e-6 definition of a limit is provided in Appendix
D for those who wish to cover it.) It is important not to rush through Sections 2.7-
2.10, which deal with derivatives (especially with functions defined graphically
and numerically) before the differentiation rules are covered in Chapter 3. Here the
examples and exercises explore the meanings of derivatives in various contexts.
Section 2.10 foreshadows, in an intuitive way and without differentiation formulas,
the material on shapes of curves that is studied in greater depth in Chapter 4.

All the basic functions are differentiated here. When derivatives are computed in
applied situations, students are asked to explain their meanings. Optional topics
(hyperbolic functions, an early introduction to Taylor polynomials) are explored in
Discovery and Laboratory Projects.

The basic facts concerning extreme values and shapes of curves are derived using
the Mean Value Theorem as the starting point. Graphing with technology empha-
sizes the interaction between calculus and calculators and the analysis of families
of curves. Some substantial optimization problems are provided, including an ex-
planation of why you need to raise your head 42" to see the top of a rainbow.

The area problem and the distance problem serve to motivate the definite integral.
I have decided to make the definition of an integral easier to understand by using
subintervals of equal width. Emphasis is placed on explaining the meanings of in-
tegrals in various contexts and on estimating their values from graphs and tables.
There is no separate chapter on techniques of integration, but substitution and
parts are covered here and partial fractions are treated in Appendix F. The use of
computer algebra systems is discussed in Section 5.7.

General methods, not formulas, are emphasized. The goal is for students to be able
to divide a quantity into small pieces, estimate with Riemann sums, and recognize
the limit as an integral. There are more applications here than can realistically be
covered in a given course. Instructors should select applications suitable for their
students and for which they themselves have enthusiasm.

Pages 410-412
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Modeling is the theme that unifies this introductory treatment of differential equa-

tions. Direction fields and Euler's method are studied before separable equations

are solved explicitly, so that qualitative, numerical, and analytic approaches are

given equal consideration. These methods are applied to the exponential, logistic,
and other models for population growth. Predator-prey models are used to illus-
trate systems of differential equations.

Tests for the convergence of series are considered briefly, with intuitive rather than
formal justifications. Numerical estimates of sums of series are based on which
test was used to prove convergence. The emphasis is on Taylor series and polyno-

mials and their applications to physics. Error estimates include those from graph-
ins devices.

xi

Chapter 7

Differential Equations

Chapter I
Sequences and Series

Ancillaries . . .

Calculus: Concepts and Contexts, Single Variable is supported by a complete set of
ancillaries developed under my direction. Each piece has been designed to enhance

student understanding and to facilitate creative instruction.
The following resources are available, free of charge, to adopters of the text.

Inltructor's Guide by Harvey B. Keynes, James Stewart, Douglas Shaw, and Robert Hesse

Offering suggestions on how to implement ideas about reform into your calculus
course, this Guide serves as a practical roadmap to topics and projects in the text.
Each section of the main text is discussed from several viewpoints and contains
suggested time to allot, points to stress, text discussion topics, core materials for
lecture, workshop/discussion suggestions, group work exercises in a form suitable

for handout, and suggested homework problems.

Complete Solutions l'lanual by Jeffery A. Cole

Provides detailed solutions to all exercises in the text.

Tranlparencies by James Stewart

Thirty full-color transparencies featuring 80 of the more complex diagrams from
the text for use in the classroom.

Test ltems by William Tomhave and Xueqi Zeng

Organized according to the main text, this complete set of Test Items contains
both multiple-choice and open-ended questions, offering a range of model prob-

lems, including short-answer questions that focus narrowly on one basic concept;

items that integrate two or more concepts and require more detailed analysis and

written response; and application problems, including situations that use real data
generated in laboratory settings.

llectronic Test ltems by William Tomhave, Xueqi Zeng, and Charles Heuer

This computerized version of the printed Test Items allows instructors to insert

their own questions and customize ones that are provided. Some test items will be

algorithm ically generated.
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Study Guide

Student Solutions Manual

Lab Manuals

A Companion to Calculus

Scientific l'|otebookrM

A complete range of student ancillaries is also available:

by Robert Burton and Dennis Garity

Offering additional explanations and worked-out examples, and formatted to provide
guided practice, each section in this Study Guide corresponds to a section in the text.
Every section contains a short list of key concepts; a short list of skills to master; a

briefintroduction to the ideas ofthe section; an elaboration ofthe concepts and skills,
including extra worked-out examples; and links in the margin to earlier and later
material in the text and Study Guide.

by Jeffery A. Cole
Contains detailed solutions to all odd-numbered exercises in the text.

Each of these comprehensive lab manuals will help students leam to effectively use
the technology tools available to them. Each lab contains clearly explained exercises
and a variety of labs and projects to accompany the text.

CalcLabs with Maple@
by Al Boggess, David Barrow, Maury Rahe, Jeff Morgan, Samia Massoud,
Philip Yasskin, Michael Stecher, Art Belmonte, and Kirby Smith

C al cL ab s w ith M athematic a@

by David Barrow, Art Belmonte, Nancy Blachman, Al Boggess, Samia Massoud,
Jeff Morgan, Maury Rahe, Kirby Smith, Michael Stecher, Colin Williams, and
Philip Yasskin

CalcLabs with Derive@
by David Barrow, Art Belmonte, Al Boggess, Samia Massoud, Jeff Morgan,
Maury Rahe, Kirby Smith, Michael Stecher, and Philip Yasskin

CalcLabs with the TI-82183 by Jeff Morgan and Selwyn Hollis

CalcLabs with the TI-85186 by David Rollins

CalcLabs with the TI-92 by Selwyn Hollis

by Dennis Ebersole, Doris Schattschneider, Alicia Sevilla, and Kay Somers

Written to improve algebra and problem-solving skills of students taking a calculus
course, every chapter in this companion is keyed to a calculus topic, providing con-
ceptual background and specific algebra techniques needed to understand and solve
calculus problems related to that topic. It is designed for calculus courses that inte-
grate the review of precalculus concepts (web site http://www.hvcc.edufaculty/
amm/fipse/fipse.htm) or for individual use.

by TCI Software Research

Featuring a built-in version of the Maple@ computer algebra system, Scientific
NotebookrM provides students with the computational power necessary to solve the
most complex homework problems. It is easy to link to resources within a docu-
ment, in other documents, or in documents on the World Wide Web. This combi-
nation gives students a unique tool for exploring, explaining, and understanding
key mathematical and scientific concepts.

System requirements: Scientific Notebook runs on any Windows@ 95 or Windows
NT@ 4.0 system. It requires 10 MB of hard disk space, a CD-ROM drive, and an
Internet connection to access the Scientific Notebook Resource Center.

by Darel W. Hardy and Carol L. Walker

Contains activities that will help you develop a clearer understandhg of calculus.

Doing Calculus with Scientific NotebookrM
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Tr the Student

Reading a calculus textbook is different from reading a newspaper or a novel, or
even a physics book. Don't be discouraged if you have to read a passage more than
once in order to understand it. You should have pencil and paper and calculator at

hand to sketch a diagram or make a calculation.
Some students start by trying their homework problems and read the text only if

they get stuck on an exercise. I suggest that a far better plan is to read and under-
stand a section ofthe text before attempting the exercises. In particular, you should
look at the definitions to see the exact meanings of the terms.

Part of the aim of this course is to train you to think logically. Learn to write
the solutions of the exercises in a connected, step-by-step fashion with explanatory
sentences-not just a string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the back of the book, in
Appendix I. Some exercises ask for a verbal explanation or interpretation or de-

scription. In such cases there is no single correct way of expressing the answer, so

don't worry that you haven't found the definitive answer. In addition, there are of-
ten several different forms in which to express a numerical or algebraic answer, so

if your answer differs from mine, don't immediately assume you're wrong. There
may be an algebraic or trigonometric identity that connects the answers. For ex-
ample, if the answer given in the back of the book h O - 1 and you obtain
110 + uE),tnen you're right and rationalizing the denominator will show that
the answers are equivalent.

The icon [! indicates an example or exercise that definitely requires the use of
either a graphing calculator or a computer with graphing software. (Section 1.3

discusses the use of these graphing devices and some of the pitfalls that you may
encounter.) But that doesn't mean that graphing devices can't be used to check

your work on the other exercises as well. The symbol EIE is reserved for problems

in which the full resources of a computer algebra system (like Derive, Maple,
Mathematica, or TI-92) are required. You will also encounter the symbol @
which warns you against committing an error. I have placed this symbol in the
margin in situations where I have observed that a large proportion of my students

tend to make the same mistake.
Calculus is an exciting subject, justly considered to be one of the greatest

achievements of the human intellect. I hope you will discover that it is not only
useful but also intrinsically beautiful.
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where to sit in a movie theater, erplain the shapes of
cet'ts, position a shortstop, ancl explain the formation
uncl loc'ation of rainbot"t'J.. See the list of questions on

page 9.

E Calculus is fundamentally different from the mathematics

that you have studied previously. Calculus is less static and more

dynamic. lt is concerned with change and motion; it deals with

quantities that approach other quantities. For that reason it may

be useful to have an overview of the subject before beginning

its intensive study. Here we give a glimpse of some the main

ideas of calculus by showing how limits arise when we attempt

to solve a variety of problems.

A Preview of Calculus
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FIGURE I

FIGURE 2

FIGURE 3

FIGURE 4

E The Area Problem

The origins of calculus go back at least 2500 years to the ancient Greeks, who
found areas using the "method of exhaustion." They knew how to find the areaA
of any polygon by dividing it into triangles as in Figure I and adding the areas of
these triangles.

It is a much more difficult problem to find the area of a curved figure. The
Greek method of exhaustion was to inscribe polygons in the figure and circum-
scribe polygons about the figure and then let the number of sides of the polygons
increase. Figure 2 illustrates this process for the special case of a circle with
inscribed regular polygons.

Let A, be the area of the inscribed polygon with z sides. As n increases, it
appears that A, becomes closer and closer to the area of the circle. We say that the
area of the circle is the limit of the areas of the inscribed polygons, and we write

o : :,g;o.

The Greeks themselves did not use limits explicitly. However, by indirect reason-
ing, Eudoxus (fifth century a.c.) used exhaustion to prove the familiar formula for
the area of a circle: A : nr2.

We will use a similar idea in Chapter 5 to find areas of regions of the type
shown in Figure 3. We will approximate the desired area A by areas of rectangles
(as in Figure 4), let the width of the rectangles decrease, and then calculate A as
the limit of these sums of areas of rectansles.

The area problem is the central problem in the branch of calculus called integral
calculus. The techniques that we will develop in Chapter 5 for finding areas will
also enable us to compute the volume of a solid, the length of a curve, the force of
water against a dam, the mass and center of gravity of a rod, and the work done in
pumping water out of a tank.
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;t The Tangent Problem

Consider the problem of trying to find the equation of the tangent line t to a curve
with equation y : f (x) at a given point P. (We will give a precise definition of a
tangent line in Chapter 2. For now you can think of it as a line that touches the

curve at P as in Figure 5.) Since we know that the point P lies on the tangent line,
we can find the equation of r if we know its slope ru. The problem is that we need

two points to compute the slope and we know only one point, P, on t. To get

around the problem we first find an approximation to m by taking a nearby point Q
on the curve and computing the slope mp7 of the secant line PQ. From Figure 6 we

see that

Now imagine that Q moves along the curve toward P as in Figure 7. You can see

that the secant line rotates and approaches the tangent line as its limiting position.

This means that the slope mpq of the secant line becomes closer and closer to the

slope z of the tangent line. We write

nx - lirn flI.pp
Q:P

that ru is the limit of n'tpp d,s 0 approaches P along the curve. Since x
.t as Q approaches P, we could also use Equation I to write

trFIGURE 5

The tarngent line nt P

FIGURE 6

The secant line PO

FIGURE 7

Secant lines approaching the tangent line

,. /(t) - l'(u)
,I - lllll 

r _ 
11

ancl we say

approaches

B

Specific examples of this procedure will be given in Chapter 2.

The tangent problem has given rise to the branch of calculus called differential
calculus, which was not invented until more than 2000 years after integral calculus.
The main ideas behind differential calculus are due to the French mathematician
Pierre Fermat (1601-1665) and were developed by the English mathematicians
John Wallis (1616-1703), Isaac Barrow (1630-1677), and Isaac Newton (1642-
1721) and the German mathematician Gottfried Leibniz (1646-1716).

The two branches of calculus and their chief problems, the area problem and the

tangent problem, appear to be very different, but it turns out that there is a very
close connection between them. The tangent problem and the area problem are

inverse problems in a sense that will be described in Chapter 5.

When we look at the speedometer of a car and read that the car is traveling at

48 mi/h, what does that information indicate to us? We know that if the velocity
remains constant, then after an hour we will have traveled 48 mi. But if the veloc-

ity of the car varies, what does it mean to say that the velocity at a given instant is

48 mi/h?
In order to analyze this question, let us analyze the motion of a car that travels

along a straight road and assume that we can measure the distance traveled by the

l' : ,f(x)

0tt. .f(x))

P(u, /(a ) )
f(r) * f(a)

Velocity
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car (in feet) at l-second intervals as in the following chart:

As a first step toward finding the velocity after 2 seconds have elapsed, let us find
the average velocity during the time interval 2 < t < 4:

distance traveled
average velocity - time elapsed

43 r0

42
-16.5 ft/s

Similarly,theaveragevelocityinthetimeinterval2<

25 l0
average velocity - - 15 ftls32

We have the feeling that the velocity at the instant t : 2 cannot be much different
from the average velocity during a short time interval starting at t : 2. So let's
imagine that the distance traveled has been measured at 0.I-second time intervals
as in the following chart:

Then we can compute, for instance, the average velocity over the time interval
l) ) \1.

16.80 10.00
- 13.6 ftlsaverage velocity -

The results of such calculations are shown in the following chart:

The average velocities over successively smaller intervals appear to be getting
closer to a number near 10, and so we expect that the velocity at exactly t : 2 is
about 10 ft/s. In Chapter 2 we will define the instantaneous velocity of a moving
object as the limiting value of the average velocities over smaller and smaller time
intervals.

In Figure 8 we show a graphical representation of the motion of the car by plot-
ting the distance traveled as a function of time. If we write d : f(t), then/(r) is
the number of feet traveled after t seconds. The average velocity in the time inter-
val [2, d is

distance traveled f(t) - f(2)
t-2

2,5 2

/ : Tinrc clapsecl (s) 0 I 'l -)
J -t )

d -- Distanc'e (ft) 0 2 t0 25 -13 78

t 2.0 2.1 2.2 2.3 2.1 1.5

d I0.00 I1.02 12.16 I 3.45 1.1.c)6 I 6. fiO

Time interval [2, 3] [2,2.5] [2. 2.1] [2. 2 3] [2,2.2] [2, 2. l]

Average velocity (ft/s) r 5.0 13.6 I 2.;l r r.5 I0.tt 10.2

QQ, /(/))

P(2,, f(20

FIGURE 8
average velocity - time elapsed
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FIGURE 9

d+ dt {ll_ Q 
t

Iliil,r;,f i t

which is the same as the slope of the secant line PQ in Figure 8. The velocity a

when / : 2 is the limiting value of this average velocity as r approaches 2; that is,

.. f(t) _ f(2)l-,: llmt-z t-2

and we recognize from Equation 2 that this is the same as the slope of the tangent

line to the curve at P.
Thus, when we solve the tangent problem in differential calculus, we are also

solving problems concerning velocities. The same techniques also enable us to
solve problems involving rates of change in all of the natural and social sciences.

X The Limit of a Sequence

In the fifth century n.c. the Greek philosopher Zeno of Elea posed four problems,

now known as Zeno's paradoxes, that were intended to challenge some of the ideas

concerning space and time that were held in his day. Zeno's second paradox con-

cerns a race between the Greek hero Achilles and a tortoise that has been given a
head start. Zeno argued, as follows, that Achilles could never pass the tortoise:
Suppose that Achilles starts at position a1 and the tortoise starts at position /1 (see

Figure 9). When Achilles reaches the point dz: tr, the tortoise is farther ahead at

position ru. When Achilles reaches az: tz, the tortoise is at 13. This process con-
tinues indefinitely and so it appears that the tortoise will always be ahead! But this
defies common sense.

A2 il4

Achilles

Tortoise

Q7A1 il5

One way of explaining this paradox is with the idea of a sequence. The succes-

sive positions of Achilles (ar, ar, at, ...) or the successive positions of the tortoise
(tr, tz, t2,...) form what is known as a sequence.

In general, a sequence {a,} is a set of numbers written in a definite order. For

instance, the sequence

{r, t.t_1t
2, Jr.{r 5r )

(b)

can be described by giving the following formula for the nth term:

IA": i
We can visualize this sequence by plotting its terms on a number line as in Fig-

ure lO(a) or by drawing its graph as in Figure 10(b). Observe from either picture
that the terms of the sequence a, : lfn are becoming closer and closer to 0 as n

increases. In fact we can find terms as small as we please by making n large
enough. We say that the limit of the sequence is 0, and we indicate this by writing

1lim--0
11 -->:E nFIGURE IO
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In general, the notation

l\"": t
is used if the terms an approach the number L as n becomes large. This means that
the numbers a, can be made as close as we like to the number l, by taking n suffi-
ciently large.

The concept of the limit of a sequence occurs whenever we use the decimal rep-
resentation of a real number. For instance, if

a1 - 3.1

a2 - 3.14

a3 - 3.141

a4 : 3.1415

a5 - 3.14159

a6 : 3.141592

a7 - 3.1415926

:

then Itm an - Tr
n-"+6

The terms in this sequence are rational approximations to r'.
Let's return to Zeno's paradox. The successive positions of Achilles and the tor-

toise form sequences {a"} and {/,}, where en I t, for all n. It can be shown that
both sequences have the same limit:

l'g.o"-- o:l\'"
It is precisely at this point p that Achilles overtakes the tortoise.

tr Tne Sum ot a series

Another of Zeno's paradoxes, as passed on to us by Aristotle, is the following:
'A man standing in a room cannot walk to the wall. In order to do so, he would
first have to go half the distance, then half the remaining distance, and then again
half of what still remains. This process can always be continued and can never be
ended." (See Figure ll.)

rra--a-a--rti--tra

-Iara--r-a--lrl--lra--art--

FIGURE II
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Of course, we know that the man can actually reach the wall, so this suggests

that perhaps the total distance can be expressed as the sum of infinitely many
smaller distances as follows:

1111 I1-_+ +-+-+ + +248162n

Zeno was arguing that it does not make sense to add infinitely many numbers

together. But there are other situations in which we implicitly use infinite sums.

For instance, in decimal notation, the symbol 0.3 : 0.3333 . . . means

3333+ + +-+10 100 1000 10,000

and so, in some sense, it must be true that

33331
lo 

* 
roo 

* 
rooo 

* 
ro.ooo 

+ "': t
More generally, if d" denotes the nth digit in the decimal representation of a num-
ber. then

o.dd.zdzdt... : + * lI * 4++ ... + * * ..
l0 102 103 10"

Therefore, some infinite sums, or infinite series as they are called, have a mean-
ing. But we must define carefully what the sum of an infinite series is.

Returning to the series in Equation 3, we denote by s" the sum of the first n

terms of the series. Thus

s,:j:o.s
s2:t+l:ols
13:i+]+$:o.azs
s.: | +.1 + * * f,: o.ezts

15 : i + i + * + *l + r! : 0.96875

su : j + i * * * *a * * + * : 0.e8437s

r? : ; + i + * + * + rrr + * + fi: o.ssznts
.

sro: l + I + "' + fr - 0.99902344

:

lllt*: 2 
* V * * 

Z" = 0.99998474

Observe that as we add more and more terms, the partial sums become closer and
closer to 1. In fact, it can be shown that by taking nlarge enough (that is, by adding

E
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sufficiently many terms of the series), we can make the partial sum Ja as close as

we please to the number l. It therefore seems reasonable to say that the sum of the
infinite series is I and to write

111 I+++++2482" -1

In other words. the reason the sum of the series is 1 is that

lg'": t

In Chapter 8 we will discuss these ideas further. We will then use Newton's idea of
combining infinite series with differential and integral calculus.

E s,r--"ry
We have seen that the concept of a limit arises in trying to find the area of a region,
the slope of a tangent to a curve, the velocity of a car, or the sum of an infinite
series. In each case the common theme is the calculation of a quantity as the limit
of other, easily calculated quantities. It is this basic idea of a limit that sets cal-
culus apart from other areas of mathematics. In fact, we could define calculus as

the part of mathematics that deals with limits.
Sir Isaac Newton invented his version of calculus in order to explain the motion

of the planets around the sun. Today calculus is used in calculating the orbits of
satellites and spacecraft, in predicting population sizes, in estimating how fast
coffee prices rise, in forecasting weather, in measuring the cardiac output of the
heart, in calculating life insurance premiums, and in a great variety of other areas.
We will explore some of these uses of calculus in this book.

In order to convey a sense of the power of the subject, we end this preview with
a list of some of the questions that you will be able to answer using calculus:

f . How can we explain the fact, illustrated in Figure 12,that the angle of
elevation from an observer up to the highest point in a rainbow is 42"?
(See page 282.)

2. How can we explain the shapes of cans on supermarket shelves? (See

page 321.)

3. Where is the best place to sit in a movie theater? (See page 472.)

4. How far away from an airport should a pilot start descent? (See page 238).

5. How can we fit curves together to design shapes to represent letters on a
laser printer? (See page 237.)

6. Where should an infielder position himself to catch a baseball thrown by
an outfielder and relay it to home plate? (See page 537.)

7. Does a ball thrown upward take longer to reach its maximum height or to
fall back to its original height? (See page 526.)

raVS fiom sun

rays from sun
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I r I The most natural and

c onvenient repre se ntation of man))

functiot'ts is graphical. Shown here are

graphs recot"ded b), instruments-{tn
electrocardiograph fo, heartbeilts, e

polygraph fo, lie-detection, and a

seismograph fo, earthquake activity (in

this case, the Loma Prieta earthquake

that destro),ed the Bay Bridge rt"om
San Francisco to Oakland in I9B9).

,@
@ € The fundamental objects that we deal with in calculus are

functions. This chapter prepares the way for calculus by discussing the

basic ideas concerning functions, their graphs and ways of transforming

and combining them. We stress that a function can be represented in

different ways: by an equation, in a table, by u graph, or in words. We

look at the main types of functions that occur in calculus and describe

the process of using these functions as mathematical models of real-

world phenomena. We also discuss the use of graphing calculators and

graphing software for computers and see that parametric equations

provide the best method for graphing certain types of curves.
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FourWays to Represent a Function

Functions arise whenever one quantity depends on another. Consider the following
four situations.

A. The area A of a circle depends on the radius r of the circle. The rule that

connects r and Ais given by the equation A : rrz.With each positive

number r there is associated one value of A, and we say that A is a

function of r.

B. The human population of the world P depends on the time t. The table

gives estimates of the world population P(r) at time f, for certain years.

For instance,

P(1950) : 2,520,000,000

But for each value of the time / there is a corresponding value of P, and

we say that P is a function of /.

C. The cost'C of mailing a first-class letter depends on the weight ra of the

letter. Although there is no simple formula that connects w and C, the post

office has a rule for determining C when ar is known.

D. The vertical acceleration a of the ground as measured by a seismograph

during an earthquake is a function of the elapsed time t. Figure I shows a

graph generated by seismic activity during the Northridge earthquake that

shook Los Angeles in 1994. For a given value of r, the graph provides a

corresponding value of a.

(seconds)

FIGURE I

Vertical gound acceleration during
the Northridge earthquake of Mines and Geology

a number (r, t, w, or f),
we sav that the second

Each of these examples describes a rule whereby, given

another number (A, P, C, or a) is assigned. In each case

number is a function of the first number.

A function / is a rule that assigns to each element x in a set A exactly one

element, called /(r), in a set B.

We usually consider functions for which the sets A and B are sets of real num-

bers. The set A is called the domain of the function. The number/(x) is the value

of f atr and is read 'f of r." The range of / is the set of all possible values of ,f(x)

Yca r Population ( Irr i II iorrs)

9(Xl
r) l(,

9lr
r)3(

e-l(

e5(_

96(
L)7 (
qE(

r)9t

99f

1 650

1 750

1ti60

1070

2 3(X)

15 20

3030

l7(x)
-t+5t)

5l(x)
5770

Calif. Dept. of Mines
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as "r varies throughout the domain. A symbol that represents an arbitrary number
inthe domain of a function/is called an independent variable. A symbol that
represents a number in the range of /is called a dependent variable. In Example
A, for instance, r is the independent variable and A is the dependent variable.

It is helpful to think of a function as a machine (see Figure 2). lf x is in the
domain of the function/ then when x enters the machine, it is accepted as an input
and the machine produces an output /(x) according to the rule of the function.
Thus, we can think of the domain as the set of all possible inputs and the range as
the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function
as a machine. For example, the f key on your calculator is such a function. First
you input x into the display. Then you press the key labeled Ji . lt x < 0, then x is
not in the domain ofthis function; that is, x is not an acceptable input, and the cal-
culator will indicate an error. If .r > 0, then an approximationto Ji will appear
in the display. Thus, the ',8 key on your calculator is not quite the same as the
exact mathematical function/defined by f(x) : J;.

Another way to picture a function is by an arrow diagram as in Figure 3. Each
arrow connects an element of A to an element of B. The arrow indicates that/(x)
is associated with x, f(a) is associated with a, and so on.

The most common method for visualizing a function is its graph. Iflis a func-
tion with domain A, then its graph is the set of ordered pairs

{(x,f(x))lxeA}
(Notice that these are input-output pairs.) In other words, the graph oflconsists of
all points (,r, y) in the coordinate plane such that y : f (x) and -r is in the domain
of f.

The graph of a function/gives us a useful picture of the behavior or "life his-
tory" of a function. Since the y-coordinate of any point (.r,y) on the graph is
y : f(x), we can read the value of/(x) from the graph as being the height of the
graph above the point,r (see Figure 4). The graph of/also allows us to picture the
domain and range of/on the.r-axis and y-axis as in Figure 5.

l3

r /(x)
(input) U (output)

FIGURE 2

Machine diagram for a function f

FIGURE 3

Arrow diagram for I
f

#

(t, /(x))

domain

FIGURE 4 FIGURE 5
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FIGURE 6

The notation for intervals is given in
Appendix A.

FIGURE 7

EXAMPLE 2 I Sketch
(a) f(x) - 2x I

soLuTt0N

EXAMPLE I r The graph of a function / is shown in Figure 6.

(a) Find the values of /(l) and/(5).
(b) What are the domain and range of f ?

soLuiloN
(a) We see from Figure 6 that the point (1,3) lies on the graph ofl so the value

of f at I is /(l) : 3. (In other words, the point on the graph that lies above

x : I is three units above the x-axis.)
When x : 5, the graph lies about 0.7 unit below the .r-axis, so we estimate

that/(5) - -0.7.
(b) We see that/(x) is defined when 0 < .r < 7, so the domain of/is the closed

interval 10,7]. Notice that/takes on all values from -2 to 4, so the range of/is

{yl -z
the graph and find the domain and range of each function.
(b) g(x) : x2

(a) The equation of the graph is y : 2x - l, and we recognize this as being the

equation of a line with slope 2 and y-intercept -1. (Recall the slope-intercept
form of the equation of a line: y : mx * D. See Appendix B.) This enables us

to sketch the graph of/in Figure 7. The expression 2x - | is defined for all real

numbers, so the domain of/is the set of all real numbers, which we denote by

R. The graph shows that the range is also R.

(b) Since SQ) : 2' : 4 and g(-l) : (-l)t : 1, we could plot the points (2,4)

and (-l,l), together with a few other points on the graph, and join them to
produce the graph (Figure 8). The equation of the graph is y : tz. *n'"n
represents a parabola (see Appendix B). The domain of g is R. The range of g

consists of all values of g(x), that is, all numbers of the form xt. But xt > 0 for
all numbers x and any positive number y is a square. So the range of g is

{yly > 0} : [0,0o). This can also be seen from Figure 8.

ilFIGURE 8
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E Representations of Functions

There are four possible ways to represent a function:

verbally (by a description in words)

numerically (by a table of values)

visually (by a graph)

algebraically (by an explicit formula)

If a single function can be represented in all four ways, it is often useful to go
from one representation to another to gain additional insight into the function. (In
Example l, for instance, we started with algebraic formulas and then obtained the
graphs.) But certain functions are described more naturally by one method than by
another. With this in mind, let's reexamine the four situations that we considered
at the beginning of this section.

A. The most useful representation of the area of a circle as a function of its
radius is probably the algebraic formula A(r) : zr2, though it is possible
to compile a table of values or to sketch a graph (half a parabola).
Because a circle has to have a positive radius, the domain is

{rl, > 0} : (0,0o), and the range is also (0,co).

B. We are given a description of the function in words: P(t) is the human
population of the world at time r. The table of values of world population
on page 12 provides a convenient representation of this function. If we plot
these values, we get the graph (called a scatter plot)in Figure 9. It too is a
useful representation; the graph allows us to absorb all the data at once.
What about a formula? Of course, it's impossible to devise an explicit
formula that gives the exact human population P(t) at any time r. But it is
possible to find an expression for a function that approximates P(t). In
fact, using methods explained in Section 1.7, we obtain the approximation

P(t) : f(t) - (0.008306312). (1.013716)'

and Figure l0 shows that it is a reasonably good "fit." The function/is
called a mathematical model for population growth. In other words, it is a

function with an explicit formula that approximates the behavior of our
given function. We will see, however, that the ideas of calculus can be

applied to a table of values; an explicit formula is not necessary.

FIGURE 9 FIGURE I O
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A function defined by a table of values is

called a tabular function.

The function P is typical of the functions that arise whenever we
attempt to apply calculus to the real world. We start with a verbal
description of a function. Then we may be able to construct a table of
values of the function, perhaps from instrument readings in a scientific
experiment. Even though we don't have complete knowledge of the values
of the function, we will see throughout the book that is still possible to
perform the operations of calculus on such a function.

C. Again the function is described in words: C(w) is the cost of mailing a

first-class letter with weight r,u. The rule that the U.S. Postal Service used

in 1996 is as follows: The cost is 32 cents for up to one ounce, plus
23 cents for each successive ounce up to 11 ounces. The table of values
shown in the margin is the most convenient representation for this func-
tion, though it is possible to sketch a graph (see Example 10).

D. The graph shown in Figure 1 is the most natural representation of the
vertical acceleration function a(t). It's true that a table of values could be

compiled, and it is even possible to devise an approximate formula. But
everything a geologist needs to know-amplitudes and patterns-can be

seen easily from the graph. (The same is true for the patterns seen in
electrocardiograms of heart patients and polygraphs for lie detection.)
Figures 1l and 12 show the graphs of the north-south and east-west accel-
erations for the Northridge earthquake; when used in conjunction with
Figure l, they provide a great deal of information about the earthquake.

a

(cm/s2)

200

- 100

-200
Calif. Dept. of Mines and Geologl'

F lG U R E I I North-south acceleration for the Northridge earthquake F I G U R E 12 East-west acceleration for the Northridge earthquake

In the next example we sketch the graph of a function that is defined verbally.

EXAMPTE 3 r When you turn on a hot water faucet, the temperature Z of the
water depends on how long the water has been running. Draw a rough graph of
I as a function of the time r that has elapsed since the faucet was turned on.

SOLUTIOI'I The initial temperature of the running water is close to room temper-
ature because of the water that has been in the pipes. When the water from the
hot water tank starts coming out, I increases quickly. In the next phase, Z is
constant at the temperature of the water in the tank. When the tank is drained,

It' (otrnccs ) (lw) (ckrllars)

0<w....I
l .- w t.2
2 ..- Ll,) '- 3

3.tw'-,4"
J .,:- W =..5

:

0.3 2

0.5 5
( ).7 r{

I .0I
I .2-1

:



SECTION I.I FOUR WAYS TO REPRTITNT A IU|[lTTION

T decreases to the temperature of the water supply. This enables us to make the
rough sketch of I as a function of r in Figure 13. *

A more accurate graph of the function in Example 3 could be obtained by using
a thermometer to measure the temperature of the water at lO-second intervals. In
general, scientists collect experimental data and use them to sketch the graphs of
functions, as the next example illustrates.

EXAMPLE 4 r The data shown in the margin come from an experiment on the
lactonization of hydroxyvaleric acid at 25'C. They give the concentration C(t) of
this acid (in moles per liter) after / minutes. Use these data to draw an approxi-
mation to the graph of the concentration function. Then use this graph to esti-
mate the concentration after 5 minutes.

SOLUTIOIi We plot the five points corresponding to the data from the table in
Figure 14. The curve-fitting methods of Section 1.7 could be used to choose a

model and graph it. But the data points in Figure 14 look quite well behaved, so

we simply draw a smooth curve through them by hand as in Figure 15.

l7

FIGURE I3

2w

FIGURE I6

c(t)
0.08

0.06

0.04

0.02

c(/)

0.08

0.06

0.04

0.02

| 2 3 4.5 6I8 2 3 4 5 67I

FIGURE 14 FIGURE I5

Then we use the graph to estimate that the concentration after 5 rnin is

C(5) : 0.035 mole/liter

In the following example we start with a verbal description of a function in a
physical situation and obtain an explicit algebraic formula. The ability to do this is
a useful skill in calculus problems that ask for the maximum or minimum values
of quantities.

EXAMPLE 5 I A rectangular storage container with an open top has a volume of
10 m3. The length of its base is twice its width. Material for the base costs $10
per square meter; material for the sides costs $6 per square meter. Express the
cost of materials as a function of the width of the base.

SOLUTION We draw a diagram as in Figure 16 and introduce notation by letting
w and2w be the width and length of the base, respectively, andhbe the height.

The area of the base is (2w)w : 2w2,so the cost, in dollars, of the material
for the base is l0(2w2). Two of the sides have area wh andthe other two have
area 2wh, so the cost of the material for the sides is 612(wh) + 2(2wh)1. The
total cost is therefore

re

t C'(r)

0

;
6

rt

0.0rJ(x)

0.t)5 70

0.t)40ti
0.0295
0.02 I0

I

I

L

C- l0(2wz) + 6l?(uth) + 2(2wh)l - 20w'+ 36wh
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In setting up applied functions as in

Example 5, it may be useful to review
the principles of problem solving as dis-

cussed on page 8Z particularly Step l:

Understanding the Problem.

lf a function is given b), a formula and

the domain is not stated explicitly, the
convention is that the domain is the set
of all numbers for which the formula
makes sense and defines a real number.

which gives

Substituting this

105
h:-----T:-'e 2w? wz

To express C as a function of ar alone, we need to eliminate ft and we do so by
using the fact that the volume is l0 m3. Thus

w(2w)h: 1O

into the expression

C- 20wz + 36

e have

- Zow' + 180

w

for C, w

-(*)

Therefore, the equation

c(w\:20*t+l8o w>o
w

expresses C as a function of ar. I
EXAMPLE 6 r Find the domain of each function.

(a).f(x) :,8 + 2 (b) s(x) : *
soLuTtoN
(a) Because the square root of a negative number is not defined (as a real
number), the domain of/consists of all values of x such that.r + 2 > 0. This
is equivalent to x > -2, so the domain is the intervall-2,a).
(b) Since

llg\x): rr_r:r(r_D
and division by 0 is not allowed, we see that g(.r) is not defined when r : 0 or
x : l. Thus, the domain of g is

{x I x * 0,x * 1}

which could also be written in interval notation as

(-*,0) u (0, l) u (1, *)

The graph of a function is a curve in the .ry-plane. But
Which curves in the -ry-plane are graphs of functions? This is

lowing test.

ffi

the question arises:

answered by the fol-

The Vertical Line
of x if and only

Test A curve in
if no vertical line

the xy-plane is the graph of a function
intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 17. If
each vertical line x : c intersects a curve only once, at (a,b), then exactly one

functional value is defined by f(a): b. But if a line x : a intersects the curve
twice, at (a,b) and (a,c), then the curve cannot represent a function because a

function cannot assign two different values to a.
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For example, the parabola x -- y' - 2 shown in Figure l8(a) is not the graph of
a function of x because, as you can see, there are vertical lines that intersect the
parabola twice. The parabola, however, does contain the graphs of two functions
of x. Notice thatx: y' - 2 implies y2: x * 2, so y: lrE + 2. So rhe upper

and lower halves of the parabola are the graphs of the functions f(*) : 'F+ Z

[from Example 6(a)] and g(x) - -"/x * 2 [see Figures 18(b) and (c)]. We observe
that if we reverse the roles of -r and y, then the equation x : h(y) : y2 - 2 does

define x as a function of y (with y as the independent variable and x as the depen-
dent variable) and the parabola now appears as the graph of the function ft.

FIGURE I8 (a)x-y2-z (b).v -,{"* z (c)y _ -,JiTz

tr Piecewise Defined Functions

The functions in the following four examples are defined by different formulas in
different parts of their domains.

EXAMPLE 7 r A function/is defined by

(t - , if x < I
/(r) : lr, if .r > I

Evaluate/(0),"f(l), andf(2) and sketch the graph.

SOtUTlOtl Remember that a function is a rule. For this particular function the
rule is the following: First look at the value of the input x. If it happens that
x { l, then the value of/(.r) is I - x. On the other hand, if x > 1, then the
value of /(.r) is x2.

Since 0

I9

FIGURE I7

Since

Since

1

2
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FIGURE I9

For a more extensive review of absolute
values, see Appendix A.

FIGURE 20

For example,

l:l:3
l'/' rl:

In general, we have

| -: | : 3 lo | : o

J, I 13 nl:7T 3

How do we draw the graph of/? We observe that if x { 1, then/(x) : I - x,
so the part of the graph of/that lies to the left of the vertical line x : 1 must
coincide with the line y : I - r, which has slope -1 and y-intercept 1. If
x ) I, then/(x) : rt, so the part of the graph of/that lies to the right of the
line x : 1 must coincide with the graph of y : x', which is a parabola. This
enables us to sketch the graph in Figure 19. The solid dot indicates that the point
(1,0) is included on the graph; the open dot indicates that the point (1,1) is
excluded from the graph. f

The next example of a piecewise defined function is the absolute value function.
Recall that the absolute value of a number a, denoted bV lo I, is the distance from
a to 0 on the real number line. Distances are always positive or 0, so we have

Iol

(Remember that rf a is negative, then -a is positive.)

EXAMPLE 8 r Sketch the graph of the absolute value functionf(x) _ lr l.

SSttiTlON From the preceding discussion we know that

Using the same method as in Example 7, we see that the graph of/coincides
with the line y : x to the right of the y-axis and coincides with the line

! : -x to the left of the y-axis (see Figure 20). il
EXAMPLE 9 r Find a formula for the function/graphed in Figure 21.

| | f* if xtrt: l_r if x

$Sl-tlTl$ru The line through (0,0) and
b - 0, so its equation is y -- x. Thus,
(0,0) ro (1, 1), we have

(1, 1) has slope m - I and y-intercept
for the part of the graph of f that joins

if0

l"l- a tf a

lol: -a rf a

FIGURE 2'

f(x) : x
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y - 0: (-r)(x - 2) or t:2 - x

Sowehave f(x):2-x ifl<x<2

We also see that the graph oflcoincides with the x-axis for x ) 2. Putting this
information together, we have the following three-piece formula for/:

f* ifO<x<l
I

f(x):1r-* if 1<x<2
L0 ifx>2 ffi

EXAMPLE l0 r In Example C at the beginning of this section we considered the
cost C(ar) of mailing a first-class letter with weight w. ln effect, this is a piece-

wise defined function because, from the table of values, we have

(o.lz ifo<a<l
fo.ss ifr<w<2

C(wl : 1

f 
0.78 if2<w<3

Ll.0l if3<w<4
The graph is shown in Figure 22.You can see why functions similar to this one

are called step functions-they jump from one value to the next. Such func-
tions will be studied in Chapter 2. *

The line through (1,1) and (2,0) has slope z: -1, so its point-slope form is

E Symmetry

If a function/satisfies/(-x): f(x) for every number"r in its domain, then/is
called an even function. For instance, the function f(x) :.r' is even because

f(-r):(-x)':x':f(x)
The geometric significance of an even function is that its graph is symmetric with
respect to the y-axis (see Figure 23). This means that if we have plotted the graph
of/for x > 0, we obtain the entire graph simply by reflecting about the y-axis. If
/satisfies/(- x) : - f (x) for every number x in its domain, then/is called an odd
function. For example, the function f(x) : x3 is odd because

f(-x) : (-r)' : -x' : -f(*)
The graph of an odd function is symmetric about the origin (see Figure 24).lf we

Point-slope form of the equation of
a line:

y - yt: m(x - xr)

See Appendix B.

FIGURE 22

F lG U R E 24 An odd functionF lG U R E 23 An even function
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FIGURE 25

/(-x):l:1':1;'

an odd function.

g(-*): I - (-")u - I

(- 1)'*s + (-*)
+x)

already have the graph of/for x ) 0, we can obtain the entire graph by rotating
through 180o about the origin.

EXAMPLE ll r pe1"r-ine whether each of the followine functions is even. odd.

6T13":T1'T "ooio, se): | - xa (c) h(x)l r* - *,
S0LUTIOt-f

(a)

Therefore, / is

(b)

So g is even.

(c)

Since h(- x) +
odd.

xo : g(x)

h(-*): 2(-*) (-*)t : -2x x2

h(x) and h(- x) # - h(*), we conclude that ft is neither even nor

ffi

The graph of the functions in Example 1l are shown in Figure 25. Notice that
the graph of lr is symmetric neither about the y-axis nor about the origin.

(c)(b)(a)

I Increasing and Decreasing Functions

The graph shown in Figure 26 rises from A to B, falls from B to C, and rises
again from C to D. The function/is said to be increasing on the interval [c,b],
decreasing onlb,cf, and increasing again onlc,d]. Notice that if xr and x2 are any
two numbers between a and b with.rr < xz, then/(xt) < f(x).We use this as the
defining property of an increasing function.

y : /(x)

/tr 
';

FIGURE 76
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In the definition of an increasing function it is important to realize that the in-
equality/(.r1) < f(*r) must be satisfied for every pair of numbers "{r and xzin I
with xi ( xz.

You can see from Figure 27 that the function/(x) : x'is decreasing on the in-
terval (-co,0] and increasing on the interval [0,0o).

Exercises

l.

FIGURE 27

The graph of a function/is given.
(a) State the value of/(-l).
(b) Estimate the value of f(2).
(c) For what values of x is /(x) : 2?

(d) Estimate the values of x such that f (x) - 0.

(e) State the domain and range of "f(f) On what interval is / increasing?

The graphs of f and g are given.
(a) State the values of f(-4) and g(3).
(b) For what values of x is f(x) : g(x)?
(c) Estimate the solution of the equation "f(x) 

: - l.
(d) On what interval is / decreasing?
(e) State the domain and range of f.
( f ) State the domain and range of g.

Geology at the University Hospital of the University of
Southern California in Los Angeles. Use them to
estimate the ranges of the vertical, north-south, and

east-west ground acceleration functions at USC during
the Northridge earthquake.

4. In this section we discussed examples of ordinary,
everyday functions: population is a function of time,
postage cost is a function of weight, water temperature
is a function of time. Given three other examples of
functions from everyday life that are described verbally.
What can you say about the domain and range of each

of your functions? If possible, sketch a rough graph of
each function.

5-8 r Determine whether the curve is the graph of a
function of x. If it is, state the domain and range of the

function.

2.

Figures l, 11, and 12 were
operated by the California

recorded by an instrument
Department of Mines and

A function 
"f 

is called increasing on an interval / if

1(xr) < f (xr) whenever xr

It is called decreasing on 1 if

1(xr) > f (*r) whenever xr

in/

in/

3.
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The graph shown gives the weight of a certain person
as a function of age. Describe in words how this
person's weight varies over time. What do you think
happene d when this person was 30 years old?

(b) Sketch a possible graph of l'(r).
(c) Sketch a possible graph of the ground speed.
(d) Sketch a possible graph of the vertical velocity.

17. Temperature readings Z (in "F) were recorded every two
hours from midnight to noon in Atlanta, Georgia, on
March 18, 1996. The time / was measured in hours from
midnight.

(a) Use the readings to sketch a rough graph of Z as a
function of r.

(b) [Jse the graph to estimate the temperature at 1l A.M.

18. The population P (in thousands) of San Jose, California,
from 1984 to 1994 is shown in rhe table. (Midyear
estimates are given.)

(a) Draw a graph of P as a function of time.
(b) Use the graph to estimate the population in 1991.

f 9. If f(x) - 2.r7 + 3x - 4, find /(0) ,f (2), f(r/Z ),
f(t + nE ), ft-,r),/(.r + t), 2/(r), and f(zx).

20. A spherical balloon with radius r inches has volume
V(r) - I trr'. Find a fune tion that represents the amount
of air required to inflate the balloon from a radius of
r inches to a radius of r + I inches.

9.

Weight
(pounds)

200

150

r00

50

10.

30 40 50 60 70 Age
(years)

Thc graph shown gives a salesman's distance frorn his
home as a function of tirne on a certain day. Describe in
words what the graph indicates about his travels on this
dav.

Distance
from home

(miles)

ll.

12.

8,q,.H,t. l0 I\,JooN 2

You put some ice cubes in a glass, fill the glass with
cold water, and then let the glass sit on a table. Describe
how the temperature of the water changes as time
passes. Then sketch a rough graph of the temperature of
the water as a function of the elapsed time.

Sketch a rough graph of the number of hours of claylight
as a function of the time of year.

Sketch a rough graph of the outcloor temperature as a
function of time during a typical spring day.

You place a frozen pie in an oven and bake it for an

hour. Then you take it out and let it cool before eating
it. Describe how the temperature of the pie changes as

time passes. Then sketch a rough graph of the temper-
ature of the pie as a function of time.

A homeowner mows the lawn every Wednesday after-
noon. Sketch a rough graph of the height of the grass

as a function of time ovcr the course of a four-week
period.

An airplane f lies from an airport and lands an hour
later at another airport, 400 miles away. [f r represents
the time in minutes since the plane has left the terminal
building, let;r(r) be the horizontal distance traveled ancl

1'(t) be the altitude of the plane.
(a) Sketch a possible graph of x(r).

2t-22 I Find/(2 + h),,f(x +
where /r * 0.

J:-
r+lt3.

ft), and

22. f(r)

14.
23-25 t Find the domain of the function.

24. h(x) - lfi - 3*

15.

4

23. ./(x) : 
t

xt+J-6
25..f(r): i? - t

26. Find the domain and range and sketch the graph of the

f,uncrion h(.r)- ,E=7

77-36 I Find the
function.

27. f(x) - 3 2x

domain and sketch the graph of the

29. G(r) - l*l * x

28. f(x) : xt + 2x I

30. I{(x) - lz*l
rt+5r+6

t6.

I 0 2 4 6 t{ rt) l2

T 5r{ 57 53 50 5l 57 6l

t l ctft4
1 986 l9ttt{ 1 990 I e92 l9r).1

I 695 716 '-t ^l 1/-l-1 782 t{(x) nt7

3 r. /(x) - x/l xl 32. /(x) : x+2



33. /(x) -

34. /(x) -

35. /(r) -

36. .f(x) :
x { -1
l'l
x71

3742 r Find an expression for the function whose graph is
the given curve.

37. The line segment joining the points (-2, l) and (4, -6)
38. The line segment joining the points (-3, -2) and (6,3)

39. The bottom half of the parabola x + (y l)t : 0

40. The top half of the circle (x - l)t + .),2 
: I

43-47 r Find a formula for the described function and state
its domain.

43. A rectangle has perimeter 20 m. Express the area of the
rectangle as a function of the length of one of its sides.

44. A rectangle has area 16 m2. Express the perimeter of the
rectangle as a function of the length of one of its sides.

45. Express the area of an equilateral triangle as a function
of the length of a side.

46. Express the surface area of a cube as a function of its
volume.

47. An open rectangular box with volume 2 m3 has a square
base. Express the surface area of the box as a function
of the length of a side of the base.
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48. A Norman window has the shape of a rectangle sur-
mounted by a semicircle. If the perimeter of the window
is 30 ft, express the area A of the window as a function
of the width x of the window.

49. A box with an open top is to be constructed from a

rectangular piece of cardboard with dimensions 12 in.
by 20 in. by cutting out equal squares of side x at each

corner and then folding up the sides as in the figure.
Express the volurne V of the box as a function of x.

l- 20 

-J

50. A taxi company charges two dollars for the first mile
(or part of a mile) and 20 cents for each succeeding
tenth of a mile (or part). Express the cost C (in dollars)
of a ride as a function of the distance x traveled (in
miles) for 0 { x < 2,, and sketch the graph of this
function.

In a certain country, income tax is assessed as follows.
There is no tax on income up to $10,000.Any income
over $10,000 is taxed at a rate of l}Va, up to an income
of $20,000. Any income over $20,000 is taxed at 157o.

(a) Sketch the graph of the tax rate R as a function of
the income 1.

(b) How much tax is assessed on an income of $14,000?
On $26,000?

(c) Sketch the graph of the total assessed tax Z as a
function of the income 1.

The functions in Example 10 and Exercises 50 and 51(a)

are called step functiorzs because their graphs look like
stairs. Give two other examples of step functions that
arise in everyday life.

53. (a) If the point (5,3) is on the graph of an even func-
tion, what other point must also be on the graph?

(b) If the point (5,3) is on the graph of an odd function,
what other point must also be on the graph?

[- if x
[x + I if x

[r* + 3 ir
L3 ,r if

f* + 2 itx
l*' if r

f - r ir

13r+2 if
L7 2x if

<0
>0

x ( -l
x > -1

41.

I
t2

I

51.

52.

]-.t:]

lr
_l
-r

x
-t lr

xlL-
x

xT-
xl
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54.

FIGURE I

FIGURE 2

Graphs of /(-r) : r" for n :
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A function/has domain [-5,5] and a portion of its
graph is shown.

stant,

(b) Complete the graph of 
"f 

if it is known that/is odd.

55-60 I Determine whetherl'is even, odd, or neither. If / is

even or odd, use symmetry to sketch its graph.

55. .f(x) : x-t

56./(x) :x 3

57. .f(r) - rt + r
58. .f(x) : ru - 4xr

59. .f(.r) : -r' - -r

60. .f(x) : 3xr + 2x1 + I

Power Functions A function of the form f (*) - x", where u is a con-
is called a power function. We consider several cases.

(a) Complete the graph of .f if it is known that / is even.

New Functions from Old Functions

In solving calculus problems you will find that it is helpful to be familiar with the
graphs of some commonly occurring functions. In this section we classify various
types of functions and then we show how to transform them by shifting, stretch-
ing, and reflecting their graphs. We also show how to combine pairs of functions
by the standard arithmetic operations and by composition.

I Typ", oi F.rr,.c,or,,

FFJ Constant Functions The constant function/(x) : c has domain R and its
range consists of the single number c. Its graph is a horizontal line and is illus-
trated in Fisure I for c : 2.

(a) a = n, a positive integer
The graphs of f(x) : .{" for n : l, 2, 3, 4, and 5 are shown in Figure 2. We al-
ready know the shape of the graphs of y : .r (a line through the origin with slope

1) and y : x'(a parabola, see Example 2 in Section 1.1).

r,2,3,4,5 The general shape of the graph

odd .If n is even, then/(x) : .tr" is

parabola 1o - 12. If n is odd, then

of /(x) - x" depends on whether rz is even or
an even function and its graph is similar to the

.f (*) - x" is an odd function and its graph is

l
)t:J



FIGURE 4

FIGURE 3

FIGURE 5

Graphs of root functions
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similar to that of y : x'. Notice from Figure 3, however, that as n increases, the
graph of | : xn becomes flatter near 0 and steeper when I xl > l.(If r is small,
then .r2 is smaller. x' is even smaller, xa is smaller still, and so on.)

(b)a = -1
The graph of the reciprocal function f(x) : x-t : l/x is shown in Figure 4. Its
graph has the equation y : l/x or xy : L This is an equilateral hyperbola with
the coordinate axes as its asymptotes.

(c)a = lfnrna positiveinteger

The function f(x) 
= 

xt/" : {tG is a root function. For n : 2 it is the square root
function /(-r) : ../x whose domain is [0, m) and whose graph is the upper half of
the parabola x: y2 [see Figure 5(a)]. For other even values of z, the graph of
y : tlx is similar to that of y : .,,6. pot n : 3 we have the cube root function

f(r) : fi whose domain is R (recall that every real number has a cube root) and
whose graph is shown in Figure 5(b). The graph of y : {/x for n odd (n > 3) is
similar to that of y : i/x.

(a) /(x) - fr' (b) /(x) - lfr-

m Polynomials A function P is called a polynomial if
P(x): anx" I an-txn-t + .''+ a2x2 r a6 * ao

where z is a nonnegative integer and the numbers es,a1,a2,...,Qn are constants

called the coefficients of the polynomial. The domain of any polynomial is
R : (-o, m). If the leading coefficient an * 0, then the degree of the polynomial
is n. For example, the function

P(x) -- 2x6 - xa + lf + Ji
is a polynomial of degree 6.

-1
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The coordinate geometry of lines is

reviewed in Appendix B.

A polynomial of degree I is of the form P(.r) : ax + b and is called a linear
function because its graph is the line y : ax * b (slope a, y-intercept b). A char-
acteristic feature of linear functions is that they grow at a constant rate. For in-
stance, Figure 6 shows a graph of the linear function/(-r) : 3x - 2 and, a table of
sample values. Notice that whenever x increases by 0.1, the value of f(x) increases
by 0.3. So /(.r) increases three times as fast as x. Thus, the slope of the graph

I : 3x - 2, namely 3, can be interpreted as the rate of change of y with respect
to.r.

\

0

I

2
")
l

,l

5

I.0
r.3

1.6

t.9
l.l
2.-s

A polynomial of degree 2 is of the form P(x) : ax' + bx * c and is called a

quadratic function. The graph of P is always a parabola obtained by shifting the
parabola y : ax2. (See Example 3.)

A polynomial of degree 3 is of the form

P(x): ax3 + bxz * cx t d

and is called a cubic function. Figure 7 shows the graph of a cubic function in
part (a) and graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will
see later why the graphs have these shapes.

FIGURE 7 (a)y:,r3-r+ I (b)y:x4-3x2+x (c)y:3rs-25x3*60;

Polynomials are commonly used to model various quantities that occur in the

natural and social sciences. For instance, in Section 3.3 we will explain why
economists often use a polynomial P(x) to represent the cost of producing .r units
of a commoditv.

lil national Functions A rational function / is a ratio of two polynomials:

P(.r)t\x): qx)

where P and Q are polynomials. The domain consists of all values of .r such that

FIGURE 6
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QQ) + 0. For example, the function

Zxa x' + If(*): x'4

is a rational function with domain {x I x + +2}. Its graph is shown in Figure 8.

Algebraic Functions A function/is called an algebraic function if it can

be constructed using algebraic operations (addition, subtraction, multiplication,
division, and taking roots) starting with polynomials, Any rational function is
automatically an algebraic function. Here are two more examples:FIGURE 8

Zxa-x2+l
ft;t): x, _ 4

FIGURE IO

f(*):6q
When we sketch algebraic functions in Chapter 4 we will see that their graphs can
assume a variety of shapes. Figure 9 illustrates some of the possibilities.

FIGURE 9 (a) /(x) - r.,[{ + 3 (b) g(x) - 1[i' - zs (c) /r(x) - xt"(x - 2)t

l*l Trigonometric Functions Trigonometry and the trigonometric functions
are reviewed on the front endpapers and in Appendix C. In calculus the conven-
tion is that radian measure is always used (except when otherwise indicated). For
example, when we use the function/(.r) : sin.x, it is understood that sinx means
the sine of the angle whose radian measure is -x. Thus, the graphs of the sine and
cosine functions are as shown in Fisure 10.

(a) /(x) : sin x (b) g(x) * cos -tr

Notice that for both the sine and cosine
range is the closed interval [-1, 1]. Thus,

functions the domain is (-oo, oo) and the
for all values of x we have

-l

Also, the zeros of the

sin x

sine function occur

- 0 when

at the integer multiples of rr;

x - nrr n an integer

that is,
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sin(x + 2rr) - sin x cos(x + 2n) : cos r

The periodic nature of these functions makes them suitable for modeling repetitive
phenomena such as tides, vibrating springs, and sound waves.

The tangent function is related to the sine and cosine functions by the equation

An important property
functions and have period

and its graph is shown
x - tnf 2, +3n12, . . .

period 7T:

of the sine and cosine
Ztr. This means that.

functions is that they are periodic
for all values of x,

tanx - 
sln'r
cos x

in Figure I l. It is undefined when cos r : 0, that is, when
.Its range is (-*,*).Notice that the tangent function has

tan(x + rr) - tan x for all x

FIGURE I I

v:tanx

The remaining three trigonometric functions (cosecant, secant, and cotangent)
are the reciprocals of the sine, cosine, and tangent functions. Their graphs are
shown in Appendix C.

l l exponential Functions These are the functions of the formf(x): a',
where the base c is a positive constant. The graphs of y: 2'and y: (0,5)'are
shown in Figure 12. In both cases the domain is (-m,o) and the range is (0,oo).

(a)y:2' (b) y - (0.5)'

Exponential functions will be studied in detail in Section 1.5 and we will see in
Section 1.7 and in later chapters that they are useful for modeling many natural
phenomena, such as population growth (if a > l) and radioactive decay (if a < l).

FIGURE J2
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FIGURE I3

base a is a positive constant. They are the inverse functions of the exponential
functions and will be studied in Section 1.6. Figure 13 shows the graphs of four
logarithmic functions with various bases. In each case the domain is (0, oo), the
range is (--,-), and the function increases slowly when x ) l.

lll tt"nt."ndental Functions These are functions that are not algebraic. The
set of transcendental functions includes the trigonometric, inverse trigonometric,
exponential, and logarithmic functions, but it also includes a vast number of other
functions that have never been named. In Chapter 8 we will study transcendental
functions that are defined as sums of infinite series.

EXAMPLE I r Classify the following functions as one of the types of functions
that we have discussed.

(a) /(.r) : 5' (b) g(.r) : x5

(c) h(x) :

soLurf oH

(a) /(x) -
(b) g(x) :

(c) h(x) :

(d) u(t) :

l+x
(d) u(t): I - t + 5ta1-. 6

lif Logarithmic Functions These are the functions f(x) : logox, where the

5* is an exponential function. (The x is the exponent.)

x5 is a power function. (The x is the base.)

1+x
- r is an algebraic function.
I - 4x

I - t + 5ra is a polynomial of degree 4. ffi

I Transformations of Functions

By applying certain transformations to the graph of a given function we can obtain
the graphs of certain related functions and thereby reduce the amount of work in
graphing. Let us first consider translations. If c is a positive number, then the
graphof y : f(x) * c is justthe graph of y: /(.r) shiftedupwardadistanceof c

units (because each y-coordinate is increased by the same number c). Likewise, if
SG) : f(x - c), where c ) 0, then the value of g at r is the same as the value of

logrx

y : log5 x

J; 
: log 1sr
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FIGURE I4
Translating the graph of /

c (c units to the left
of y : f(x) shifted c

the graph of y : f (x c) is just the
(see Figure 14).

fatx
graph

of ;). Therefore,
units to the right

y:f(x) +c

y : /(x)

y: f (x) - c

FIGURE I5
Stretching and reflecting the graph of /

Now let's consider the stretching and reflecting transformations. If c ) l,
then the graph of y : cf(x) is the graph of y : /(x) stretched by a factor of c in
the vertical direction (because each y-coordinate is multiplied by the same num-
ber c). The graph of y : - f(x) is the graph of y : /(x) reflected about the x-axis
because the point (-r,y) is replaced by the point (x,-y). (See Figure 15 and the
following chart, where the results of other stretching, compressing, and reflect-
ing transformations are also given.)

Yertica|andHorizonta|StretchingandRef|ectingSuppoSeC>
obtain the graph of

y: cf(x), stretch the graph of y : f(*) vertically by a factor of c
y : Olc)f(x), compress the graph of y : f(*) vertically by a factor of c
y : f (cx), compress the graph of y : f (x) horizontally by a factor of c
y : f (xlc), stretch the graph of y : f (*) horizontally by a factor of c

y : - f (x), reflect the graph of y : f (*) about the x-axis

y : f(-x), reflect the graph of y : f(x) about the y-axis

Yertical and

-)': f(*)
y : f(x)
v:f(x
v:f(x

Shifts Suppose c

the graph of y : f(*) a

the graph of y : f (x) a

the graph of y : f (*) a

the graph of y : f (*) a

Horizontal

+ c, shift

c, shift

c), shift
+ c), shift

To obtain the graph of
distance c units upward

distance c units downward

distance c units to the right

distance c units to the left

y: f(x + c) Y:"f(x-c)
y : /(x)

y: -/(x)



(a) y - .r/;

FIGURE I7

FIGURE I6

(b)y -Ji-z
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Figure 16 illustrates these stretching transformations when applied to the cosine
function withc:2.

EXAMPLE 2 r Given the graph of y : .',/x, use transformations to graph
y : Ji - 2, y : J-t, y : -JV,y : zJi, andy : J-x.
SOLUTI0N The graph of the square root function y : J*, obtained from
Figure5, is shown in Figure 17(a). In the other pa{! o{]!he figure we sketch
y : \E - 2by shifting 2 units downward, y : Jx - 2 by shifting 2 units to
the right, y : -J; by reflecting about the x-axis. y : 2'E by stretching
vertically by a factor of 2, and y : t/ -x by reflecting about the y-axis.

(c)y -fx-t (d)y:-/' (e) y - 2,[; (r) y - J-;

EXAMPLE 3 I Sketch the graph of the function f (*) - xz + 6x + 10.

SOLUTION Completing the square, we write the equation of the graph as

y-x2+6x+10:(x+3)',+l

This means we obtain the desired graph by starting with the parabola ! : xz
and shifting 3 units to the left and then I unit upward (see Figure lS).

ffi

ffi

I
): cos ,J

)):cos2x
i ,:lo,*

FIGURE I8 (a)y=x' (b)y:(x+3)2+1
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FIGURE I9

EXAMPLE 4 r Sketch the graphs of the following functions.
(a) y: sin2x (b) y- I - sinx

$ot#T$o[*
(a) We obtain the graph of y - sin 2x from that of y - sin x by compressing
horizontally by a factor of 2 (see Figures 19 and 20).

FIGURE 2O

(b) To obtain the graph of y : I - sin -r, we again start with y : sin x. We

reflect about the r-axis to get the graph of ) : -sinx and then we shift I unit
upward to get y : I - sin.r (see Figure 2l).

Another transformation of some interest is taking the absolute value of a func-
tion. If y:lf(*) l, then according to the definition of absolute value, y : f(x)
when/(x) > 0 and y: -f(r) when/(x) < 0. This tells us how to get the graph

of y: l/(x)l from the graph of y: /(x): The part of the graph that lies above

the.r-axis remains the same; the part that lies below the x-axis is reflected about

the x-axis.

EXAMPLE 5 r Sketch the graph of the function y : l"t - t l.

SOLUTfON We first graph the parabola ! : x2 - I in Figure 22(a) by shifting
the parabola ! : x2 downward I unit. We see that the graph lies below the
.r-axis when -l I x < 1, so we reflect that part of the graph about the x-axis
to obtain the graph of y: lr' - tl in Figure 22(b).

FIGURE 2I

ffi

):sin2x

FIGURE 22 (a)y -x2-l (b)y-lxz-ll
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Two functions/and g can be combined to form new functionsf + S,f - S,fS,
andf /g in a manner similar to the way we add, subtract, multiply, and divide real
numbers.

If we define the sum/ + g by the equation

tr (f + dQ): f(x) + sU)

then the right side of Equation I makes sense if both/(x) and g(x) are defined, that
is, if .r belongs to the domain of /and also to the domain of g. If the domain of /is
A and the domain of g is B, then the domain of f + g is the intersecrion of these
domains, that is, A a B.

Notice that the * sign on the left side of Equation I stands for the operation of
addition of functions, but the * sign on the right side of the equation stands for
addition of the numbers f(x) and 9(r).

Similarly, we can define the differenc e f - S and the product /g, and their do-
mains are also A O B. But in defining the quotient//g we must remember not to
divide bv 0.

Afgebra of Functions Let/and g be functions with domains A and .8.

Then the functions / + g, f g, f g, and ilg are defined as follows:

(f + g)(x): f(x) + g(x) domain: A n B

(f g) (x):f(x)-s(x) domain:AnB
(fg)(*): f(*)g(*) Aomain: A n B

/^\rl(I) t"rl: ry domain:{xe An Blg(*)*o}
\s /'""' g(x)

EXAMPLE 5 t lf f(x): Ji andSG): J4 --7, find the functions/ * 9,
f - s, fs, andf/9.

SOIUTfON The domain of f(x): l,6 it [0, oo). The domain of g(x) : J4---F
consists of all numbers.r such that4 - x'> 0, that is, x'< 4. Taking square
roots of both sides, we get lxl < 2,or -2 ( x { 2,so the domain of g is the
interval l-2,21. The intersection of the domains of/and g is

[0, oo) n l-2,2f : 10,2]

Thus, according to the definitions, we have

(') : J; J4=7 : J4i=T
(x) : rr{:

Notice that the domain of f /g is the interval [0, 2) because we must exclude the
points where SQ) : 0, that is, x : -+2. I

35

Another way to solve 4

(2-r) (2+
- x2 >0:

.{)>0

-2

'l;

(fs)

(r)

0{x
0

0{x

0
x

4-r"
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FIGURE 23

The graph of the
graphical addition.
Figure 23. Figure 24

f+gfromExample

function f + g is obtained from the graphs of f and g by

This means that we add corresponding y-coordinates as in
shows the result of using this procedure to graph the function
6.

FIGURE 24

There is another way of combining two functions to g€t a new function. For ex-

ample, suppose that y : f(u) -- t/u and u : g(x) : x' + l. Since y is a function
of a and u is, in turn, a function of x, it follows that y is ultimately a function of .r.

We compute this by substitution:

y : f(u) : f(s(x)) - f(*2 + l) :'/*' + 1

The procedure is called composition because the new function is composed of the

two given functions/and g.

In general, given any two functions / and g, we start with a number .r in the

domain of g and find its image 9(x). If this number g(x) is in the domain of/ then

we can calculate the value of f(g(x)). The result is a new function h(x) : fQG))
obtained by substituting g into / It is called the composition (or composite) of f
and g and is denoted by f " g ("f c\rcle g").

Definition Given two functions,f and g, the composite function f o g (also

called the composition of f and g) is defined by

(f " s) (x) : f(g(x))

The domain of f o g is the set of all x
domain of f. In other words, (,f " g) (x)

are defined. The best way to picture / o

an arrow diagram (Figure 26).

in the domain of g such that g(x) is in the

is defined whenever both g(x) and f (g(x))
g is by a machine diagram (Figure 25) or

(/ + s)(x)

f (a) + s(al
-"J"

--'. \
\a

..'! /(x) : Vx

(/ + s)(xl

g(x) -,14 - *z

Composition Functions



FIGURE 25

The f 'g machine is composed of the
g machine (first) and then the f machine.

FIGURE 26

Arrow diagram for / o a

ff 0 < a 4 h, then ot < b'

A more geometric method for graphing
composite functions is explained in

Exercise 53.
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f (€t(x))s (x)

EXAMPLE I t lf f(x) : x2 and SQ) : x - 3,find the composite functions/ o 9
andgof.

SOLUT|0N We have

(f " dQ): fGGD: fQ - 3) : (* - 3)'

Q"f)(x): s(fQD: sQ\: x'- 3 G

@ NOTE. YoucanseefromExample 7 that,ingeneral,f og# g "f Remember,
the notationf o g means that thc functiongis applied first and then f is applied sec-
ond. In Example 7, f o g is the function that first subtracts 3 and then squares; g . /
is the function that first squares and then subtracts 3.

EXAMPLE 8 I

s#f;_uTrsru

rrl'or vJ to be

have 2 ,F
domain of / o

If/(x) - ,lZ 
- 

and g(x)- ,8, find f " g and its domain.

(f " s)(x): f(s(x)): f(rE ) - J, -G

Suppose that we don't have explicit formulas for/and g but we do have tables of
values or graphs for them. We can still graph the composite function/ o g, as the
following example shows.

EXAMPIE 9 r The graphs of/and g are as shown in Figure 27 and h: f " g.
Estimate the value of h(0.5). Then sketch the graph of /r.

SOLUTIO|{ From the graph of g we estimate that 9(0.5) - 0.8. Then from the
graph of/we see that/(0.8) - -1.7. So

rx(O.s) : /(s(o.s)) = 1(0.8) : -rj
In a similar way we estimate the values of /r in the following table:

\ -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 l0
g(-r ) - 1.5 - 1.6 - 1.3 -0.ti 0.0 0.8 1.3 I .6 1.5

h(.r) :.1'(g("r)) 1.0 0.7 1.5 t.7 0.0 -1.7 -t.5 -0.7 -t.0

defined we must have x

g is the closed interval [0, 4]. _._*

f.g

FIGURE 27
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FIGURE 28

EXefCiSeS . . . . . . . . . . . . . . . ' ' ' '

l-2 I Classify each function as a power function, root

function, polynomial (state its degree), rational function,
algebraic function, trigonometric function, exponential
function, or logarithmic function.

We use these values to graph the composite function h in Figure 28. If we

want a more accurate graph, we could apply this procedure to more values of ,r.
I

It is possible to take the composition of three or more functions. For instance,

the composite function/ " g o h is found by first applying ft, then 9, and then/as
follows:

(f . s. h)(x) : fQ(h(x)))

EXAMPIE l0 r Find/ o g o hifl(x) : x/(x + l),sQ) : r'0, and h(x) : x * 3'

SOLUTION

(f " s " h) (x) -- f(s(h(x))) :

: f((x + 3)'n)

f(g(* + 3))

(x + 3)'o

(x+3)'o+1

So far we have used composition to build complicated functions from simpler

ones. But in calculus it is often useful to be able to decompose a complicated func-

tion into simpler ones, as in the following example.

EXAMPTE ll r Given F(x): cost(r + 9), find functions/, g,andh such that

F:f"goh.
SoLUTIOI{ Since F(x) : [cos(x + 9)]t, the formula for F says: First add 9, then

take the cosine of the result, and finally square. So we let

h(x) : x + 9 g(x) : cos.r f(x) : x'

Then

(f . g " h)(x) : f(s(h(x))): f(s(x + 9)) - /(cos(x + 9))

: [cos(x + 9))' : f(x)

=

re

14 r Match each equation with its graph. Explain your

choices. (Don't use a computer or graphing calculator.)

3.(a)y:,)r8 0)y:log6x (c) y:2 +sin2"r

l. (a) /(x) : 1[-

(c) h(x) : -tre + xa

(e) s(x) - tanZx

(b) g(x) : 'F - f
(d)r(x):5+
(f) r(x) : lo916 x

(b) y

(d) y
(f) y

2. (a) y

(c) -v

(e) y

x-6:-
x*6

: 10'

-2t6+to-rr

x2
!--

Jx 1

:.tr10

- cos0 + sinO



4. (a) y:x7
(c) y : -l/x

(b) y-
(d) y:

7',
4/ ^\/x - z
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9. How is the graph of y - 2 sin x related to the graph of
y : sin x? Use your answer and Figure l0(a) to sketch
the graph of y - 2 sin x.

10. How is the graph of y : 1 + tE related to the graph of
y : 6 t Use your answer and Figure 5(a) to sketch the
graph of y : I + Jx.

ll-26 r Graph each function, not by plotting points, but
by starting with the graph of one of the standard functions
given in this section, and then applying the appropriate
tran sformation s.

5. Suppose the graph of / is given. Write equations for the
graphs that are obtained from the graph of .f as follows.
(a) Shift 3 units upward.
(b) Shift 3 units downward.
(c) Shift 3 units to the right.
(d) Shift 3 units to the left.
(e) Reflect about the x-axis.
(f) Reflect about the y-axis.
(g) Stretch vertically by a factor of 3.

(h) Shrink vertically by a factor of 3.

6. Explain how the following graphs are obtained from the
graph of y : f(x).
(a) y : sf(x)
(c) y: -f(x)
(e) .y : f(sx)
The graph of f is given. Use it to graph the following
function s.

(a) y:f(2*) (b)y: f(**)
(c) y : f(-*) (d) y -- -f(-*)

The graph of f is given. Draw the graphs of the
following functions.
(a)y: f(x + 4) (b) y-f(*)+4
(c) y:zf(x) (d) y:-it6) +3

27. (a) How is the graph of y : f(|" l) related to the graph
ot f?

(b) Sketch the graph of y : sin I x l.
(c) Sketch the graph of y : .fiT

28. Use the given graph of f to sketch the graph of
y - Uf k).Which features of / are the most important
in sketching y : l/f(x)? Explain how they are used.

29-30 r Findf + g,f - g,fg,,andilg andstatetheir
domains.

29. f(x) : x' + 2x', g(x) : 3x2 - I

30. /(x) :.,f+ * , g(x): 'F
3f -32 I Use the graphs of f and g and the method of
graphical addition to sketch the graph of f + g.

31. f(x) : *, g(x) : l/x 32. f(x) : r', g(x) : -xt

f f . Y: -l/x
13. y - tanZx

f 5. y - cos(xlT)

I
17' Y: x - 3

| ( 
"r\19.)-;sinl .r -l' r \ 6/

71. y : I + 2x - x2

23.y:2-ttr+I
25. y - lcosxl

12. y : 2 - cos,r

14. y : :E + 2

f 6. Y : xz * 2x * 3

18. y - -2sinnx

20. y_ 2+ 1'

x*l
22.y:Llm-3
24. y: (x t)'+ 2

26.y-ll"l tl

(b)y:f(x-5)
(d) y : -5f(*)
(f) y : s/(x) 3

7.

8.
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37-38 r Find /
I

37. /'(x) : -,x

"g"h'

g(x) : -tr' h(x) - rt + 2

33-36 I Find the functions f " g, g " f, f , f, and g o g and

their domains.

33. /(x) : 2x' - .tr, g(x) - 3x + 2
34.f(x):.,6-1, g(x):x'
35./(x) :.6t- 1, g(x) :rf - x

36./(x) :-+,sk)-"-1
:-l " J+l

47. A stone is dropped into a lake, creating a circular ripple
that travels outward at a speed of 60 cm/s.
(a) Express the radius r of this circle as a function of

the time r (in seconds).
(b) If A is the area of this circle as a function of the

radius, find A " r and interpret it.

48. An airplane is flying at a speed of 350 mtlh at an

altitude of one mile and passes directly over a radar
station at time f : 0"

(a) Express the horizontal distance d (in miles) that the
plane has flown as a function of r.

(b) Express the distance s between the plane and the
radar station as a function of d.

(c) Use composition to express s as a function of r.

49. The Heaviside function H is defined by

50.

It is used in the study of electric circuits to represent

the sudden surge of electric current, or voltage, when a
switch is instantaneously turned on.
(a) Sketch the graph of the Heaviside function.
(b) Sketch the graph of the voltage V(t) in a circuit if

the switch is turned on at time f : 0 and 120 volts
are applied instantaneously to the circuit. Write a

formula for V(t) in terms of H(t).
(c) Sketch the graph of the voltage y(r) in a circuit if

the switch is turned on at time t - 5 seconds and
240 volts are applied instantaneously to the circuit.
Write a formula for y(r) in terms of H(t). (Note that
starting at / - 5 corresponds to a translation.)

The Heaviside function defined in Exercise 49 can also
be used to define the ramp function ), : ctH(t), which
represents a gradual increase in voltage or current in a

circuit.
(a) Sketch the graph of the ramp function y : tH(t).
(b) Sketch the graph of the voltage V(t) in a circuit

if the switch is turned on at time f - 0 and the
voltage is gradually increased to 120 volts over a
60-second time interval. Write a formula for y(r)
in terms of H(t) for r < 60.

(c) Sketch the graph of the voltage y(r) in a circuit if
the switch is turned on at time r - 7 seconds and
the voltage is gradually increased to 100 volts over
a period of 25 seconds. Write a formula for V(t) in
terms of H(r) for t < 32.

Suppose g is an even function and let h - f " g.Is h

always an even function?

52. Suppose g is an odd function and let h - f , g. Ts h

always an odd function? What it f is odd? What if / is

even?

38. /(r) : .,6, g(x) h(x) - iE
J:-

r-1

3947 I Express the

39. F(x) _ (x 9)'
,)

41. G(x) - 
r-

trt+ 4

function in the form .f . g.

40. F(x) : sin(fi )

I
42. G(x) - "+?

[o ifr<oH(t): 
I, if r > o

4144 r Express the function

43. H(x) - I - 3"'

intheformf'go11.

44. H(x) : :re - I

45. Use the given graphs of / and g to evaluate each

sion, or explain why it is undefined.
(a) f(s(z)) (b) e( /(0)) (c)
(d)(s"f\(6) (e) (s"s)(-2) (f)

(f
(f

expres-

" e) (0)

" /) (4)

46. Use the given graphs of f and

/(g(")) for x - -5, - 4, -3, . .

to sketch a rough graph of ./ .

estimate the value of
Use these estimates

gta
. ,5.
g.

51.

I

ft

\

)
/
\

"'/
l

I

,\
r\t

. J\
ir,ii
ir



53.

FIGURE I

The viewing rectangle ln,bf by [c, c/]

Suppose we are given the graphs of/and g, as in the
figure, and we want to find the point on the graph of
h : f " g that corresponds to x - a. We start at the
point (a,0) and draw a vertical line that intersects the
graph of g at the point P. Then we draw a horizontal
line from P to the point Q on the line y - r.

(a) What are the coordinates of P and of Q?
(b) If we now draw a vertical line from Q to the point ft

on the graph of J what are the coordinates of R?

I rl, Cl I-d

{cl. r' I tfu. r']
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(c) If we now draw a horizontal line from R to the
point S on the line r - a, show that S lies on the
graph of h.

(d) By carrying out the construction of the parh PQRS
for several values of a, sketch the graph of h.

54. If f is the function whose graph is shown, use the
method of Exercise 53 to sketch the graph of f " f.Start
by using the construction for a - 0,0.5, l, 1.5, ancl 2.
Sketch a rough graph for 0 { x { 2. Then use the result
of Exercise 52 to cornplete the graph.

lt, dl viewing

It plots points
a and b. If an
rectangle, the

Graphing Calculators and Computers

In this section we assume that you have access to a graphing calculator or a com-
puter with graphing software. We will see that the use of such a device enables us
to graph more complicated functions and to solve more complex problems than
would otherwise be possible. We also point out some of the pitfalls that can occur
with these machines.

Graphing calculators and computers can give very accurate graphs of functions.
But we will see in Chapter 4 that only through the use of calculus can we be sure
that we have uncovered all the interesting aspects of a graph.

A graphing calculator or computer displays a rectangular portion of the graph
of a function in a display window or viewing screen, which we refer to as a view-
ing rectangle. The default screen often gives an incomplete or misleading picture,
so it is important to choose the viewing rectangle with care. If we choose the

rh,tt t x-values to range from a minimum value of Xmin: ato a maximum value of
Xmax - b and the y-values to range from a minimum of Ymin : c to a maximum
of Ymax : d, then the portion of the graph lies in the rectangle

x:b lo,bl x lr,dJ: {(", l') l a

shown in Figure 1. We refer to this rectangle as the lo,bl by
rectangle.

The machine draws the graph of a function/much as you would.
of the form (", /(r)) for a certain number of values of x between
-x-value is not in the domain of,[ or if/(*) lies outside the viewing
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machine moves on to the next I-value. It connects each point to the preceding

plotted point to form a representation of the graph of/

EXAMPTE t r Draw the graph of the functionf(x\: x' + 3 in each of the

following viewing rectangles.
(a) l-2,2f by l-2,21 (b) [-4, 4]by l-4,4)
(c) [- 10, l0] by [-s, 30] (d) [-s0, 50] by [- 100, 1000]

SOLUTIOif For part (a) we select the range by setting Xmin : -2, Xmax : 2,

Ymin : -2, and Ymax -- 2. The resulting graph is shown in Figure 2(a). The

display window is blank! A moment's thought provides the explanation: Notice

that x2 > 0 for all x, so xt + 3 > 3 for all .r. Thus, the range of the function

f(t): x' + 3 is [3,0o). This means that the graph of/lies entirely outside the

viewing rectangle l-2, 2l by l-2, 21.

The graphs for the viewing rectangles in parts (b), (c), and (d) are also shown

in Figure 2. Observe that we get a more complete picture in parts (c) and (d)' but

in part (d) it is not clear that the y-intercept is 3.

(a) [-2, 2] by l-2,2) (b) [-4, 4] by l-4,,4)

-10 -50

FIGURE 2

Graphs of f(x) - x2 + 3

-5

(c) [-10, l0] by [-5, 30]

- 100

(d) [-50, 50] bv [-100, 1000]

4

x<2

m

We see from Example 1 that the choice of a viewing rectangle can make a big

difference in the appearance of a graph. Sometimes it is necessary to change to a

larger viewing rectangle to obtain a more complete picture, a more global view, of
the graph. But too large a viewing rectangle can also be misleading. In the next

example we see that knowledge of the domain and range of a function sometimes

provides us with enough information to select a good viewing rectangle.

EXAMPLE 2 r Determine an appropriate viewing rectangle for the function

f(x) : J8 - 27 and use it to graphl

SOLUTlOtl The expression for /(r) is defined when

€ 2xz

e l*l

1000

8 Zxz
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Therefore, the domain of f is the interval [-2,2f. Also,

o < Js= 27 = ./t: 2A :2.83

so the range of /is the interval yO,ZJi).
We choose the viewing rectangle so that the .r-interval is somewhat larger

than the domain and the y-interval is larger than the range. Taking the viewing
rectangle to be [-3,3] by [-1,4], we get the graph shown in Figure 3.

*3

43

FIGURE 3 _I

EXAMPLE 3 I Graph the function y : 13 49x.

ffi

FIGURE 4

-10

FIGURE 5

/(x) : -r-3 - 49x

*10

(a)

SOIUTION Here the domain is R, the set of all real numbers. That does not help
us choose a viewing rectangle. Let's experiment. If we start with the viewing
rectangle [-5,5] by [-5,5], we get the graph in Figure 4, which is nearly blank.
The reason is that for all the x-values that the calculator chooses between -5
and 5, except 0, the values of f(x) are greater than 5 or less than -5, so the
corresponding points on the graph lie outside the viewing rectangle.

If we use the zoom-out feature of a graphing calculator to change the viewing
rectangle to [-10,10] by [-10,10], we get the picture shown in Figure 5(a). The
graph appears to consist of vertical lines, but we know that can't be correct. If
we look carefully while the graph is being drawn, we see that the graph leaves
the screen and reappears during the graphing process. This indicates that we
need to see more in the vertical direction, so we change the viewing rectangle to

[-10,10] by [-100,100]. The resulting graph is shown in Figure 5(b). It stilt
doesn't quite reveal all the main features of the function, so we try [-10, l0] by

[-200,200] in Figure 5(c). Now we are more confident that we have arrived at
an appropriate viewing rectangle. In Chapter 4 we will be able to see that the
graph shown in Figure 5(c) does indeed reveal all the main features of the
function.

-10 -10

-200

(c)(b)

10l0

re

4

]

l'00

\/ /

!l /\
- 100

200

r\ /

/

\l\/\/\-./
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The appearance of the graphs in Figure 6

depends on the machine used. The
graphs you get with your own graphing

device might not look like these figures,

but they will also be quite inaccurate.

FIGURE 6

Graphs of /(x) : sin 50x

in four viewing rectangles

FIGURE 7

f (x): sin 50r

EXAMPLE 4 r Graph the function/(x) : sin50r in an appropriate viewing
rectangle.

SOIUTIO!{ Figure 6(a) shows the graph of/produced by a graphing calculator
using the viewing rectangle l-l2,l2l by [-1.5,1.5]. At first glance the graph

appears to be reasonable. But if we change the viewing rectangle to the ones

shown in the following parts of Figure 6, the graphs look very different.
Something strange is happening.

-10

1.5 1.5

-1.5

(a)

r.5

-1.5

(b)

1.5

-1.5 -1.5

(c) (d)

In order to explain the big differences in appearance of these graphs and to
find an appropriate viewing rectangle, we need to find the period of the function

) : sin 50.r. We know that the function y : sin x has period 2rr, so the period of
y : sin 50.r is

.25 2n : T 
-o12650 25

This suggests that we should deal only with small values of x in order to show

just a few oscillations of the graph. If we choose the viewing rectangle

l-0.25,0.25] by [-1.5,1.5], we get the graph shown in Figure 7.

Now we see what went wrong in Figure 6. The oscillations of y : sin 50.r are

so rapid that when the calculator plots points and joins them, it misses most of
the maximum and minimum points and therefore gives a very misleading impres-
sion of the graph. ilf

We have seen that the use of an inappropriate viewing rectangle can give a mis-
leading impression of the graph of a function. In Examples I and 3 we solved the

problem by changing to a larger viewing rectangle. In Example 4 we had to make

the viewing rectangle smaller. In the next example we look at a function for which
there is no single viewing rectangle that reveals the true shape of the graph.

- 1.5
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EXAMPLE 5 I Graph the function f(x) - sinx + cos 100x.

SoLurl0N Figure 8 shows the graph of/produced by a graphing calculator with
viewing rectangle [-6.5,6.5] by [-1.5,1.5].Ir looks much like the graph of
y: sinx, but perhaps with some bumps attached. If we zoom in to the viewing
rectangle [-0.1,0.1] by [-0.1,0.1], we can see much more clearly the shape of
these bumps in Figure 9. The reason for this behavior is that the second term,
,*! cos 100"r, is very small in comparison with the first term, sinx. Thus, we
really need two graphs to see the true nature of this function. i

EXAMPLE 6 r Draw the graph of the function y : l=
soLUTloN Figure l0(a) shows the graph produced by a graphing calcularor wirh
viewing rectangle [-9,9] by [-S,9]. In connecting successive points on the
graph, the calculator produced a steep line segment from the top to the bottom
of the screen. That line segment is not truly part of the graph. Notice that the
domain of the functiony:1/(l - x) is {x I x + 1}. We can eliminate the
extraneous near-vertical line by experimenting with a change of scale. when we
change to the smaller viewing rectangle [-5,5] by [-S,5], we obtain rhe much
better graph in Figure l0(b).

(a)

FIGURE l0 ),-*

EXAMPLE 7 I Graph the function y - :f
SoLuTlol{ Some graphing devices display the graph shown in Figure 11, whereas
others produce a graph like that in Figure 12. We know from Section 1.2 (Fig-
ure 5) that the graph in Figure 12 is correct, so what happened in Figure ll? The
explanation is that, in some machines,.r'l3 is compuls6.r r(t/3)tn'and lnx is not
defined for r ( 0, so only the right half of the graph is produced.

I

100

6.5

FIGURE 8

- 0.1

FIGURE 9

Another way to avoid the extraneous
line is to change the graphing mode on
the calculator so that the dots are not
connected.

0.r

(b)

.*

- 1.5

- 0.1

FIGURE II FIGURE I2
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(a)y:r'+2x

FIGURE I3

Several members of the family of
functions ) : x3 + cr, all graphed

in the viewing rectanglel-2,2)
by [-2.5,2.5f

(b)y-.r3+x

-1.5

(a) [-5,5] by [-1.5, 1.5]

x-scale: I

F IG U R E 14 Locating the roots of cos x : x

f(x) : +. l" l'/'
lxl

Notice that this function is equal to .1F (except when x :0)'

You should experiment with your own machine to see which of these two

graphs is produced. If you get the graph in Figure ll, you can obtain the correct

picture by graphing the function

#

To understand how the expression for a function relates to its graph, it is help-

ful to graph a family of functions, that is, a collection of functions whose equa-

tions are related. In the next example we graph members of a family of cubic

polynomials.

EXAMPLE 8 r Graph the function | : x3 * cr for various values of the num-

ber c. How does the graph change when c is changed?

SOtUTfOtl Figure 13 shows the graphs of y: 73 + cx forc: 2, l,O, -1, and

-2.We see that, forpositive values of c, the graph increases from left to right

with no maximum or minimum points (peaks or valleys). When c : 0, the

curve is flat at the origin. When c is negative, the curve has a maximum point

and a minimum point. As c decreases, the maximum point becomes higher and

the minimum point lower.

(c)y-13 (d)y:r.--tr (e)y-r'r-Zx

ffi

- ,v correct to two decimalEXAMPLE 9 t Find the solution of the equation cos "r
places.

SOLUTIOI{ The solutions of the equation cosx: x are thex-coordinates of the

points of intersection of the curves y : cosx and y : .r. From Figure l4(a) we

see that there is only one solution and it lies between 0 and l. Zooming in to the

(b) [0, 1] by [0, l]
n-scale - 0.1

(c) [0.2 0.8] by [o.Z 0.8]

r-scale - 0.01

0.8

--l-*7j r- -

I li I A I Ii ir\

gre
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viewing rectangle [0, l] by [0, 1], we see from Figure 14(b) that rhe root lies
between 0.7 and 0.8. So we zoom in further to the viewing rectangle [0.7,0.8]
by [0.7,0.8] in Figure 14(c). By moving the cursorto the intersection point of
the two curves, or by inspection and the fact that the x-scale is 0.01, we see that
the root of the equation is about 0.74.

Exercises

ffi

3-14 I Determine an appropriate viewing rectangle for the
given function and use it to draw the graph.

l. Use a graphing calculator or computer to detern-linc
which of the given viewing rectangles produces the
most appropriate graph of the function

/(") _ 10 + 25x - {l
(a) [-4,4] by [-4,,4]
(b) [- 10, l0] by [- 10, t0]
(c) [ - 20, 20] by [- 100, 100]
(d) [- r00, 100] bv [-200, 200]

2. Use a graphing calculator or computer to determine
which of the given viewing rectangles produces the
most appropriate graph of the function

/(*) - .,A; "f

70. We saw in E,xample 9 that the equation cos x - J has
exactly one solution.
(a) Use a graph to show that the equation cosx : 0.3x

has three solutions and find their values correct to
two dee imal places.

(b) Find an approximate value of rn such that the
equation cosx - rzlx has exactly two solutions.

2l. Use graphs to determine which of the functions

f (x) - 10x2 and g(x) - r'/tg is eventually larger (that
is, larger when x is very large).

22. Use graphs to determine which of the functions
f(x):.xu - 100x3 and gk): .r3 is eventually larger.

23. For what values of x is it true that lsin x - r | < O.tf

74. Graph the polynomials P(x) :3xs - 5xr + 2r and

Qk): 3xt on the same screen, first using the viewing
rectangle [- 2,2) by [ -2,,2] and then changing to
[- 10, 10] by [- t0,000, 10,000]. Whar do you observe
from these graphs?

25. In this exercise we consider the family of functions
f (*) - {G , where n is a positive integer.
(a) Graph the root functions 1' - .,,[, ), - +?, and

,)' - l?[- on the same screen using the viewing
rectangle [- 1, 4] bV [- l, 3].

(b) Graph the root functions )' : ,{, -y - /x, and

-)' - Vr on the same screen using the viewing
rectangle [-3, 3] bV [ -2,,2]. (See Example 7.)

(c) Graph the root functions J/ - ,E ,-!, - .[,.], - W ,

and J, - iF on the same screen using the viewing
rectangle [- 1,3] bV [ -1,2f.

(d) What conclusions can you make from these graphs?

26. In this exercise we consider the family of functions

"f(r) - I/r" , where n is a positive integer.
(a) Graph the functions .y : l/x and .y : Il-r' on the

same screen using the viewing rectangle [-3, 3]
bv [-3,3].

(b) Graph the functions -l!' 
: l/*' and .)' - ll*o on the

same screen using the same viewing rectangle as in
part (a).

(c) Graph all of the functions in parts (a) and (b) on
the same screen using the viewing rectangle [-1,3]
bv [-1,3].

(d) What conclusions can you make from these graphs?

(a) l- 4, 4l by l- 4, 4l
(c) [- 10, l0] by [- 10, 40]

(b) [-5, 5] by [0, 100]
(d) l-2, l0l bv [ -2,6]

4.f(x) - 0.0lxr - rt + 5

2x-16.\'-' ,{+3
8..1r':2x l*t 5l

10. /(x) - 3 sin 12Ox

12. .y : tan 25x

14. -)' - .trz + 0.02 sin 50x

3. ,f(;r) - W56 - f

5. ),- - t

- x"+25
7. -y 

: J4 4x3

9. ,f(x) - cos 100;

I l. /(x) - sin(,r/a0)

13. )' - 3cc's('t'r)

15. Graph the ellipse 4r2 + 21,2 - l by graphing the
functions whose graphs are the upper and lower
halves of the ellipse.

16. Graph the hyperbola y2 9xz - I by graphing the
functions whose graphs are the upper and lower
branches of the hyperbola.

17-19 I Find all solutions of the equation correct to two
decimal places.

17.3x3 + rt * ; 2: 0

18. ,ro + 8r + 16 : 2x3 + 8x2

19. ZsinJ - r



27.

28.

29.
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Graph the function /(r) - xo + cxz * x for several

values of c. How does the graph change when c

changes?

Graph the function /(x) - $ + ,-' for various values

of c. Describe how changing the value of c affects the

graph.

Graph the function.)n - x"2-'*, x 2 0, for tI - 1,2,3,,
4,5, and 6. How does the graph change as n increases?

are called bullet-nose curves. Graph some of these

curves to see why. What happens as c increases?

3l. What happens to the graph of the equation

.,t'n 
: c-tr3 * xt as c varies?

32. This exercise explores the effect of the inner function g

on a composite function .r' - .f(gp)).
(a) Graph the function ), - sin(/x ) using the viewing

rectangle [0,400] bV [- 1.5, 1.5]. How does this
graph differ from the graph of the sine function?

(b) Graph the function )' : sin(x2) using the viewing
rectangle [-5,5] bV [-1.5, 1.5]. How does this
graph differ from the graph of the sine function?

30. The curves with equations

:4
VC X'

FIGURE I

Parametric Curves '

Imagine that a particle moves along the curve C shown in Figure l. It is impossible
to describe C by an equation of the form y : f(*) because C fails the Vertical Line
Test. But the x- and y-coordinates of the particle are functions of time and so we

can write x : f(t) and y : g(r). Such a pair of equations is often a convenient way

of describing a curve and gives rise to the following definition.
Suppose that x and y are both given as continuous functions of a third variable

r (called a parameter) by the equations

x:f(t) v:s(t)
(called parametric equations). Each value of / determines a point (x,y), which
we can plot in a coordinate plane. As / varies, the point (-r, y) : ( /(t), g(r)) varies

and traces out a curve C, which we call a parametric curve. The parameter t does

not necessarily represent time and, in fact, we could use a letter other than f for the
parameter. But in many applications of parametric curves, / does denote time and

we can interpret (*,y) : (f(t),SQD as the position of a particle at time r.

EXAMPLE I I Sketch and identify the curve defined by the parametric equations

-T- t2 2t )'-t+l

s0t-LrTl0frl Each value of r gives a point on the curve, as shown in the table. For
instance, if r : 0, then x : 0, y : I and so the corresponding point is (0,1). In

I \ \
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Figure 2 we plot the points (x, y) determined by several values of the parameter
and we join them to produce a curve.

A particle whose position is given by the parametric equations moves along
the curve in the direction of the arrows as t increases. Notice that the consecu-
tive points marked on the curve appear at equal time intervals but not at equal
distances. That is because the particle slows down and then speeds up as t
increases.

It appears from Figure 2 that the curve traced out by the particle may be a
parabola. This can be confirmed by eliminating the parameter / as follows. We
obtain t : y - I from the second equation and substitute into the first equation.
This gives

x : (y - l)' - 2(y - r) : y2 - 4y + 3

and so the curve represented by the given parametric equations is the parabola
x:y2-4y+3. t

No restriction was placed on the parameter t in Example l, so we assumed that
/ could be any real number. But sometimes we restrict / to lie in a finite interval.
For instance, the parametric curve

x- tz 2t y--t+l 0

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point
(0, l) and ends at the point (8,5). The arrowhead indicates the direction in which
the curve is traced as t increases from 0 to 4.

In general, the curve with parametric equations

has initiar point ( f(";,;rl',^"d tJ*::poi Jlr'*l,lru,

EXAMPLE 2 r What curve is represented by the parametric equations r : cost,
y:sin/,0</<2zr?
SOLUTIOII We can eliminate r by noting that

x' + y': cos" + sin2t : I

Thus, the point (-r,y) moves on the unit clrrcle x2 * y' :1. Notice that in this
example the parameter t can be interpreted as the angle shown in Figure 4. As r
increases from 0 to 2rr, the point (-r, y) : (cos /, sin r) moves once around the
circle in the counterclockwise direction starting from the point (1,0). *

' ,t-+/

n /, sin r)

/:0
t: Tr

{
0

/

(1,0)

\:2n
7+

+ 
- 

J t,

L

FIGURE 4
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FIGURE 5

FIGURE 6

ng
'L

EXAMPLE 3 r What curve is represented by the parametric equations x : sinZt,
y:cos2t,O<t<2r?
S0LUTION Again we have

x' + y2: sin2 2t + cosz2t : I

so the parametric equations again represent the unit circle x2 * y2 : 1. But
as t increases from O to 2n, the point (x, y) : (sin 2r, cos 2t) starts at (0, l) and

moves twice around the circle in the clockwise direction as indicated in
Figure 5. I

Examples 2 and 3 show that different sets of parametric equations can represent

the same curve. Thus, we distinguish between a curve, which is a set of points, and

a parametric curve, in which the points are traced in a particular order.

Most graphing calculators and computer graphing programs can be used to
graph curves defined by parametric equations. In fact, it is instructive to watch
a parametric curve being drawn by a graphing calculator because the points are

plotted in order as the corresponding parameter values increase.

EXAMPIE 4 r Use a graphing device to graph the curve.r : yo - 3y2.

S0LUTION If we let the parameter be t : y, then we have the equations

x:t4-3t2 y:t
Using these parametric equations to graph the curve, we obtain Figure 6. It
would be possible to solve the given equation (, : yo - 3y') for y as four func-
tions of x and graph them individually, but the parametric equations provide a
much easier method. t

In general, ifwe need to graph an equation ofthe form x : g(y), we can use the

parametric equations

x:sQ) v:t
Notice also that curves with equations y : /(x) (the ones we are most familiar
with-graphs of functions) can also be regarded as curves with parametric equa-

tions

x--t Y:f(t)
Graphing devices are particularly useful when sketching complicated curves.

For instance, the curves shown in Figures 7 and 8 would be virtually impossible to
produce by hand.

FIGURE 7

x : tf 2 sin 2t, y - t + 2 cos 5r

FIGURE 8

J - cos f - cos 80r sin t, y:2 sin r - sin 801
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One of the most important uses of parametric curves is in computer-aided de-
sign (CAD). In the Laboratory Project after Section 3.5 we will investigate special
parametric curves, called B6zier curves, that are used extensively in manufac-
turing, especially in the automotive industry. These curves are also employed in
specifying the shapes of letters and other symbols in laser printers.

EXAMPLE 5 r Sketch the curve with parametric equations x : sin t, y : sin2t.

SOLUTION Observe that y : x2 and so the point (r,y) moves on the parabola

!: x2. But note also that, since -l < sin/ < 1, we have -1 s x s 1, so

the parametric equations represent only the part of the parabola for which

-l <,r < l. Since sint is periodic, the point (x,y) : (sint.sinzr) moves back
and forth infinitely often along the parabola from (-l,l) to (1,1) (see Figure 9).

:
EXAMPTE 6 r The curve traced out by a point P on the circumference of a circle
as the circle rolls along a straight line is called a cycloid (see Figure 10). If the
circle has radius r and rolls along the "r-axis and if one position of P is the
origin, find parametric equations for the cycloid.

SOLUTI0N We choose as parameter the angle of rotation 0 of the circle (0 : 0
when P is at the origin). When the circle has rotated through 0 radians, the
distance it has rolled from the orisin is

loil : arc Pr : ro

and so the center of the circle is C(r9,r).Let the coordinates of P be (-r,y).
Then from Figure I I we see that

x : lorl - lPgl : r0 - rsin g : r(0 - sing)

y : lrcl - lacl : r - rcosg : r(1 - cosO)

Therefore, parametric equations of the cycloid are

JI x-r(0 sin0) y:r(l cos0) 0e R

One arch of the cycloid comes from one rotation of the circle and so is described
by 0 < 0 < 2rr. Although Equations I were derived from Figure 11, which illus-
trates the case where 0 < 0 < n/2. it can be seen that these equations are still
valid for other values of 0 (see Exercise 27).

Although it is possible to eliminate the parameter 0 from Equations l, the
resulting Cartesian equation in x and y is very complicated and not as convenient
to work with as the parametric equations. I

One of the first people to study the cycloid was Galileo, who proposed that
bridges be built in the shape of cycloids and who tried to find the area under one

arch of a cycloid. Later this curve arose in connection with the Brachistochrone
problem: Find the curve along which a particle will slide in the shortest time (under

the influence of gravity) from a point A to a lower point B not directly beneath A.

5I

FIGURE 9

FIGURE II

FIGURE IO

C(r0, r)

a

l<- r0-l



52 CHAPTER I IUI.ICTIOl{S AND 1'IODTLS

FIGURE I2

FIGURE I3

Ff GURE 14 Members of the family -r - a * cos /, )': d tan / -| sin /,

all graphed in the viewing rectangle [-4, 4] by [-4, 4]

The Swiss mathematician John Bernoulli, who posed this problem in 1696, showed
that among all possible curves that join Ato B, as in Figure 12,the particle will
take the least time sliding from A to B if the curve is an inverted arch of a cycloid.

The Dutch physicist Huygens had already shown that the cycloid is also the solu-

tion to the Tautochrone problem; that is, no matter where a particle P is placed on

an inverted cycloid, it takes the same time to slide to the bottom (see Figure 13).

Huygens proposed that pendulum clocks (which he invented) should swing in
cycloidal arcs because then the pendulum would take the same time to make a

complete oscillation whether it swings through a wide or a small arc.

EXAMPLE 7 r Investigate the family of curves with parametric equations

x- a + cosr }1 - &tant + sln/

What do these curves have in common? How does the shape change as a

increases?

SCIf-UTlOl.{ We use a graphing device to produce the graphs for the cases a : -2,
-1, -0.5, -0.2,0,0.5, l, and 2 shown in Figure 14. Notice that all of these

curves (except the case a : 0) have two branches, and both branches approach

the vertical asymptote x : a as x approaches a from the left or right.

When c < -1, both branches are smooth; but when a reaches -1, the right
branch acquires a sharp point, called a cusp. For a between -l and 0 the cusp

turns into a loop, which becomes larger as a approaches 0. When a : 0, both
branches come together and form a circle (see Example 2). For c between 0 and

I, the left branch has a loop, which shrinks to become a cusp when a : l. For

a ) l, the branches become smooth again and, as a increases further, they
become less curved. Notice that the curves with a positive are reflections about

the y-axis of the corresponding curves with n negative.
These curves are called conchoids of Nicomedes after the ancient Greek

scholar Nicomedes. He called them conchoids because the shape of their outer
branches resembles that of a conch shell or mussel shell. il

cycloid
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Exercises

l-4 t
(a) Sketch the curve by using the parametric equations to

plot points. Indicate with an arrow the direction in
which the curve is traced as / increases.

(b) Eliminate the parameter to find a Cartesian equation of
the curve.

f. x:2t l, y-2 t, -3

t3 l, y-2 t2

sin 3r, y - sin 4r
t + sin2f, y : t + sin3f
sin(r * sin r), )' - cos(r + cos /)
cos /, y - sin(r + sin 5r)

(b)
(c)
(d)
(e)
(f)

x-
JL

,Y:
x-
I

2. J - 3/1,

3. x - \ff,
4. x : t2, )'

-1,:2 +5t,0<t<2

_l!t: I - t

- /-r

5-10 r
(a) Eliminate the parameter to find a Cartesian

the curve.
(b) Sketch the curve and indicate with an arrow

direction in which the curve is traced as the
increases.

5.,r - sin0, .)' - cosO, 0 < 0 < Tr

6. J : 3cos0, _y 
: 2sin0, 0 < 0 < ?n

7. r - sin20, y - cost0

8. ,{ - sec 0, } : tan 0, -rrl2 < 0 < rrl2
g. J - costg, y- sinp

10. x - cos /, )r : cos 2/

equation of

the
parameter

ng'a',

I l-15 I Describe the motion of a particle with position
(*, )') as / varies in the given interval.

f l. J - cosr/, ): sinz/, I { r < 2

12. x - 2 + cosr, _y - 3 + sinr, 0

13. J - 2sinr, .y:3cos/, 0 < r < 2n

14. J - cost/' _)' - cos/, 0 < t 4 4rr

15. J - sin/, J: csc/, n/6 < t < I

| 6- | 7 r Graph x and _y as functions of r and observe
how x and )'increase or decrease as / increases. Use these
observations to make a rough sketch by hand of the
parametric curve. Then use a graphing device to check
your sketch.

t6. r - 3(rn 3), .y : t3 3t

17. x : t1 - l. v - t3 + I

19. Show that the parametric equations

x: xr + ("t - xr)t

-I : -Ir + (.Y: yr)r

where 0 < r < l, describe the line segment that joins

the points P1 (r t, .y r ) and Pt(xr, ),r) .

ElZO.Use a graphing device and the result of Exercise 19

to draw the triangle with vertices A(l ,l), B(4,,2),
and C(1,5).

EJzl. Graph the curve -r - y 3y' * yt.

EIZZ.Graph the curves y - xs and x - y(y 1)2 and find
their points of intersection correct to one decimal place.

| 8. Match the parametric equations with the
I-VI. Give reasons for your choices. (Do
graphing device.)
(a) x- t3 2t, v_ t2 t

graphs labeled
not use a
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23.

Elzq.

frJ ^.'L Lr.

26.

27.

28.
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Find parametric equations for the path of a particle that

moves along the circle x2 + (y - l)t : 4 in the follow-
ing manner:
(a) Once around clockwise, starting at (2, 1)

(b) Three times around counterclockwise, starting
ar (2, l)

(c) Halfway around counterclockwise, starting at (0, 3)

Graph the semicircle traced by the particle in
Exercise 23(c).

(a) Find parametric equations for the ellipse
x'/o'* y'lb' - l. fHint: Modify the equations of
a circle in Example 2.1

(b) Use these parametric equations to graph the ellipse
when a - 3 and b - l, 2, 4, and 8.

(c) How does the shape of the ellipse change as /r

varies?
30.

If a projectile is fired with an initial velocity of u6

meters per second at an angle a above the horizontal
and air resistance is assumed to be negligible, then its

position after / seconds is given by the parametric
eq uat ion s

r - (uo cos a)/

., - (ao sin a)r - igr'
where g is the acceleration due to gravity (9.8 m/sr).
(a) If a gun is fired with a: 30o and t)o:500 m/s,

when will the bullet hit the ground? How far from
the gun will it hit the ground? What is the maxi-
mum height reached by the bullet?

(b) LIse a graphing device to check your answers to

part (a). Then graph the path of the projectile for
several other values of the angle a to see where it
hits the ground. Summarize your finclings.

(c) Show that the path is parabolic by eliminating the 3l.
pa rameter.

Derive Equations I for the case nlT < 0

Let P be a point at a distance r/ from the center of it

circle of radius r. The curve traced out by P as the circle
rolls along a straight line is called a trochoid. (Think
of the motion of a point on a spoke of a bicycle wheel.)

The cycloid is the special case of a trochoid with r/ : r.

Using the same parameter 0 as for the cycloid and

assuming the line is the x-axis and 0 - 0 when P is at

one of its lowest points, show that the parametric equa-

tions of the trochoid are

-tr- r0 dsin0

.)': r dcos0

Sketch the trochoid for the cases d < r and d 7 r.

If a and b are fixed numbers, find parametric equations

for the set of all points P determined as shown in the

figure, using the angle 0 as the parameter. Then
eliminate the parameter and identify the curve.

lf a and b are fixed numbers, fincl parametric equations
for the set of all points P determined as shown in the
figure, using the angle 0 as the parameter. The line
segment AB is tangent to the larger circle.

A curve, colled a witch of Maria Agnesi, consists of all
points P determined as shown in the figure. Show that
parametric equations for this curve can be written as

x - ZacotT v - 2asin20

Sketch the curve.

79.



EllZ. Suppose that the position of one particle at time r is
given by

-r1 -3sinr )r -}cos/ 0<r<2rr
the position of a second particle is given by

-- -3+cos/ .)r:l+sinr 0<r<2n
Graph the paths of both particles. How many points
of intersection are there?

Are any of these points of intersection collision
points? In other words, are the particles ever at

the same place at the same time? If so, find the
collision points.

(c) Describe what happens if the path of the second
particle is given by

xz:3+ cos/ )'?: 1 + sinf 0< t {2n

EE ff . Investigate the fanlily of curves defined by the para-
metric equations -r : t2, y - t3 c/. How does the

LABORATORY PRoJECT rAilrLrES 0f HYP0CYCL0TDS 55

shape change as c increases? Illustrate by graphing
several members of the family.

El34. The swallowtait catastrophe curves are defined by the
parametric equations x - \ct 4tt,y : -ctz + 3ta.

Graph several of these curves. What features do the
curves have in common? How do thev chanse when c
increases?

EE f S. The curves with equations -r : a sin n/, .), : b cos f are
called Lissajous figures. Investigate how these curves
vary when e, b, and n vary. (Take n to be a positive
integer.)

Ei fe. Investigate the family of curves defined by the para-
metric equations

and

X2

(a)

(b)

x-sinr(c sinr) .y:cos/(c sinr)

How does the shape change as c changes? In particular,
you should identify the transitional values of c for
which the basic shape of the curve changes.

EE Families of Hypocycloids

In this project we investigate families of curyes, called hypocycloids and epicycloids,
that are generated by the motion of a point on a circle that rolls inside or outside
another circle.

l. A hypocycloid is a curve traced out by a fixed point P on a circle C ofradius D

as C rolls on the inside of a circle with center O and radius a. (This makes more
sense physically ifa > b, but the curves are just as pretty if a < b.) Show that if
rhe initial position of P is (a,0) and the parameter 0 is chosen as in the figure,
then parametric equations of the hypocycloid are

x: {a b)cos o +bcos (O+t\
\b /

(o b \y-(a-b)sino &sin\ , ,/

2. Use a graphing device to draw the graphs of hypocycloids with a a positive integer
and b : 1. How does the value of a affect the graph? Show that if we take a : 4,
then the parametric equations of the hypocycloid reduce to

x:4cos3d ):4sin30
This curve is called a hypocycloid offour cusps, or an astroid.

3. Now tty b : 1 and a : n/d, afraction where n and d have no common factor. First
let n : I and try to determine graphically the effect of the denominator d on the
shape of the graph. Then let r vary while keeping d constant. What happens when
n - d * 1? Try to show algebraically why these graphs look familiar.
[/inr.' Substitute 9 : -0/d and magnify the graph by a factor of d.]

4. What Fpp*nt it b : I and a is irrational? Experiment with an irrational number

like '/2 or e - 2. Take larger and larger values for d and speculate on what would
happen if we were to graph the hypocycloid for all real values of 0.

5. If the circle C rolls on the butside of the fixed circle, the curve traced out by P is
called an epicycloid. Find parametric equations for the epicycloid.

{
a

o A
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6. Investigate the possible shapes for epicycloids. Use methods similar to
Problems 2-4.

7, Iret b - 1. Show algebraically that the epicycloid with a : n (any natural number)
has the same shape as the hypocycloid with a * nl(n + 1). Show that the epicy-
cloid with a : l/n has the same shape as a hypocycloid. What is the value of c for
the hypocycloid?

Exponential Functions

The function f(x) : 2' is called an exponential function because the variable, .r, is
the exponent. It should not be confused with the power function g(;) : x', in
which the variable is the base.

In general, an exponential function is a function of the form

where a is a positive constant.
If x - n, a positive integer,

If x is a rational number, -tr -

/(x) : a*

Let's recall what this means.

then

ao:,a'J: 'a

p/q, where p and q are integers and q > 0, then

gx-Onlo: W

if x is an irrational number? For instance, what is

If x : 0, then e0 :1, and if x - -n,; n is a positive integer, then

_n Ia :7

But what is the meaning of a*
meant by Zlt or 5'?

FIGURE I

Representation of y : 2*,x rational

To help us answer this question we first look at the graph of the function
y:2', where x is rational. A representation of this graph is shown in Figure l.
We want to enlarge the domain of ) : 2" to include both rational and irrational
numbers.

There are holes in the graph in Figure I corresponding to irrational values ofx.
We want to fill in the holes by defining f(x):2',where r e B, so that/is an
increasing function. In particular, since the irrational number V3 satisfies

1.7 <J3 <1.8

we must have 2r't a 2tE a 2r't

and we know what 2t7 and 2r'8 mean because 1.7 and 1.8 are rational numbers.



FIGURE 2

y - 2', Jr real

ff 0 < a I l, then a* approaches 0 as

x becomes large.lf a > l, then a*
approaches 0 as r decreases through
negative values. In both cases the x-axis
is a horizontal asymptote. These matters
are discussed in Section 2.5.

SECTlol{ 1.5 t)(P0llENTlAL FUilCTl0tlt t7

Similarly, using better approximations for /3 , we obtain better approximations
for 2!":

rl3<JT <t.t+
r.732<Ji <t.tzz

rl320<JT <t.tzzt
1.73205 < J, < 1.73206 ) 21"73205 < 26 < 2t'732o6

::::

It can be shown that there is exactly one number that is greater than all of the
numbers

2r.r, 2t.tt, 21.132, 21.7320, 2t.7320s,

and less than all of the numberS

2t.r, 2t.tt, 2t.733, 21.132t, 21.73206,

We define 26 tobe this number. Using the preceding approximation process we
can compute it correct to six decimal places:

26 = 3.321997

Similarly, we can define2'(or a', if a > 0) where.r is any irrational number.
Figure 2 shows how all the holes in Figure I have been filled to complete the graph
of the function f (x) : 2', x € R.

The graphs of members of the family of functions ! : a' are shown in Figure 3
for various values of the base a. Notice that all of these graphs pass through the
same point (0, l) because ao: I for a # 0. Notice also that as the base a gets
larger, the exponential function grows more rapidly (for.r > 0).

You can see from Figure 3 that there are basically three kinds of exponential
functions !: a". If0 < a < 1, theexponential functiondecreases; ifc: l, itis
a constant; andif a > l, it increases. These three cases are illustrated in Fisure 4.

FIGURE 3
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Observe that if a * l, then the exponential function ! : a' has domain R and

range (0, oo). Notice also that, since (l/a)' : l/a" : a-', the graph ofy : (l/a)' is
just the reflection of the graph ofy : a'about the y-axis.

(c)y:s{, a>l(b) y - l"'(a) y - e'r, 0 < a < 1

FIGURE 4

For a review of reflecting and shifting
graphs, see Section 1.2.

FIGURE 5 (b) y - -2'' (c) )-3 -2t

a graphing device to compare the exponential function
power function g(x) - x2. Which function grows more quickly

Laws of Exponents If a and b are positive numbers and r and y are any

real numbers. then

t. CIx+-v: A'At 2. A*-)' : + 3. (A")r' : C-'.t' 4. (Ab)r : Axh''

One reason for the importance of the exponential function lies in the following
properties. If x and y are rational numbers, then these laws are well known from
elementary algebra. It can be proved that they remain true for arbitrary real num-
bers .r and y.

EXAMPLE I r Sketch the graph of the function y : 3 - 2' and determine its
domain and range.

S0LUTION First we reflect the graph of y : 2' (shown in Figure 2) about the
.r-axis to get the graph of y : -2'in Figure 5(b). Then we shift the graph of
y : -2' upward three units to obtain the graph of y : 3 - 2' in Figure 5(c).
The domain is R and the range is (-m,3;.

(a) !:2'

EXAMPLE 2 I Use

f(x) : 2' and the

when x is large?

ng
'L
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S0LUTlOll Figure 6 shows both functions graphed in the viewing rectangle

l-2,6] by [0,a0]. We see that the graphs intersect three times, but for x ] 4,
the graph of f(x) : 2' stays above the graph of SG) : x'. Figure 7 gives a more
global view and shows that for large values of x, the exponential function y : 2"
grows far more rapidly than the power function y : x2.

250

Example 2 shows that )' : 2' increases

more quickly than ), : .dt. To demon-
strate just how quickly f (*) : 2.*

increases, let us perform the following
thought experiment. Suppose we start
with a piece of paper a thousandth of an

inch thick and we fold it in half 50 times.
Each time we fold the paper in halt the
thickness of the paper doubles, so the
thickness of the resulting paper would be

2t071000 inches. How thick do you think
that is? lt works out to be more than
l7 million miles!

l
_\r--f-

I.)
- .{.

FIGURE 5

t Applications of Exponential Functions

0

FIGURE 7 ffi

The exponential function occurs very frequently in mathematical models of nature
and society. Here we indicate briefly how it arises in the description of population
growth and radioactive decay. In later chapters we will pursue these and other
applications in greater detail.

First we consider a population of bacteria in a homogeneous nutrient medium.
Suppose that by sampling the population at certain intervals it is determined that
the population doubles every hour. If the number of bacteria at time r is p(t), where
r is measured in hours, and the initial population is p(O) : 1000, then we have

p(l) - 2p(0)- 2 x 1000

p(2)- Tp(l) : 22 x 1000

p(3) - 2p(2): 23 x 1000

It seems, frorn this pattern, that, in general,

p(t) :2' x 1000 : (1000)2'

This population function is a constant multiple of the exponential function ! : 2',

so it exhibits the rapid growth that we observed in Figures 2 and7. Under ideal
conditions (unlimited space and nutrition and freedom from disease) this exponen-
tial growth is typical of what actually occurs in nature. In Chapter 3 we will be

able to compute rates of growth for such populations. In Chapter 7 we will modify
this model to determine what happens when there are constraints to growth.

EXAMPLE 3 r The half-lift of strontium-90, o0Sr, is 25 years. This means that
half of any given quantity of e0Sr will disintegrate in 25 years.

(a) If a sample of e0Sr has a mass of 24 mg, find an expression for the mass z(t)
that remains after / years.
(b) Find the mass remaining after 40 years, correct to the nearest milligram.
(c) Use a graphing device to graph m(t) and use the graph to estimate the time
required for the mass to be reduced to 5 mg.

ngIt
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FIGURE 8

m : 24. 2-tl2s

s0LuTloil
(a) The mass is initially 24mg and is halved during each2l-year period, so

m(0): 24

I
m(25):;Qa)

L

11 I
m(50) : t' t(24) 

: 
TQ4)

lll
m(75) : ,' VQ+) 

: 
tQ4)

lll
m(r00) : 2. 7Qq -- VQ+)

From this pattern, it appears that the mass remaining after / years is

I
m(t) : 7nQ4) 

:24 ' 2-t/2s

This is an exponential function with base q: /-t/2s : V2tt25.

(b) The mass that remains after 40 years is

m@0) : 24 ' 2-4ot2s - 7.9 mE

100 (c) We use a graphing calculator or computer to graph the function
m(t) : 24 ' 2-t/2) in Figure 8. We also graph the line m : 5 and use the cursor
to estimate that m(t): 5 when t - 57. So the mass of the sample will be

reduced to 5 mg after about 57 years. I

d The Numb er e

Of all possible bases for an exponential function, there is one that is most conve-

nient for the purposes of calculus. The choice of a base a is influenced by the way
the graph of ) : a' crosses the y-axis. Figures 9 and l0 show the tangent lines to
the graphs of y : 2'andy :3'at the point (0,1). (Tangent lines will be defined
precisely in Section 2.6. For present purposes, you can think of the tangent line to
an exponential graph at a point as the line that touches the graph only at that
point.) If we measure the slopes of these tangent lines, we find that m - 0.'l for
! : 2' and m: 1.1 for ! : 3'.

30

FIGURE 9 FIGURE IO FIGURE II
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It turns out, as we will see in Chapter 3, that some of the formulas of calculus
will be greatly simplified if we choose the base a so that the slope of the tangent
line to y : a'at (0,1) is exactly I (see Figure 11). In fact, there is such a number
and it is denoted by the letter e. (This notation was chosen by the Swiss mathe-
matician Leonhard Euler in 1727, probably because it is the first letter of the word
exponential.) In view of Figures 9 and 10, it comes as no surprise that the number
e lies between2 and 3 and the graph ofy : e'lies between the graphs ofy : 2- unl
! : 3'(see Figure l2).ln Chapter 3 we will see that the value of e, correct to five
decimal places, is

e = 2.71828

EXAMPTE 4 r Graph the function y : ie' - I and state the domain and range.

SOLUTION We start with the graph of ! : e'from Figures 1l and l3(a) and
reflect about the y-axis to get the graph of y : e-'in Figure 13(b). (Notice that
the graph crosses the y-axis with a slope of -l). Then we compress the graph
vertically by a factor of 2 to obtain the graph of y : Ie-'in Figure 13(c).
Finally, we shift the graph downward one unit to get the desired graph in
Figure l3(d). The domain is R and the range is (-t,oo;.

6t

FIGURE I2

(a) !: e'

FIGURE I3

(b) }' : e-'

I

How far to the right do you think we would have to go for the height of thr:
graph of ! : e' to exceed a million? The next example demonstrates the rapid
growth of this function by providing an answer that might surprise you.

Ei fXlmplf 5 r Use a graphing device to find the values of x for which
e'> 1.000.000.

SOIUTION In Figure 14 we graph both the function ! : e'and the horizontal
line y : 1,000,000. We see that these curves intersect when x - 13.8. Thus,
e' ) lO6 when x > 13.8. It is perhaps surprising that the values of the expo-
nential function have already surpassed a million when x is only 14.

(c) y-+r' (d) y - +e-'- 1

FIGURE I4
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l. (a) Write an equation that defines the exponential
function with base a

(b) What is the domain of this function?
(c) If u * 1, what is the range of this function?
(d) Sketch the general shape of the graph of the expo-

nential function for each of the followins cases.

(i) ct7 I

(ii) ct: I

(iii)0<a{l

2. (a) How is the number e defined?
(b) What is an approximate value for e?

(c) What is the natural exponential function?

EY ye t Graph the given functions on a common screen.

How are these graphs related?

3. ]r _- 2', -)' 
: e"', ), - 5", -), 

: 20'

4. )J - €t, -)r 
: €:*, -)' 

: 8-", .)t - 8-''

5.y:3', .)-,-1o', l,-(+)'' ):(+)'
6. }: (J.9-', .)'- 0.6'', y:0.3't, -)'- 0.1'

7-14 t Make a rough sketch of the graph of each func-
tion. Do not use at calculator. Just use the graphs given in
Figures 3 anel l2 and, if necessary, the transformations of
Sect ion | .2.

7.),-2"'+ I 8.J,-_2r+r

9. \: - 3-r 10. y - -3'

CHAPTER I FUI{ITIOl{S AND I.IODTtS

Exercises

l7-18 r Find the exponential function/(x) - Ca"' whose

graph is given.

19. Show that if the graphs of ./(x) - ,r2 and g(x)- 2' are

drawn on a coordinate grid where the unit of measure-

ment is I inch, then at a distance 2 ft to the right of the

origin the height of the graph of / is 48 ft but the height
of the graph of g is about 265 mi.

20. Compare the functions/("r) : ,r5 and g(r) : 5' by

graphing both functions in several viewing rectangles.
Find all points of intersection of the graphs correct to
one decimal place. Which function grows tnore rapidly
when x is large?

2l. Compare the functions/(x) -,rr" and g(r) - e'by
graphing both.f and g in several viewing rectangles.
When does the graph of g finally surpass the graph

of /?

EIZZ. Use a graph to estimate the values of x such that
e' ) 1.000.000,000.

ng''|I

23. Under ideal conditions a certain bacteria population is

known to double every three hours. Suppose that there
are initially 100 bacteria.
(a) What is the size of the population after l5 hours?
(b) What is the size of the population after / hours'/
(c) E,stimate the size of the population after 20 hours.
(d) Graph the population function and estimate the time

for the population to reach 50,000.

24. An isotope of sodium. toNa, has a half-lif'e of 15 hours.

A sample of this isotope has mass 2 g.

(a) Find the amount remaining after 60 hours.
(b) Find the amount remaining after r hours.
(c) Estimate the amount remaining after 4 days.
(d) Use a graph to estimate the time required for the

mass to be reduced to 0.01 g.

r8.

NJ
II

NJ
'L

I l. I : -3 t

13. )t:3 e''

15. Starting with
the graph that
(a) shifting 2

(b) sh ifting 2

(c) reflecting
(d) ref lecting
(e) reflecting

16. Starting with
the graph that
(a) reflecting
(b) reflecting

the graph of ")' : e'',

results from
units clownward
units to the right
about the x-axis
about the }-aai5
about the r-axis and

the graph of y - €',
results from
about the line y - 4

about the line x - 2

write the equation of

then about the 1'-3^1t

find the equation of

NJ
II

(3,24)
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lnverse Functions and Logarithms

Table I gives data from an experiment in which a bacteria culture started with 100

bacteria in a limited nutrient medium; the size of the bacteria population was
recorded at hourly intervals. The number of bacteria N is a function of the time t:
N : f(t).

Suppose, however, that the biologist changes her point of view and becomes in-
terested in the time required for the population to reach various levels. In other
words, she is thinking of r as a function of N. This function is called the inverse

function of I, denoted by f-', and read'f inverse." Thus, t: "f '(N) is the time
required for the population level to reach N. The values of /-' can be found by
reading Table I backward or by consulting Table 2. For instance, /-'(550) : 6
because/(6) :550.

TAB LE I l/ as a function of / TAB LE 2 r as a function of l/
tI

(hours)
A/ : .l(t)

=: population at time /

0

I

2
1
_1

-t

5

6

7

t3

l(x)
r68

259

358

445

509

550

573

586

Not all functions possess inverses.
arrow diagrams are shown in Figure

,V

t: J ,(ru)

- time to rcach l/ bacteria

I00
16rt

25e
35n
,145

509

550

s73

5n6

0

I

2
1
-)

,4

5

6

7

8

Let's compa"re the functions / and g whose
1.

FIGURE I

Note that/never takes on the same value twice (any two inputs in A have differ-
ent outputs), whereas g does take on the same value twice (both 2 and 3 have the
same output, 4). In symbols,

s(2) - s(3)

but f(*,) + 7Q) whenevar x1 * x7

Functions that have this latter property are called one-to-one functions.



y: f (x)

/(x') f (xr)

CHAPTER I IUilCTIO}I5 AI{D NODELS

FIGURE 2

This function is not one-to-one

because f(x,) : f(xr).

FIGURE 3

/(x) - x3 is one-to-one.

FIGURE 4
g(x): xt is not one-to-one.

$0tUT[Sh{ From Figure
the graph of g more than
one-to-one.

One-to-one functions are important
that possess inverse functions according

I Definition A function / is called a one-to-one function if it never
takes on the same value twice; that is,

7$r) * f(*r) whenever rr # x2

If a horizontal line intersects the graph of/in more than one point, then we see

from Figure 2 thatthere are numbers -r1 and -r2 such thatf(xt) : f(xr). This means

that / is not one-to-one. Therefore, we have the following geometric method for
determinine whether a function is one-to-one.

Horizontal Line Test A function is one-to-one if and only if no horizontal
line intersects its graph more than once.

EXAMPLE I r Is the function/(r) : *'one-to-one?

S0LUTfON I If -rr * xz, then x] + x) (two different numbers cannot have the
same cube). Therefore, by Definition 1, f(x) : x' is one-to-one.

SOLUTION 2 From Figure 3 we see that no horizontal line intersects the graph
otf(x): x'more than once. Therefore, by the Horizontal Line Test,/is
one-to-one. I

EXAMPLE 2 I Is the function g(x) - x2 one-to-one?

$StUTISF* I This function is not one-to-one because. for instance.

e(l)-l-e(-l)
and so I and - I have the same image,

4 we see that there are horizontal lines that intersect
once. Therefore, by the Horizontal Line Test, g is not

t

because they are precisely the functions
to the following definition.

B Def inition Let f be a one-to-one function with domain A and range B.

Then its inverse function,f -' has domain B and range A and is defined by

/-'(y):x.€ /(r):y
for any y in B.

This definition says that if /maps x into y, then/-' maps y back into -r. (If/
were not one-to-one, then/-r would not be uniquely defined.) The arrow diagram
in Figure 5 indicates that/-'reverses the effect ofl Note thatFIGURE 5
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domain of f -t - range of f
range of ,f -' : domain of f

For example, the inverse function of /(;) : r' is f-t(*): xrl3 because if
: x3. then

f-'(y) : f-'(x'): (13)t/3 : a

Caution . Do not mistake the -l in/ I for an exponent, Thus

7 'tl') does ,?o/ mean I

f(x)

The reciprocal l/f(*) could, however, be written as I f(*)] -r.

EXAMPLE 3 t If/(l) : 5,f(3): 7, and/(8) : -10, find f -1Q),f -t (5), and

f -' (- 10).

SOLUTION From the definition of f -t we have

f-'(7):3 because

/-'(5): I because

f*t (-lo) - 8 because

Figure 6 makes it clear how f -l
*:

as the independent variable, so when we con-
usually reverse the roles of .r and y in Defini-

The diagram in
case.

f(3) - 7

/(l) : s

/(8) : - lo

reverses the effect of f in this

FIGURE 6

The inverse function reverses
inputs and outputs.

The letter x is traditionally used
centrate on f -t rather than on / we
tion 2 and write

f -'(*) - y <+ f(y) : x

By substituting for y in Definition 2 and substituting for x in (3), we get the fol-
Iowing cancellation equations:

f -t (/(")) : x for every r

f (f -'(")) : * for every x

inA

inB

The first cancellation equation says that if we start with x, apply f, and then apply

f -t,we arrive back at r, where we started (see the machine diagram in Figure 7).
Thus,/-'undoes what/does. The second equation says that/undoes what/-r
does.

E

4

FIGURE 7
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In Example 4, notice how/-r reverses

the effe ct of f. The function / is the
rule "Cube, then add 2";,f -' it the rule

"subtract 2, then take the cube root."

For example, if f(x): .r3, then f -'(x) : xt/3 and the cancellation equations

become

f -'(f(x)) : 
Qs31r/z 

: 
'

/(/-'(x)):(xt/3)3:x
These equations simply say that the cube function and the cube root function can-

cel each other when applied in succession.

Now let's see how to compute inverse functions. If we have a function y : f(x)
and are able to solve this equation for x in terms of y, then according to Defini-
tion 2 we must have x : f -t(y).If we want to call the independent variable r, we

then interchange x and y and arrive at the equation y : f-'(x).

E How to Find the Inverse Function of a One-To-One Function /
Step I Writey: f(x).
Step 2 Solve this equation for x in terms of y (if possible).

Step 3 To express f-t as a function of x, interchange -r and y.

The resulting equation is y - f-'(").

EXAMPLE 4 I Find the inverse function of f(x) : x3 + 2.

SOLUTION According to (5) we first write

Y- x3 + 2

Then we solve this equation for x:

ia-:v z
J

x_Ft
Finally, we interchange x and y:

y: {*z
Therefore, the inverse function is f -'(*)- :m.

The principle of interchanging x and y to find the inverse function also gives us

the method for obtaining the graph of /-r from the graph of / Since f(a) : b if
and only it f -t(b) : a, the point (a, b) is on the graph of/if and only if the point
(b, a) is on the graph of f-t.But we get the point (b, a) from (a,b) by reflecting
about the line y : x (see Figure 8).

ro

(b, a)

FIGURE 8
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FIGURE IO
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Therefore, as illustrated by Figure 9:

The graph of f -t is obtained by reflecting the graph of/about the line
y==x.

EXAMPLE 5 r Sketch the graphs ot f(x) : .[-l - x and irs inverse funcrion
using the same coordinate axes.

SOIUTION First we sketch the curve y : J-l - x (the top half of the parabola
y' : -l - -r, or x : -y' - 1) and then we reflect about the liney : rro ger
the graph of/-r (see Figure l0). As a check on our graph, notice that the expres-
sion for/-r is/-r(x) : -x' - l, x >- 0. So the graph of/ | is the right half of
the parabola !: -x2 - 1 and this seems reasonable from Figure 10.

Many graphing devices won't plot the inverse of a given function directly, but
we can obtain the desired graph by using the parametric graphing capability of
such a device. We saw in Section l.4that the curve with equation y -- f(x) can be
written as a parametric curve with parametric equations

x: t Ir - fu)

We know that the graph of the inverse function is obtained by interchanging the
x- and y-coordinates of the points on the graph ofl Therefore, parametric equa-
tions for the graph of/-r are

x - f(t) )t-t

EXAMPLE 5 r Show that the function/(x) : J;T +-;r + x + 1 is one-to-one
and graph both/and/-r.

SOLUTION We plot the graph in Figure I I and observe that / is one-to-one by the
Horizontal Line Test.

To graph/and,f-'on the same screen we use parametric graphs. Parametric
equations for the graph of/are

x- t y-,/tt + t? + t + I

and parametric equations for the graph of ,f -' are

*

NJ'ta

y : /(;)

y - f -'(,t)

FIGURE II x: y- t
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aJ Let's also plot the line y - x:

x-r .v-t

Figure l2 shows all three graphs and, indeed, it appears that the graph of f-l
the reflection of the graph of f in the line v - x.

It's remarkable that we were able to graph/-' in Example 6 even though we had

no explicit formula for f -'.In fact. it is possible to find an explicit, though very

complicated, expression for/-r(x). (We ask you to do this in Exercise 55 with the

help of a computer algebra system.) It turns out to be impossible to find an explicit
formula for the inverse function of /(r) : x + sin x, but we can still use the

method of Example 6 to graph/ r. (See Exercise 54.)

Logarithmic Functions

If a > 0 and a * l,the exponential function/(.r) : a'' is either increasing or de-

creasing and so it is one-to-one. It therefore has an inverse function/-r, which is
called the logarithmic function with base a and is denoted by log.,. If we use the

formulation of an inverse function given by (3),

f -'(*) : )) €+ /( l') - x

1S

il

FIGURE I2

then we have

6 [og,,x : "]' <= a)' - x

Thus, if x > 0, then log,x is the exponent to which the base 4 must be raised to

give x. For example, logro0.00l : -3 because 10-r : 0.001.

The cancellation equations (4), when applied to,f(x) : c'and f '("):log,,x,
become

The logarithmic function log., has domain (0, oo) and range R. lts graph is the

reflection of the graph of ] : a' about the line y : x.

Figure 13 shows the case where a > l. (The most important logarithmic func-

tions have base a > l.) The fact that !: a'is a very rapidly increasing function
for x ) 0 is reflected in the fact that ) : log,,x is a very slowly increasing func-

tion forx > l.
Figure 14 shows the graphs of -v 

: log,,x with various values of the base a.

Since log" I : 0, the graphs of all logarithmic functions pass through the point
(1,0).

The following properties of logarithmic functions follow from the correspond-

ing properties of exponential functions given in Section 1.5.

il log., (a') - x for every .r

At.s,,t-x fOrevervJ

CR

FIGURE I3
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: lOg, x

Iog., x

1' 
: log,,, x

FIGURE 
'4

Notation for Logarithms

Most textbooks in calculus and the
sciences, as well as calculators, use the
notation ln -r for the natural logarithm
and log -r for the "common logarithm,"
logro,r. In the more advanced mathe-
matical and scientific literature and

in computer languages, however, the
notation log "r usually denotes the
natural Iogarithm.

If weputa-
natural logarithm

tr

I
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EXAMPLE 7 I Use the laws of logarithms to evaluate log2 80 log2 5.

SSf;-f;"JT$Sru Usins Law 2. we have

log280 log25 - - log2 16 - 4

becaus e 21 -- 16.

Of all possible bases a for logarithms, we will see in Chapter 3 that the most con-
venient choice of a base is the number e, which was defined in Section 1.5. The
logarithm with base e is called the natural logarithm and has a special notation:

log"x - ln x

og:(+)

I

e and log,. - ln in (6) and (7), then the
function become

defining properties of the

lnX-y €+ e'"-X

ln(e')- x x € R

,lnx : ,r ,r

In particular, if we set ,r : l, we get

lne - I

EXAMPLE 8 I Find ,r if lnx - 5.

SOI{JT|ON I From (8) we see that

lnx- 5

Therefore, r - es.

(If you have trouble working with
Then the equation becomes loge r -
e5 - r.)

means e5 - x

the "ln" notation, just replace it by logn.

5; so, by the definition of logarithm,

Laws of Logarithms

| . log n (ry) - log., x

/"\
2. log,,t - | : log,,'r

\)'/
3. log 

" 
("') - r log,, x

If x and y are positive numbers, then

+ log"y

log"y

(where r is any real number)

Natural Logarithms
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$Ol"tlTl0il 2 Start with the equation

lnx--5

and apply the exponential function to both sides of the equation:

ernr: et

But the second cancellation equation in (9) says that ern' : x. Therefore, x : et.

T

EXAMPLE 9 r Solve the equation 
"s-:.t 

: 19.

SOLUTION We take natural logarithms of both sides of the equation and use (9):

ln(e5-3') : ln l0

5-3x:lnl0

3x:5-lnlO

r: l(s - lnlo)

Since the natural logarithm is found on scientific calculators, we can approxi-
mate the solution to four decimal places: x - 0.8991. *

EXAMPLE l0 r Express In a + j ln b as a single logarithm.

SOLUTIOII Using Laws 3 and I of logarithms, we have

lna+)lnb:Inarlnbt/z
: Ina + lnJb
: tn(ali) *

The following formula shows that logarithms with any base can be expressed in

terms of the natural logarithm.

Iu For any positive number a (a + l), we have

ln ,r
log,, x - ,

Proof Lety : log,x. Then, from (6), we have Q)" : x. Taking natural logarithms
of both sides of this equation, we get ylna : ln-r. Therefore

lnx
ltv" lna E

Scientific calculators have a key for natural logarithms, so Formula 10 enables

us to use a calculator to compute a logarithm with any base (as shown in the next

example). Similarly, Formula 10 allows us to graph any logarithmic function on a

graphing calculator or computer (see Exercises 43 and 44)'
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EXAMPLE ll r Evaluate logs 5 correct to six decimal places.

SOLUTION Formula 10 gives

7,

ffi
logs5 : l* - 0.773s76

EXAMPTE 12 r In Example 3 in Section 1.5 we showed that the mass of eoSr that
remains from a 24-mg sample after t years is m: f(t):24.2-'t2s.Findthe
inverse of this function and interpret it.

SOLUTION We need to solve the equation m : 24 - 2-t/2s for t. We start by taking
natural logarithms of both sides:

lnm: ln(24 . 2-t/2s) : ln24 * ln(z-'/zs\

lnm : ln24 - L- nZ
25

T= ln2: ln24 - lnm
25

)\r: ,](ln 24 - tnm)

So the inverse function is

)<
f-'(m): ffj0"24 - tnm)

This function gives the time required for the mass to decay to z milligrams. In
particular, the time required for the mass to be reduced to 5 mg is

t -- f-'(s): Altn 24 - tn5) - 56.58 yearslnz

This answer agrees with the graphical estimate that we made in Example 3 in
Section 1.5. ;

The graphs of the exponential function ! : e' and its inverse function, the
natural logarithm function, are shown in Figure 15. Because the curve y : e"
crosses the y-axis with a slope of l, it follows that the curve ln.r crosses the .r-axis
with a slope of l.

FIGURE I5
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FIGURE I6

In common with all other logarithmic functions with base greater than l, the

natural logarithm is an increasing function defined on (0,o) and the y-axis is a
vertical asymptote. (This means that the values of ln x become very large negative

as .r approaches 0. See Section 2.5.)

EXAMPIE 13 r Sketch the graph of the function y : ln(x - 2) - l.

SOLUTION We start with the graph of y : ln x as given in Figure 15. Using the

transformations of Section 1.2, we shift it two units to the right to get the graph

of y : ln(x - 2) and then we shift it one unit downward to get the graph of
) : ln(.r - 2) - 1 (see Figure 16).

il
Although ln.r is an increasing function, it grows very slowly when x > 1. In

fact, ln .r grows more slowly than any positive power of x. To illustrate this fact, we

compare approximate values of the functions ) : ln x and ! : xt/z : ..f in the

following table and ryg graph them in Figures l7 and 18. You can see that initially
the graphs of y: Jx and ): ln, grow at comparable rates, but eventually the

root function far surpasses the logarithm.

ln(x - 2l
):ln(x-

I I ) l0 50 t(x) -5(X) I(XX) 10.(xx) I (X).(XX )

In .r 0 ( ).69 l.(r I 1.30 9l J.6 6.1 (-1. () e.l il.5

t"\ I .-t I
') t-t 3.16 7 .07 l0 0 ')-) I

- -.4 l.(r l(x) -l I (.)

Irt.r
_

1-f
0 ( ).-19 0.7 ) 0.7.1 0.5 5 0.-l(r 0 .llt 0.l l 0.09 0.0-t

FIGURE I7 FIGURE I8
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Exercises

l. (a) What is a one-to-one function?
(b) How can you tell from the graph of a function

whether it is one-to-one?

2. (a) Suppose / is a one-to-one function with domain A
and range B. How is the inverse function f -t
defined? What is the domain of f -'? Whar is rhe
range of / -'?

(b) If you are given a formula for/ how do you
formula for / -r?

(c) If you are given the graph of f, how do you
graph of/-r?

20. The graph of f is given.
(a) Why is 

"f one-to-one?
(b) State the domain and range of ,f 

*'

(c) Estimate the value of,f-'(1).

22.

The formula C - i(f - 32), where F > -459.67,
expresses the Celsius temperature C as a function of the
Fahrenheit temperature F. Find a formula for the inverse
function and interpret it. What is the domain of the
inverse function?

In the theory of relativity, the mass of a particle with
velocitv u is

18. If/(x)-3+x2+
find f -'(3).

19. If g(x) - 3 * x +

tan(nxf2), where

e*, find g-t (4).

-l ( x ( l,

find a

find the

3.

4.

3-14 r A function/is given by a table of values, a graph,
a formula, or a verbal description. Determine whether/is
one-to-one.

9. f(*)- 7x - 3 10. /(x) : x' - 2x * 5

f f. g(x):l*l t2. g(x)-r/i
13. /(r) is the height of a football / seconds after kickoff

14. f (t) is your height at age t

| 5- | 6 r Use a graph to decide whether / is one-to-one.

15. /(x) : x' - ,tr 16. /(x) - .tr3 + x

17. If f is a one-to-one function such that f(2) : 9, what
is ,f -t(9)?

m:f(u)- lTl0

Jt -TrF
where rns is the rest mass of the particle and c is the
speed of light in a vacuum. Find the inverse function
of / and explain its meaning.

23-28 I Find a formula for the inverse of the function.

l+3x

21.

23. /(x) :

25, f(x) -

2a.f(x):5 4x3

26. ! : 210'

1+e'
28. \' -"1e*

52x
,F s-

27. y : ln(x + 3)

n= 29-30 r Find an explicit formula for/-1 and use ir to graph

f -', / and the line y - x on the same screen. To check your
work, see whether the graphs of"f and f -t are reflections
about the line.

29.f(x):1-2/*', x)0
30. f(x): J*'+ 2*, x > 0

\ + ) fr

/l\) o 1.(-t -5.3 1.8 l.()

\
t

+ t 6

i (tt l I
I-? fi l(r

-)



31.

74

32.

33.

34.
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LJse the given graph of/to sketch the graph of./-'

Use the given graph of / to sketch

and rlf.
the graphs of / -'

(a) How is the logarithmic function 1' - log,,x defined?
(b) What is the domain of this function?
(c) What is the range of this function?
(d) Sketch the general shape of the graph of the func-

tion )' - lug" x rf ct

What is the natural logarithm?
What is the common logarithm?
Sketch the graphs of the natural logarithm function
and the natural exponential function with a common
set of axes.

35-38 r Find the exact value of each expression.

35. (a) log2 64 (b) logu *
36. (a) lo96 2 (b) ln e'r

37 . (a) lng 
'n 

| .25 + log 1p 80

(b) logs l0 + log.20 3 log.r 2

3g. (a) 2llogz-3+log2-5) (b) 
"-1In2

El qleq I Use Formula 10 to graph the given functions on a
common screen. How are these graphs related?

43. -y 
: logr.sx, .)' - ln x, y : logls1x, )' - log5sx

44. ), : ln x, .)' - logroJ, -)o 
: Ito y - 10'

45. Suppose that the graph of .)' : logtx is drawn on a coor-

dinate grid where the unit of measurement is an inch.

How many miles to the right of the origin do we have

to move before the height of the curve reaches 3 ft?

El $. Compare the functions./(x) - x0 r and g(x) : ln x by

graphing both / and g rn several viewing rectangles.

When does the graph of ./finally surpass the graph

of g?

4748 I Make a rough sketch of the graph of each func-
tion. Do not use a calculator. Just use the graphs given in
Figures 14 and 15 and, if necessary, the transformations of
Section I.2.

47.(a)y:log16(x+5)

48. (a) ln(-.r)

(b) .)'- -lnx
(b) J,- lnlxl

49-52 I Solve each equation for x.

49. (a) c' - 16 (b) ln.r - -l
50.

51,

(b)

(b)

(b)

(a)

(a)

(a)

ln(2x l) : 3

2'-5 - 3

ln(ln x) : I

U-jr:4 _ ?

lnx * ln(. 1) : I

gttx - Ce""r, wherg a #52.

41 . Use Formula 10 to evaluate each logarithm correct to

six decimal places.
(a) log2 5 (b) log, 26.05

42. Find the domain and range of the function
g(x) - ln(4 r').

EE SIS+ r Show that/is one-to-one. Then graph f,f-'. and

-1' 
: .r on the same screen using parametric graphs.

s3. /(x; - -tu -r- I - r

54. /(x) : * + sinx

EE 55. Use a computer algebra system to find an explieit
expression for the inverse of the function

/(t) : n'ffi that we considerecl in
Example 6. (Your CAS will produce three possible

expressions. Explain why two of them are irrelevant in

this context.)

E[9 56. (a) If g(x) - ru + x4, r 2 0, use a computer algebra

system to find an expression for g-r(x).
(b) Use the expression in part (a) to graph y: g(x),

),: x, and j,- g '(x) on the same screen.

57. If a bacteria population starts with 100 bacteria and

doubles every three hours, then the number of bacteria

after / hours is rz - f(t)_ 100' 2t"': (see Exercise 23 in
Section 1.5).
(a) Find the inverse of this function and explain its

meaning.
(b) When will the population reach 50,000?

(a)
(b)
(c)

39-40 I E xpress

39. }ln 4 ln 2

the given quantity as

40. ln x

a single logarithm.

+ alny blnz



58. When a camera flash goes off, the batteries immedi-
ately begin to recharge the flash's capacitor, which
stores elee tric charge given by

Q(t) - Qr(l r' r/":,

(The maxirnum charge capacity is 8o ernd r is measured
in seconds.)
(a) Find the inverse of this function and explain its

mean ing.
(b) How long does it take to recharge the capacitor to

9AG/o of capacity if cr : 2?

59. Starting with the graph of y : ln x, fincl the equation of
the graph that results from
(a) shifting 3 units upward
(b) shifting 3 units to the left

SECTION I.7 I'IODELI AND CURl'E IITTII{G 75

(c) reflecting about the x-axis
(d) reflecting about the y-axis
(e) reflecting about the line _), 

: .r
(f) reflecting about the .r-axis and then about the

line )' : x
(g) reflecting about the _)'-axis and then about the

line .)r 
: ,t

(h) shifting 3 units to the left and then reflecting about
the line ),' : r

60. (a) If we shift a curve to the left, what happens to its
reflection about the line -.)' - x'? In view of this
geometric principle, find an expression for the
inlerse of g(x) : ,f(r + c), where f is a one-to-one
function.

(b) Fincl an expression for the inverse of /r(;) : ,f(c.r),
where c # O.

Models and Curve Fitting

A mathematical model is a mathematical description (often by means of a func-
tion or an equation) of a real-world phenomenon such as the size of a population,
the demand for a product, the speed ofa falling object, the concentration of a prod-
uct in a chemical reaction, the life expectancy of a person at birth, or the cost of
emission reductions. The purpose of the model is to understand the phenomenon
and perhaps to make predictions about future behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world
problem, our first task is to formulate a mathematical model by identifying and
naming the independent and dependent variables and making assumptions that
simplify the phenomenon enough to make it mathematically tractable. We use our
knowledge of the physical situation and our mathematical skills to obtain equa-
tions that relate the variables. In situations where there is no physical law to guide
us, we may need to collect data (either from a library or the internet or by conduct-
ing our own experiments) and examine the data in the form of a table in order to
discern patterns. From this numerical representation of a function we may wish to
obtain a graphical representation by plotting the data. The graph might even sug-
gest a suitable algebraic formula in some cases.

FIGURE I

The modeling process

Formulate
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The second stage is to apply the mathematics that we know (such as the calculus

that will be developed throughout this book) to the mathematical model that we

have formulated in order to derive mathematical conclusions. Then, in the third
stage, we take those mathematical conclusions and interpret them as information

about the original real-world phenomenon by way of offering explanations or mak-
ing predictions. The final step is to test our predictions by checking against new

real data. If the predictions don't compare well with reality, we need to refine our
model or to formulate a new model and start the cycle again.

A mathematical model is never a completely accurate representation of a physi-

cal situation-it is an idealization. A good model simplifies reality enough to
permit mathematical calculations but is accurate enough to provide valuable con-

clusions. It is important to realize the limitations of the model. In the end, Mother
Nature has the final say.

If there is no physical law or principle to help us formulate a model, we construct
an empirical model, which is based entirely on collected data. We seek a curve

that "fits" the data in the sense that it captures the basic trend of the data points.

Table I lists the average carbon dioxide level in the atmosphere, measured in
parts per million at Mauna Loa Observatory from 1972 to 1990. We use these data

to make the scatter plot in Figure 2, where / represents time (in years) and C repre-

sents the COz level (in parts per million, ppm).

FIGURE 2 Scatter plot for the average CO, level

Notice that the data points appear to lie close to a straight line, so it's natural to

choose a linear model in this case. But there are many possible lines that approxi-
mate these data points, so which one should we use? One possibility is to choose

the line that passes through the first and last data points. The slope of this line is

354.0 3?1 .3

1990 r91?

26.t
- : 1.48333

l8

and its equation is

or

tr

C 327.3- 1.48333(1 1972)

C-1.48333t - 2597.83

Empirical Models

TABLE I

("()'lrrc[ tin 1ilult]
1? =)

i() {}

il rl
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FIGURE 3

Linear model through
first and last data points

FIGURE 4
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Equation I gives one possible linear model for the carbon dioxide level (see

Figure 3) but there are other possibilities.

In general, suppose that we have data points (x1,y1), (xr,yr),... and we want to
find a line y : mx + b that fits these points as well as possible, in some sense. Let

d;: lti - @x1 + b)l

be the vertical distance from the ith point to the line (see Figure 4).

One method for choosing a line of best fit is to minimize the largest of the num-
bers dr , dr, dt, .. . so that the resulting line is not too far away from any given data
point. Another method that is sometimes used is to minimize the sum of these dis-
tances, so that dt + dz + .'. is as small as possible. The most popular curve-
fitting criterion, however, is the least squares method, in which we minimize the
sum of the squares of these distances: d2, + d2, * .... (Statisticians arrive at this
criterion by assuming that possible errors in the data are randomly distributed.)
With the help of ideas from multivariable calculus, it is possible to arrive at (com-
plicated) formulas for the slope la and y-intercept b of the resulting line, which is
called a regression line. Fortunately, most graphing calculators and computer
algebra systems have statistics packages that calculate the values of m and b and
plot the regression line together with the data points.

EXAMPTE I r Find a linear model for the carbon dioxide level by using the least
squares regression line for the data of Table l. Use the model to estimate the
average COz level for 1987 and to predict the level for the year 2000. According
to this model, when will the COz level exceed 400 parts per million?

S0IUTION If we use a graphing calculator, we enter the data from Table I into
the data editor and choose the linear regression command. (With Maple we use

(-r', )') (x:, }': )
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FIGURE 5

The regression line

the fitfleastsquare] command in the stats package; with Mathematica we use

the Fit command.) The machine gives the slope and y-intercept of the regression

line as

So our least

IT

m: 1.496667 b: -2624.826667

squares model for the CO2 level is

C : 1.496667t 2624.826667

In Figure 5 we graph the regression line as well as the data points. Compar-

ing with Figure 3, we see that it gives a better fit than our previous linear model.

Using Equation 2 with t:1987, we estimate that the average COz level in
1987 was

C(1987) -- (r.496667)(1987) - 2624.826667 - 349.05

This is an example of interpolation because we have estimated a value between

observed values. (In fact, the Mauna Loa Observatory reported that the average

COz level in 1987 was 348.8 ppm, so our estimate is quite accurate.)
With t : 2000, we get

C(2000) : (r.496667) (2000) - 2624.826667 = 368.5r

So we predict that the average COz level in the year 2000 will be 368.5 ppm.

This is an example of extrapolation because we have predicted a value outside

the region of observations. Consequently, we are far less certain about the

accuracy of our prediction.
Using Equation 2, we see that the COz level exceeds 400 ppm when

1.496667t - 2624.826667 > 400

Solving this inequality, we get

3024.826667t> *** -2O21.04

We therefore predict that the COz level will exceed 400 ppm by the year 2021.

This prediction is somewhat risky because it involves a time quite remote from
our observations. ffi



TABLE 2

Yca r Populut ion (ln i | | ions)

90c

9lc
e2t
c)3(.

9,4(,

95r
9(r(
L)7 (
r)tt(

99(
L)9(

l(r50
l75t)
Iri6t)
2070
2300

25 20

3()20

3 7(X)

-1-150

5 300

5770

TABLE 3
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EXAMPLE 2 r Find an appropriate model for the population of the world in the
20th century using the data in Table 2.

SOLUTION A scatter plot of the data is shown in Figure 6.

Fl GU RE 5 Scatter plot for world population growth

We see that the population is growing too quickly for a linear model to be
appropriate, but the general trend is similar to the exponential functions that we
studied in Section 1.5. So let's look for a member of the familv of functions

y : cek'

to serve as a model for population growth. Taking the natural logarithm of each
side of the equation, we get

lny : 1n1rr*') : ln C ! lnek'

lny:lnC*kt

This equation shows that if y is an exponential function of t, then lny is a linear
function of r.

To see if an exponential model is appropriate, we calculate lnP for each data
point in Table 3 and plot ln P against t. The resulting scatter plot is shown in
Fieure 7.

t lnP
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2

2

2

2
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283

311
.+5 r

556

648

tt29

032

2t6
39 r

176
FIGURE 7
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FIGURE 8

Although the data points are not as clearly linear as in Example l, a linear
model for ln P does seem to be a possibility. So we use a graphing calculator or
computer algebra system to obtain the least squares regression line. The slope
and y-intercept are

m : 0.013623 b : - 4.7911

and so our model can be written in the form

E ln P : 0.013623t 4.7911

Figure 8 shows the regression line.

Solving Equation 3 for P, we get

p 
- 

g0.013623r . g-4.7911

P - 0.008303e0'0r3623t

Equation 4 is the exponential model obtained by taking logarithms, applying
linear regression to the resulting data, and then solving for P by applying the
exponential function. This is the procedure to be used with most computer
algebra systems. Most graphing calculators, on the other hand, are capable of
applying the method of least squares directly to an exponential equation. One

such calculator applies exponential regression to the data of Table 2 and obtains
the function

P - (0.008306312). (1.013716)'

For comparison with Equation 4 we convert to base e by writing 1.013716 : e"
so that k : lnl.Ol37l6 - 0.013623 and we have

E p : 0.008306312eo'ot3623t

The slight discrepancy between Equations 4 and 5 is explained by the fact
that applying least squares to the transformed data of Table 3 doesn't quite corre-
spond to the least squares fit of the original data.

4
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Figure 9 shows the exponential model for population growth, given by
Equation 4 or 5, together with the original data points. We see that the expo-
nential curve fits the data reasonably well. The period of relatively slow popula-
tion growth is explained by the two world wars and the depression of the 1930s.

There are other possibilities for modeling the data of Table 2. Let's try, for
instance, a cubic polynomial. A graphing calculator or computer algebra system
uses the method of least squares and returns the cubic model

6
where

P- at3 + btz + ct + d

a - 2325.67

c:2.44631 x 1010

b- -1.306488 x 10',

d--1.52659x1013

8l

FIGURE 9

Exponential model for population growth

FIGURE IO

Cubic model for population growth

We graph this cubic function and the data points of Table 2 in Figure l0 and
see that it models the world population of the 20th century very well. Perhaps
surprisingly, it's substantially better than the exponential model and would be
useful for estimating the world population in 1925 or 1985. For the purpose of
predicting the population in the years 2050 and 2100, however, the cubic model
would probably not be nearly so accurate. In Chapter 7 we will discuss possible
models for population growth in greater detail.

We have seen that graphing calculators and computers are capable of employing
the method of least squares to model data by means of linear functions or exponen-

ffi

5x10e
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tial functions. Two other types of functions are also commonly found as models on

such machines.
A power model is a function of the form y : ax", where a is a positive constant,

n is any real number, and the domain is (0,*). Notice that lny : lna * nlnx,
that is, lny is a linear function of ln -r. Thus, to determine if a power model is ap-

propriate, we can make a scatter plot of lny against ln x and see whether the points

lie more or less along a straight line. If so, we could use linear regression to find a

model for lny as a linear function of lnx and then solve for y. Alternatively, most

graphing calculators have a command for power regression that finds values for a
and n directly.

Computer algebra systems can use least squares to fit a polynomial of any de-

gree to a set of data. Indeed, we used a third-degree polynomial model in Example

2. Although polynomials of high degree could be used to mimic most fluctuations
of data, that is usually not appropriate. It's best to use a simpler expression that

encompasses the essential trend of the data. Graphing calculators are generally

capable of curve-fitting with polynomials of degree 2, 3, and 4, that is, with qua-

dratic, cubic, and quartic functions.

Exercises

l. The table shows (lifetime) peptic ulcer rates (per 100

population) for various family incomes as reported by
the 1989 National Health Interview Survey.

Irtcr.uttc

LJ lccr" r'ntc

{ prer I(}(} pogrrrlut ion )

$-1.fi()t)

$6.fx){}

$l{.0tx}

$ il.{}tx)
li 16.(xx)

:i' l{).( x x)

$10.{xx)
3j-15.(xlt)

$fr{).(}tXi

14. I

ll.{}
r-lI 1.+

l].5
ll.0
r') 1
I *"-f

[ (]"5

U.;l
Hr

(a) Make a scatter plot of these data and decide whether
a linear model is appropriate.

(b) Find and graph a linear model using the first and

last data points.
(c) Find and graph the least squares regression line.
(d) Use the linear model in part (c) to estimate the

ulcer rate for an income of $25,000.
(e) According to the model, how likely is someone with

an income of $80,000 to suffer from peptic ulcers?

(a) Use the data in Table 2, but only for the years

1950-1996, to model the population of the world in
the second half of the 20th century. Use a linear
model, flil exponential model, and a cubic model.

From the graphs of these models and the data

points, which appears to be the best model?
(b) Use the models to estimate the world population in

1985 and to predict the world population for the

years 2000 and 2100. Which of the models do you

think gives the most reliable predictions?
(c) Use the models to predict when the world population

will reach 8 billion.

3. The table gives lead emissions into the environment
within the United States in millions of metric tons from
1970 to 1992.

\"cll r

lrrllisqitttts
(ln rtr illions ul. nict riu tolts )

LJ7(}

q75

r),q{)

tlH"i

I}H N

(,)l{g

rlr)( )

(.)g 
l

Llr)l

I rlr"). I

I -11.11

frH.{ }

ls""i

5.t)

5.-1

5.l
n{

T.-,

1-l
J!

Fit both an exponential curve and a fourth-degree
polynomial to these data. (Take f : 0 to correspond
to 1970.) !

Estimate the amount of lead emission in 1972

and in 1982.

2.

(a)

(b)



4. A study by the U.S. Office of Science and Technology
in 1972 estimated the cost (in 1972 dollars) to reduce

automobile emissions by certain percentages:

Find a model that captures the "diminishing returns"
trend of these data.

5. The table gives the percentage of high-school seniors

who reported that they had used marijuana in the past

30 days.
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Find a suitable model for these data and use your model
to estimate the percentage for 1982 and to predict the
percentage for 1995. How far into the future would you
be willing to use your model to make predictions?

The table shows the mean (average) distances d of the
planets from the Sun (taking the unit of measurement to
be the distance from Earth to the Sun) and their periods
f (time of revolution in years).

I I lr rr t ,t(l I
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I t.fi6 |

le.-+-5 7

ti-+. ( x )r{

l6-+.7ri-+

lll{ I50

(a) Make a scatter plot of T against d and another
scatter plot of ln I against lnd. Does a power model
seem reasonable?

(b) Fit a power model to the data.
(c) Kepler's Third Law of Planetary Motion states that

"The square of the period of revolution of a planet
is proportional to the cube of its mean distance from
the sun." Does your model corroborate Kepler's
Third Law?
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Chapter I Review
I CONCEPT CHECK .

l. Define each of the following in your own words.
(Check by referring to the definition in the text.)
(a) Function
(b) Domain and range of a function
(c) Graph of a function
(d) Increasing function
(e) Composition of two functions
(f) Parametric curve

2. (a) What is an even function? How can you tell if a

function is even by looking at its graph?
(b) What is an odcl func-tion? How can you tell if a

function is odcl by looking at its graph?

3. (a) What is a one-to-one function? How can you tell if
a fune tion is one-to-one by looking at its graph?

(b) lf f is a one-to-one function., how is its inverse
function l' ' definecl? How clo you obtain the graph
of./:' from the graph of .f?

-A 

TRUE-FALSE

Determine whether the statement is true or false. If it is

true, explain why. If it is false, explain why or give an

example that disproves the statement.

f . lf .fis one-to-one, then / '(r) : +/(x) 
'

2. If xr { xz and/ is a decreasing function, then

"f(.r') > f(xt).
3. If f is a function, then /(s + t) : "f(s) + /(r).

QUrz a

4. (a) State the Vertical Line Test.
(b) State the Horizonterl Line Test.

5. Give an example of each type of function.
( a) Constant function
(b) Power function
(c) Exponential function
(d) Linear funct ion
(e) Quaclratic function
(f) Polynomial of degree 5

(g) Rat ional function

6. Draw, by hand, a rough sketch of the graph of each

function.
(a) ), : xr (b) .), 

: 14

(c) -), 
: sin r (d) .' - tan x

(e) ], : (?' (f) _)' 
: ln;

(S) .\,'i - 1l* (h) -)r - lt I

( i) .\' - t"'i

4. If /(s) - .f (t), then s' : t.

5. A vertical line intersects the graph of a f unc-tion at

most once.

6. You can always divide by 
"'.

7.If 0 I a < b,, then lna

8. If r > 0' then (ln r)o : 6ln x.

- s' EXERCTSES @

l. Let f be the function w'hose graph is given.
(a) Estimate the vah-re of f (21.

(b) Estimate the values of x such that f(x) : 3.

(c) State the domain of /
(d) State the range of I
(e) On what interval is / increasing?

( f ) I* .f one-to-one? E,xplain.

(g) Ir 
"f 

even, odd, or neithe r even nor odd? Explain.



The graph of g is given.
(a) State the value of g(2).
(b) Wh), is g one-to-one?
(c) Estimate the value of g- '(2).
(d) Estimate the domain of g
(e) Sketch the graph of g*'.

Cl|APTTR I RE'/IEW

I l-16 r Sketch the graph of the function.

ll.),-l+r/E+2 12.y:(x l)o 1

13. ]' - cos 3x

f 5. /(x) - -e*

14. )'- 3 2sinx

It r ifx<l
16. f(x): {r* Llnx tf xz l

85

2.

3. The distance traveled by a car is given by the values in
the table.

(a) Use the data to sketch the graph of d as a function
of r.

(b) Use the graph to estimate the distance traveled after
4.5 seconds.

4. Sketch a rough graph of the yield of a crop as a function
of the amount of fertilizer used.

5-8 I Find the domain and range of the function.

5. /(") : .nf, - 3.r, 6. g(.r) - t/(* + l)
7. h(t) - s-t: 8. \l - ln(l r)

9. Suppose that the graph of I'is given. Describe how the
graphs of the following functions can be obtained from
the graph of 

"f,(a)l,.:/(r)+8 (b)-.l,'- f(, +B)
(c) ), - I + Zf(r) (d) I : f(x 2) 2

(e) .), - -/(x) (f) l, - ,f 
:'(r)

10. The graph of l'is given. Draw
ing functions.
(a) ) : ,f(.r 8) (b)
(c).)':2 - f(x) (d)
(e) .), 

: .l'-'(r) (f)

the graphs of the follow-

17. Determine whether"f i* even, odd, or neither even nor
odd.
(a) /(x):2x5 - 3r2 + 2 (b) /(x): r'- x'
(c) /'(x) : e '[r (d) l'(r) - 1 + sinr

18. Find an expression for the function whose graph con-
sists of the line segment from the point (-2,?) to the
point (- 1,0) together with the top half of the circle
with center the origin and radius 1.

19. If l'(r) - ln x and g(x) - nt - 9, find the functions

f " g, g " f, .f " f, g " g, alnd their domains.

20. Express the function tr(r) - Il J, + J; as a composi-
tion of three functions.

22.

If/(r) :

Find the

23. Find the exact value of each expression.
(a) ,? rn -3 (b) log 1s 25 + log 16 4

Solve each equation for r.
(a) er - 5 (b) ln.r : 2 (c) e"' : 2

The half-life of palladium - 100, "'0Pd, is four days. (So

half of any given quantity of toop6 will disintegrate in
four clays.) The initial mass of a sample is one gram.
(a) Find the mass that remains after l6 days.
(b) Find the mass m(t) that remains after / clays.

(c) Find the inverse of this function and explain its
rnean ing.

(d) When will the mass be reducecl to 0.01 g?

The population of a ce rtain species in a lirnited
environment w'ith initial population 100 and carrying
capacity 1000 is

P(r) :ffi
where / is measured in years.
(a) Graph this function and estimate how long it takes

for the population to reach 900.
(b) Find the inverse of this function and explain its

mean ing.
(c) Use the inverse function to find the time required

for the population to reach 900. Compare with the

result of part (a).

74.

25.

ElZl.Graph members of the family of functions

/(r) - ln(x2 - c) for several values of c. How does the

graph change when c changes?

2x * ln x, find .f -t(2).

r+l
inverse function of .f(x) : Zx + 1

21.

26.

NJ'aa

J'

),'

)

: -f(x)
- i/(") - I

- .f 
--'(r + 3)

I (see ontls ) o I l 1 l 5

r/ (t'ect) o I0 ) 7o lle l7t{

I
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Graph the three functions y - xu, a*, and y : Iogo-tr on

the same screen for two or three values of a
large values of x, which of these functions has the

largest values and which has the smallest values?

29. (a) Sketch the curve represerted by the parametric
equations x - et, ) : Jt,O < r < 1, and indicate
with an arrow the direction in which the curve is
traced as / increases.

(b) Eliminate the parameter to find a Cartesian equa-

tion of the curve.

30. (a) Find parametric equations for the path of a particle
that moves counterclockwise halfway around the 33.
circle (x - 2)' + Y' : 4, from the toP to the

bottom.
(b) Use the equations from part (a) to graph the semi-

ci rcular path.

Use parametric equations to graph the function
f (*) - 2x + ln x and its inverse function on the same

screen.

Life expectancy has improved dramatically in this
century. The table gives the life expectancy at birth
(in years) of males born in the United States.NJ

'L

Ei l.
Birtlr rclt t t I c t'r.1t I lr lt \

()0

()l

el
() 

-i

t)-l

tt5

() ft
,)J

9fi
()()

+s. I

5r.r
-)5.1

5l,-1
(rl. -i

(r-r.fr

(r(r.(r

(r7. I

70.0
I I.S

32. (a) Find parametric equations for the set of all points
P determined as shown in the figure so that

lOp | : I ABl. (This curve is called the cissoid
of Diocles after the Greek scholar Diocles, who

introduced the cissoid as a graphical method for
constructing the edge of a cube whose volume is

twice that of a given cube.)
(b) Use the geometric description of the curve to draw a

rough sketch of the curve by hand. Check your work
by using the parametric equations to graph the

curve.

Use a scatter plot to choose an appropriate type of
model. Use your model to predict the life span of a
male born in the vear 2000.



There are no hard and fast rules that will ensure success in solving problems. How-
ever, it is possible to outline some general steps in the problem-solving process and
to give some principles that may be useful in the solution of certain problems.

These steps and principles are just common sense made explicit. They have been

adapted from George Polya's book How To Solve It.

t:-.l
| | | Understand the Problem

The first step is to read the problem and make sure that you understand it clearly.
Ask yourself the following questions:

For many problems it is

What is the unknown?

What are the given quantities?

What are the given conditions?

useful to

draw a diagram

and identify the given and required quantities on the diagram.

Usually it is necessary to

introduce suitable notation

In choosing symbols for the unknown quantities we often use letters such as a, b,

c, m, n, x, and y, but in some cases it helps to use initials as suggestive symbols, for
instance, V for volume or t for time.

t=-1
| '.1 | Think af a Plan

Find a connection between the given information and the unknown that will en-
able you to calculate the unknown. It often helps to ask yourself explicitly: "How
can I relate the given to the unknown?" If you do not see a connection immedi-
ately, the following ideas may be helpful in devising a plan.

Try to Recognize Something Familiar
ous knowledge. Look at the unknown and try
that has a similar unknown.

Relate the given situation to previ-
to recall a more familiar problem

Try to Recognize Patterns Some problems are solved by recognizing that
some kind of pattern is occurring. The pattern could be geometric, or numerical,
or algebraic. If you can see regularity or repetition in a problem, you might be able

to guess what the continuing pattern is and then prove it.

Use Analogy Try to think of an analogous problem, that is, a similar
problem, a related problem, but one that is easier than the original problem. If you

can solve the similar, simpler problem, then it might give you the clues you need to
solve the original, more difficult problem. For instance, if a problem involves very
large numbers, you could first try a similar problem with smaller numbers. Or if
the problem involves three-dimensional geometry, you could look for a similar
problem in two-dimensional geometry. Or if the problem you start with is a gen-

eral one, you could first try a special case.
1ll iii', r i



Introduce Something Extra It may sometimes be necessary to introduce
something new, an auxiliary aid, to help make the connection between the given
and the unknown. For instance, in a problem where a diagram is useful the auxil-
iary aid could be a new line drawn in a diagram. In a more algebraic problem it
could be a new unknown that is related to the orisinal unknown.

Take Cases We may sometimes have to split a problem into several cases
and give a different argument for each of the cases. For instance, we often have to
use this strategy in dealing with absolute value.

Work Backward Sometimes it is useful to imagine that your problem is
solved and work backward, step by step, until you arrive at the given data. Then
you may be able to reverse your steps and thereby construct a solution to the origi-
nal problem. This procedure is commonly used in solving equations. For instance,
in solving the equation 3x - 5 : 7, we suppose that x is a number that satisfies
3x - 5 : 7 and work backward. We add 5 to each side of the equation and then
divide each side by 3 to get x : 4. Since each of these steps can be reversed, we
have solved the problem.

Establish Subgoals In a complex problem it is often useful to set subgoals
(in which the desired situation is only partially fulfilled). If we can first reach
these subgoals, then we may be able to build on them to reach our final goal.

Indirect Reasoning Sometimes it is appropriate to attack a problem indi-
rectly. In using proof by contradiction to prove that P implies Q we assume that P
is true and Q is false and try to see why this cannot happen. Somehow we have
to use this information and arrive at a contradiction to what we absolutely know
is true.

Mathematical Induction In proving statements that involve a positive inte-
ger n, it is frequently helpful to use the following principle.

Principle of Mathematlcal Induction Let S, be a statement about the
positive integer n Suppose that

l. Sr is true.

2. So*1 is true whenever Sr is true.

Then ,Sn is true for all positive integers /?.

This is reasonable because, since Sr is true, it follows from condition 2 (with
k: l) that 52 is true. Then, using condition 2 with k : 2, we see that S: is true.
Again using condition 2, this time with k : 3, we have that S+ is true. This proce-
dure can be followed indefinitelv.

t:ll3 | Carry Out the Plan

In Step 2 aplan was devised. In carrying out that plan we have to check each stage
of the plan and write the details that prove that each stage is correct,



Understand the problem

r Draw a diagram

t-]
| -l- | | nnlr Raele

Having completed our solution, it is wise to look back over it, partly to see if we
have made errors in the solution and partly to see if we can think of an easier way
to solve the problem. Another reason for looking back is that it will familiarize us
with the method of solution and this may be useful for solving a future problem.
Descartes said, "Every problem that I solved became a rule which served after-
wards to solve other problems."

These principles of problem solving are illustrated in the following examples.
Before you look at the solutions, try to solve these problems yourself, referring to
these Principles of Problem Solving if you get stuck. You may find it useful to refer
to this section from time to time as you solve the exercises in the remaining chap-
ters of this book.

Exanrple 1 Express the hypotenuse /z of a right triangle with area 25 m2 as a
function of its perimeter P.

Solution Let us first sort out the information by identifying the unknown
quantity and the data:

Unknowni hypotenuse ft

Given qaantities: perimeter P, arca 25 m2

It helps to draw a diagram and we do so in Figure L

u

I

Fisure I a

Connect the given with the unknown In order to connect the given quantities to the unknown, we introduce two
Introduce something extra extra variables a and b, which are the lengths of the other two sides of the tri-

angle. This enables us to express the given condition, which is that the triangle
is right-angled, by the Pythagorean Theorem:

h2:a2+b'

The other connections among the variables come by writing expressions for the
area and perimeter:

P- a + b + h25 : Inb

Since P is given, notice that
a, b, and h:

tr

a
E

we now have three equations in the three unknowns

h2:a7 + bz

2s - ioh

P-a + b + h



I Relate to the familiar

Although we have the correct number of equations, they are not easy to solve in
a straightforward fashion. But if we use the problem-solving strategy of trying to
recognize something familiar, then we can solve these equations by an easier
method. Look at the right sides of Equations 1,2, and 3. Do these expressions
remind you of anything familiar? Notice that they contain the ingredients of a

familiar formula:

+ b)'- az + Zab + bz

Using this idea, we express

have

+ b)? in two ways. From Equations 1 and 2 we

(a + b)':(ot + b') + Zab: h2 + 4Q5)

(a

(a

From Equation

Thus

3 we have

(a + b)':

h7+100-

LPh -

(P h)t : Pz zPh + hz

P2 zPh + h?

P2 100

P2 100

2P

for h as a function of P.

h-

This is the required expression

As the next example illustrates, it is
principle of taking cases when dealing

Exarnple 2 Solve the inequality

Solution Recall the definition of

l"l

It follows that

lx 3l-

Similarly

often necessary to use the problem-solving
with absolute values.

+ lx + 21

value:

ifx
ifx

3 ifx
3) ifx

3 ifx
+ 3 if x

2 if x + 2

+ 2) if x + 2

?. ifx
2 ifx

lx 3l

absolute

: [.
[-x

3

3

b+
L-('
[,+
[-x

0

0
lx + 2l:



r Take cases These expressions show that we must consider three cases:

x

CASE | . If x

lx 3l + lx + 21

-x+3 x 2

-2x 1 10

x ) -5
cAsE ff . If -2

x+3+x+2
5

CASE lll . If x

x 3 + x +2

2x112

x( 6

Combining cases I, II, and III, we see that the inequality is satisfied when

-5

In the following example we first guess the answer by looking at special cases

and recognizing a pattern. Then we prove it by mathematical induction.
In using the Principle of Mathematical Induction, we follow three steps.

Step I. Prove that ,S" is true when n : l.

Step 2. Assume that S, is true when n : ,t and deduce that S, is true when

n:k*1.
Step 3. Conclude that S, is true for all nby the Principle of Mathematical

Induction.

Example 3 lfle(x) : */(* + 1) and/,*r : foo f,for n : 0,1,2,..., find a
formula for f,(x).

Analogy:Tryasimilar,simplerproblem Solution Westartbyfindingformulasfor/,("t)forthespecialcasesn:7,2,
and 3.

/,(x) : (,fo " /') (") : fr(fo(t)) : 
^(*)

x + I x + I
x +l

x + I
2x + I
x + I

2x + 1



fr(x): (/'" /')(") : fo(/,(x)) : fn(t-)

2x + I 2x + 1

2x + 1

fo(f,(r)) : fo("-)r Look for a pattern

Prrlblt nrs

x

2x+r+1

ft(x) - (,fo " fr) (*) :

3x + I 3x+l

3x + I 3x + I

x
(k+t)x+t

4x + I 4x + I

3x + I

x
(ft+l)x+l x

x +l
3x+1

We notice a pattern: The coefficient of r in the denominator offi(x) is
n + I in the three cases we have computed. So we make the guess that, in
general,

fr(x):#
/\

Then J'o*,k)- (fn.,f.) (r)- fu(fokD_ fl 
t 

, . )"\(t + l)x + | )

EI

To prove this, we use the Principle of Mathematical Induction. We have already
verified that (4) is true for n: l. Assume that it is true for n: k: that is,

.r

(ft+Dr+l +l (k + 2)x + 1 (/, + 2)x + I

(t + l)x + 1

This expression shows that (4) is true for n - k + 1. Therefore, by mathe-
matical induction, it is true for all positive integers r?.

l. Oneof thelegsof arighttrianglehaslength4cm.Expressthelengthof thealti-
tude perpendicular to the hypotenuse as a function of the length of the hypotenuse.

2. The altitude perpendicular to the hypotenuse of a right triangle is l2 cm. Express
the length of the hypotenuse as a function of the perimeter.

Solve theequation l2x ll lx + 5l : 3.

Solve the inequality l; l l lx 3l > 5.

3.

4.
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5. Sketch the graph of the function,f(x) : lrt - +lrl + :1.

6. Drawthegraphof theequation l.rl + lyl: t + Iryl.
7. Sketch the region in the plane consisting of all points (x,y) such that

l.rl + lyl< t

8. Sketch the region in the plane consisting of all points (;,y) such that

l'-yl+l'l-lyl<z
9. Evaluate (logz 3) (logr4) (log+5)... (log31 32).

f 0. (a) Show that the function/(x) : ln(.r + Jx'? + l) is an odd function.
(b) Find the inverse function ofl

ll. Solve the inequality ln(.r2 - 2x - 2) < O.

12. Use indirect reasoning to prove that log2 5 is an irrational number.

13. Show that

arcsin.r * arcsiny : u...it(t.,,/1 - I + y^fr -7)
if the left side of this equation lies between -n/2 and n/2.

f4. Is ittruethat/ " (g + h) : f . g + f " h?

15. Prove that if n is a positive integer, then 7n - I is divisible by 6.

f6. Provethat I * 3 + 5 + ... + (2n - l) : n'.

f 7. If /s(.r) : x2 andf^a(x) : fo(f^(x)) for n : 0,1,2, ..., find a formula for f,(x).
I

f8. (a) If/o(x): ^ andf*r: fo" f,forn:0,1,2,..., findanexpressionforz-x
J"(x) and use mathematical induction to prove it.

(b) Graph /0, i , .fz, fs on the same screen and describe the effects of repeated
composition.
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bungee jumper should be glad

that he's still ahove the ground

when the cord is stretched to its
limit. The tree is obviously the

Iimiting position fo, the car. The

balloon reaches its limit as it
bursts If there were no frictional
forces, the pendulum would

continue to oscillate and have no

limiting behavior. But if left to

run down, it comes to rest in its
vertical limiting position.

ss@-@'€

Limits and Derivatives
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W In A Preview of Calculus (p.g. 2) we saw how the idea of

a limit underlies the various branches of calculus. Thus, it is

appropriate to begin our study of calculus by investigating

limits and their properties. The special type of limit that is

used to find tangents and velocities gives rise to the central

idea in differential calculus, the derivative. We see how

derivatives can be interpreted as rates of change in various

situations and learn how the derivative of a function gives

information about the original function.



CHAPTER 2 TINIIS AI{D DERIVATIVEI

The Tangent and Velocity Problems .aaaaaoaaaaaaaaaaaala

In this section we see how limits arise when we attempt to find the tangent to a
curve or the velocity of an object.

The Tangent Problem

The word tangent is derived from the Latin wordtangens, which means "touch-
ing." Thus, a tangent to a curve is a line that touches the curve. How can this idea

be made precise?
For a circle we could simply follow Euclid and say that a tangent is a line that

intersects the circle once and only once as in Figure l(a). For more complicated
curves this definition is inadequate. Figure l(b) shows two lines I and t passing

through a point P on a curve C. The line I intersects C only once, but it certainly
does not look like what we think of as a tangent. The line /, on the other hand,
looks like a tangent but it intersects C twice.

FIGURE I

To be specific, let's look at the problem of trying to find a tangent line / to the
parabola ! : x2 in the following example.

EXAMPLE I r Find an equation of the tangent line to the parabola ! : x' at the
point P(I,1).

S0LUT|ON We will be able to find the equation of the tangent line t as soon as

we know its slope m.The difficulty is that we know only one point, P, on t,
whereas we need two points to compute the slope. But observe that we can

compute an approximation to ln by choosing a nearby point Q(x, 12) on the

parabola (as in Figure 2) and computing the slope mpe of the secant line PQ.

We choose x I I so that Q # P.Then

x7 I
MPQ xl

For instance, for the point Q(l.5, 2.25) we have

2.25 1

(b)(a)

1 ?<t.2J

-:1

0.5

Qk, r')

P(1, 1)

FIGURE 2

MPQ :
1.5 l
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The tables in the margin show the values of mpp for several values of x close
to l. The closer Q is to P, the closer x is to I and, it appears from the tables, the
closer mpe is to 2. This suggests that the slope of the tangent line r should be
m:2.

We say that the slope of the tangent line is the limit of the slopes of the
secant lines, and we express this symbolically by writing

and

lim mpe m
Q-P

x7 1

lim 

-: 

2
x--->l X 1

Assuming that the slope of the tangent line is indeed 2, we use the point-slope
form of the equation of a line (see Appendix B) to write the equation of the
tangent line through (1, l) as

y-l:2(x-l) or y:2x-l
Figure 3 illustrates the limiting process that occurs in this example. As Q

approaches P along the parabola, the corresponding secant lines rotate about P
and approach the tangent line r.

Q approaches P from the right

Q approaches P from the left

Many functions that occur in science are
they are defined by experimental data. The
the slope of the tangent line to the graph of

ffi

not described by an explicit equation;
next example shows how to estimate
such a function.

\ lll f'Lt

0

05
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0.9 9e
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99

999

FIGURE 3
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0.00
0.02
0.04
{).06

0.01{

t). I t)

t00.t)0
t{ l.t{7
67.03

5r+.88

4,+. e 3

36.76

CHAPTER 2 LII'IITI AI{D DERIVATIVTI

FIGURE 4

EXAMPLE 2 r The flash unit on a camera operates by storing charge on a
capacitor and releasing it suddenly when the flash is set off. The data at the left
describe the charge Q remaining on the capacitor (measured in microcoulombs)

at time / (measured in seconds). Use the data to draw the graph of this function
and estimate the slope of the tangent line at the point where t : 0.04. fNote:
The slope of the tangent line represents the electric current flowing from the

capacitor to the flash bulb (measured in microamperes).1

$Ot t TIOH In Figure 4 we plot the given data and use them to sketch a curve that

approximates the graph of the function.

Q(0.00, 100.00) on the graph, we findGiven the points

that the slope of the
P(0.04,67.03) and
secant line PQ is

100.00 67.43 : -824.25MPQ 0.00 0.04

The table at the left shows the results of similar calculations for the slopes of
other secant lines. From this table we would expect the slope of the tangent line

att :0.04 to lie somewhere between -742and -607.5.In fact, the average of
the slopes of the two closest secant lines is

iet+z - 607.s) : -674.7s

So, by this method, we estimate the slope of the tangent line to be -675.
Another method is to draw an approximation to the tangent line at P and

measure the sides of the triangle ABC, as in Figure 4. This gives an estimate of
the slope of the tangent line as

_IABI :
lrc I

The Velocity Problem

If you watch the speedometer of a car as you travel in city traffic, you see that

the needle does not stay still for very long; that is, the velocity of the car is not

constant. We assume from watching the speedometer that the car has a definite
velocity at each moment, but how is the "instantaneous" velocity defined? Let's

investigate the example of a falling ball.

80.4 s3.6
- -6100.06 0.02 ffi

o
L

lltr I'S

f

I

I

t

I\

(x). l0{).0(})

{)2" f1 l.t{7)
06. 5;+.1{8 }

09.4.tr.-Lll)

l (). 36.76 )

- E:4.2 5
: 7/t2.tx)
:607.50

-552"50
- 50.1.50



The CN Tower in Toronto is

currently the highest freesranding
building in the world.
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EXAMPLE 3 r Suppose that a ball is dropped from the upper observation deck of
the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball
after 5 seconds.

SoturloN In trying to solve this problem we use the fact, discovered by Galileo
almost four centuries ago, that the distance fallen by any freely falling body is
proportional to the square of the time it has been falling. (This neglects air
resistance.) If the distance fallen after t seconds is denoted by s(r) and measured
in meters, then Galileo's law is expressed by the equation

s(t) : 4.9,-

The difficulty in finding the velocity after 5 s is that we are dealing with a
single instant of time (t : 5) so no time interval is involved. However. we can
approximate the desired quantity by computing the average velocity over the
brief time interval of a tenth of a second from r: 5 to r:5.1:

distance traveled
average velocity - time elapsed

s(s.l) - s(s)

0.1

4.e(s. I )' 4.e(s)2
- 49.49 m/s

The following table shows the results of similar calculations of the average
velocity over successively smaller time periods.

0.1

I ittrt litlr.'t'\lrl \,,t'l'.ilt' \ r'ltr, llt i lil

) 1 (r

5 t"5.1
5 r,)05
5 | -5()l
5 t: i0Ol

5itt

-i() lt t

-1t) I l,-r

l-() |+()

l(J.l )( )j tt

It appears that as we shorten the time period, the average velocity is becoming
closer to 49 m/s. The instantaneous velocity when / : 5 is defined to be the
limiting value of these average velocities over shorter and shorter time periods
that start at t : 5. Thus, the (instantaneous) velocity after 5 s is

u:49m/s I

You may have the feeling that the calculations used in solving this problem are
very similar to those used earlier in this section to find tangents. In fact, there is a
close connection between the tangent problem and the problem of finding veloc-
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ities. If we draw the graph of the distance function of the ball (as in Figure 5) and

we consider the points P(a,4.9a2) and Q@ + h,4.9(a + h)') on the graph, then

the slope of the secant line PQ is

4.9(a + h)' 4.9a2
MPQ (a + h) a

which is the same as the average velocity over the

Therefore, the velocity at time t - a (the limit of these

proaches 0) must be equal to the slope of the tangent

slopes of the secant lines).

time interval la, a + hl.
average velocities as h ap-

line at P (the limit of the

FIGURE 5 (a)

Examples I and 3

must be able to find
next four sections, w€

in Section 2.6.

(b)

show that in order to solve tangent and velocity problems we

limits. After studying methods for computing limits in the

will return to the problems of finding tangents and velocities

EXgfGiSeS o.. r.... r. c.

l. The experimental data in the table define -\'as a func-
tion of x.

(a) lf P is the point (3, 1.3),,find the slopes of the

secant lines PQ when Q is the point on the graph

with .{ : 0, 1,2,4, and 5.

(b) Estimate the slope of the tangent line at P by

averaging the slopes of two secant lines.
(c) Use a graph of the function to estimate the slope of

the tangent line at P.

A cardiac monitor is used to measure the heart rate of
a patient after surgery. It compiles the number of heart-

beats after f minutes. When the data in the table are

graphed, the slope of the tangent line represents the

heart rate in beats per minute.

The mon itor estimates th is value by calculating the

slope of a secant line. Use the data to estimate the

patient's heart rate after 42 minutes using the secant

I ine bet ween

(a) t-36 and t:42
(b) t- 38 and t:42
(c) t-40 and t:42

2.

s - 4.9t2

I slope of secant line

I : average velocitY
slope of tangent

- instantaneous velocity

I 0 I l I+ 5

\ ( l0 l.l I ..1 l.r 3.5 / (niln) 36 3r{ -l( ) .12 -l-l

Hcitrtbe itts 2530 166 l Iri06 le-lt{ lOlt0
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(d) t:42 and t:44
What are your conclusions?

The point P(4,2) lies on the curve .), : .n,'f.

(a) If Q is the point (.r, .,'-, ), use your cillculator tcl fincl
tlre slope of the se cant line PQ (correct to six cleci-
mal places) for the following values of ,r:

SECTION 2.2 Il.|I LIt4II OF A FUl.|CIIOl.l rol

(a) Find the average velocity over the
intervals:
(i) n, 2l (ii) u, 1 .51

glven trme

(iii) Ll,l.ll

4.

(v) 4.001 (vi) 3

(viii) 3.9

(x) 3.999
(b) using the results of part (a),, gLless the valr_re of the

slope of the tangent line to the curve at P(4,2).
(c) Using the slope from part (b). find an equation of

the tangent line to the curve at P( 1,2).

The point P(0 .5,2) lies on the curve \' : Ilr.
(a) If O is the point ("r" l/x). Lrse your calculator to find

the slope of the secant line PQ (correct to six deci-
mal places) for the following values of r:

(iv) il.1.011 (v) [l,1.0011
(b) Irind the instantaneolls velocity after 1 s.

7. The displacement (in f-eet) of a particle rnoving in a

straight line is given by ,t : t'/6, where / is measured in
se c onds.
(a) Find the ar,'erage velocit)/ over the f ollowing time

periods:
(i) Ll, 31 (ii) I , 2l

(iii) [1,1.5J (iv) [l"l.ll
(b) Fincl the instantaneous velocitl' when / - 1.

(c) Drnw the grapl'r of .r ils a function of / ancl draw the
secant lines whose slopes are the average l,elocities
f ouncl in part (a) .

(d) Dralv the tangent line w,hose slope is the instan-
taneous I'elocity l'rom part (b).

8. The position of a car is given b),thc values in the table.

I (sccortrls 
) 0 I

1 -}

-') -t i

.r (fcc-t 
) 0 to 1'1

-') ' 70 lle l7E

Find the al'erage velocity for the tirne periocl begin-
ning when I ._ 2 ar-rcl lasting
(i)3s (ii)2s (iii)ls
lJse the graph of s as a function of / to estirnate the
instantaneous velocity when / : 2.

9. Tlre point P(1,0) lies on the curve J' -_ sin(l0rrl"r).
(a) If Q is the point (-r, sin(l\rrl.r)). find the slope of the

secant line PQ (cclrrect to four decimal places) fclr
J -- 2, 1.5, 1.4, 1.3, 1.2. 1.1, 0.5, 0.6, 0.J,0.[], and
0.9. Do the slopes appear to be approaching a limit'l

(b) Use a graph of the curve to explain why the slopes
of the secant lines in part (a) are not c-lose to the
slope of the tangent line at P.

(c) By ctroosing appropriate secant lines, estimate the
slope of the tangent line at P.

(i) s
(iii) 4.1

(vii) 3.5
(ix) 3.99

(i) 2

(iii) 0.e
(v) 0.7

(ii) 4.s
(iv) 4.01

(ii) r

(iv) 0.ti
(vi) 0.6

(r'ii) 0.55 (viii) 0.51
(ix) 0.45 (x) 0.49

(b) Using the results of part (a), _qLless the r,,alue of the
slope of the tangent line to the curve at P(0.5,2).

(c) using the slope from part (b), find an equation of
the tangent line to the curl,e at P(0.5, 2).

(d) Sketch the curve, two of the secant lines. and the
tangent I ine .

5. If tr ball is thrown into the air w,ith a velocity of
40 ft/s, its height in feet after / seconds is given by
,r' - ,40r 16rr.
(a) Find the average velocity for the time period begin-

ning when / : 2 and lasting
(i) 0.5 s (ii) 0.1 s

(iii) 0.05 s (iv) 0.01 s

(b) Find the instantetneous velocity when t : 2.

6. It- an arro\&/ is shot upward on the moon with a velocity
of 5tt m/s, its height in meters after / seconcls is given
by /, : 58r 0.8312.

(a)

(b)

NJ
II

The Limit of a Function

Having seen in the preceding section how limits arise when we want to find the
tangent to a curve or the velocity of an object, we now turn our attention to limits
in general and methods for computing them.
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/(x)
approaches

4.

)' :x2 - r*2

As x approaches 2,

FIGURE I

Let's investigate the behavior of
for values of x near 2. The following
to 2, but not equal to 2.

the function / defined by /(x) - x' x + 2

table gives values of /(x) for values of x close

\ / ( ,l ) \ i {t t

()

5

s

()

r)5

rJ()

r)().i

()()()

()(!()()()(l

l5( tt tl tt t

++()( }{ )( )

7 | 0()00

N:15( )( )

()-il 
1 ()( )

() 
N 5il15

()() ir00 I

-)
I o

)
I

05

{)l
()()5

o0 l

I

)

Fi.oo( l( l( )( )

5 7 5O00( )

-1. r, lt )( )( )( )

LiIl( )( ){ )

-1. I :,'5t )( t

1.o 10 1 00

1 015015

I ()ol(i( )l

From the table and the graph of f (a parabola) shown in Figure I we see that

when x is close to 2 (on either side of 2), f(x) is close to 4. In fact, it appears that

we can make the values of f(x) as close as we like to 4 by taking x sufficiently
close to 2. We express this by saying "the limit of the function/(-t) : x2 - x I 2

as -r approaches 2 is equal to 4." The notation for this is

lS(t' x + 2)-4

ln general, we use the following notation.

Il Definition We write

liT rQ): L

and say "the limit of f(x), &s x approaches 4, equals L"

if we can make the values of /(x) arbitrarily close to L (as close to L as we

like) by taking x to be sufficiently close to a but not equal to a.

Roughly speaking, this says that the values of f(x) become closer and closer to

the number L as .r approaches the number c (from either side of a) but x * a.

An alternative notation for

lim f(*) : L

/(x) --+ L x ---> cl

which is usually read "f(x) approaches L as x approaches a."
Notice the phrase "but .r * a" in the definition of limit. This means that in

finding the limit of f(x) as .r approaches 4, we never consider x : a' ln fact, f(x)
need not even be defined when x : a. The only thing that matters is how / is de-

finednear a.

is



Figure 2 shows the graphs of three
defined and in part (b), f(a) * L. But
a, lim*--" f (x) - L.

sEcTloil 2.7 T||E ilt'ilT 0r A tUltcTt0il ro3

functions. Note that in part (c) , f(a) is not
in each case, regardless of what happens at

(a)

FIGURE 2

lim /(x) - L in all three cases

(b)

EXAMPLE I r Guessthe
xl

value of lim "
.r---+l xt I

(c)

SOtUItOt{ Notice that the function/(r) : (" - l)/(x'- l) is nor defined when
x -- l, but that doesn't matter because the definition of lim,-o /(-r) says that we
consider values ofr that are close to a but not equal to a. The tables at the left
give values of /(x) (correct to six decimal places) for values of "r that approach
I (but are not equal to l). On the basis of the values in the table, we make the
guess that

xllim 0.5
x-->l x" 1 re

Example I is illustrated by the graph of/in Figure 3: Now let's change/slightly
by giving it the value 2 when x : I and calling the resulting function g:

s(x) -
if x + I

ifx-l

This new function g still has the same limit as x approaches I (see Figure 4).

| *-,

t;2-r

\ I l(r)

0.5

0.9

0.99

0.99e
( ).9999

).666667

).5 263 I 6

).5015l3
).5(X)15 0

).50(x)15

r)l I(t)

t5
t.l
l.0l
I .(X) I

I .(X)t) I

(

(

(

(

(

+IXXX X )

-176 l e0

-1975 rl
-199750

-1999 7 5

v - s(x)

FIGURE 3 FIGURE 4
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(a) [-5, 5] bv [-0.1,0.3]

FIGURE 5

EXAMPLE2 T Findlim
t --0

,frT+ 9 3

T
S*IUTB*N The table lists values of the function for several values of t near 0.

I
,, l, - 9 l\.

,
f-

I

-i- I.0
r 0.5
1- 0. I

-1 ( ).05
-1- 0.0 1

0

0

0

0

0

6ll8
6553
(r66l

6(r6(r

6667

As r approaches 0, the values of the function seem to approach 0.1666666.
and so we guess that

J*+e i I
rrlrl-:-
;;tz6 ffi

In Example 2 what would have happened if we had taken even smaller values of
t? The table in the margin shows the results from one calculator; you can see that

something strange seems to be happening.
If you try these calculations on your own calculator you might get different val-

ues, but eventually you will get the value 0 if you make / sufficiently small. Does

this mean that the answer is really 0 instead of I t No, the value of the limit is |, as

@ we will show in the next section. The problem is that the calculator gave falsc values

because Jt2 + 9 is very close to 3 when t is small. (In fact, when t is sufficiently
small, a calculator's value for Jt2 + 9 is 3.000...to as many digits as the calcu-
lator is capable of carrying.)

Something similar happens when we try to graph the function

jFr+9_3
Jlt): ,,

of Example 2 on a graphing calculator or computer. Parts (a) and (b) of Figure 5

show quite accurate graphs of /and when we use the trace mode (if available),
we can estimate easily that the limit is about l. But if we zoom in too far, as in
parts (c) and (d), then we get inaccurate graphs, again because of problems with
subtraction.

I
I

\ rr + 9 3
t

t

1(

-+- (

.f(

+(

(XX)5

(XX) I

(XXX)5

(XXX) I

). I6t{00
).l(xxx)
).(xxl(x)

).( XXX X)

(b) [-o.l, o.l] bv [-0.1,0.3] (") [-lo-u, lo-u] by [-0.1, 0.3] (d) [-ro-7, lo-'] by [-0.1, 0.3]



I|t .\

\

()

a

+
f

I

o5

ol
Uo-i

()ol

).H-l I+709t{

) L)588510,S

).e7.r 5-15 86

).9S506736

).()().1 1J(r(r5

l.()()fi t"t+ I 7
).9r)95fi 33r1

)9r)rJgl{-13"1

).()r)rJ()()59-3

).()L)L)()()()ti l

sEcTlol{ 2.2 I|.|t ilillI 0r A FU}lCIt0}l

is undefined at 0.

: stn}rr _ 0

FIGURE 6

fG) - srn4tt: o

/(0.01) : sin 1002r - 0

ro5

EXAMPLE 3 r Find li- ttn".
x+0 X

S0LUTlOt'l Again the function/(-x) : (sinx)/x is not defined when x : 0. Using
a calculator (and remembering that, if x € R, sinx means the sine of the angle
whose radian measure is -r), we construct the following table of values correct
to eight decimal places. From the table and the graph in Figure 6 we guess that

sin xlim -lx-+0 X

This guess is in fact correct, as will be proved in Section 3.4 using a geometric
argument.

.#

Computer Algebra Systems

Computer algebra systems have com-
mands that compute limits. Because of
the types of pitfalls demonstrated in
Examples 2, 4, and 5, they do not find
limits by numerical experimentation.
Instead, they use more sophisticated
techniques such as computing infinite
series. lf you have access ro a CAS,
use the limit command to compute the
limits in the examples of this section
and to check your answers in the exer-
cises of this chapter.

@

EXAMPI-E 4 r Find lim sinA.
x--0 X

S#$-JT$#r Once again the function f (*) : sin(rr/x)
the function for some small values of x, we get

f(I)- sinzr - 0

f(+) - sin 3zr : 0

/(0.1) - sin 10zr - 0

Evaluating

f(+)

Similarly,/(0.001) : /(0.0001) : 0. On the basis of this information we might
be tempted to guess that

1'* 
sina - 0

but this time our guess is wrong. Note that although/(l/")- sinnrr: 0 for
any integer n., rt is also true that f (x) - I for infinitely many values of x that
approach 0. [In fact, sin(n/x) - 1 when

7T 7r

---+Znnx2
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FIGURE 7

and, solving for x, we get x : 2l (an + 1).1 The graph of/is
The broken lines indicate that the values of sin( nlx) oscillate
infinitely often as x approaches 0. (Use a graphing device to

in toward the origin several times. What do you observe?)

given in Figure 7.

between l and -l
graph / and zoom

Since the values of/(x) do not approach a fixed number as x approaches 0,

lim sina does not existrroxl

E*AMPLE s r Find H('' . ffi#)
SOLUTION As before, we construct a table of values. From the table in the

margin it appears that
\

cos 5x \+ t-0
10,000 /

lues of x, the second table suggests thatBut if we persevere with sm

[This function is named after
( 1850 -1925) and can be used

on at time t - 0.1 Its graph is

ls(''
aller va

lT(.'+ffi) :ooooroo

Later we will see that lim,--*s cos 5x : 1 and then it
0.0001.

I:-
10.000

follows that the limit is

Oliver Heaviside
current that is switched

ffi

@ Examples 4 and 5 illustrate some of the pitlalls in guessing the value of a limit.
It is easy to guess the wrong value if we use inappropriate values of x, but it is dif-
ficult to know when to stop calculating values. And, as the discussion after Ex-
ample 2 shows, sometimes calculators and computers give the wrong values. Later,
however, we will develop foolproof methods for calculating limits.

EXAMPLE 6 r The Heaviside function I/ is defined by

[o irtH(t): 
1 r if t > oLr

the electrical engineer
to describe an electric
shown in Figure 8.

y : sin( rrlx)

\
. cOs ).\\'

10.(xx)

I

05
0.I
0.0.5

0.01

L(XXX)1.\

0 [-lr)]0
0.(x) I 0ti 8

0.(xx)lIl
0.()(x)l0l

\
, cos 5.t\+

10.(x)0

0.(x)5

0.(x) I

0.(xx) l(xx)e
0.(xx)l(x)fx)

FIGURE 8



As/approaches0from
the right, H(t) approaches
/ approaches 0. Therefore,

sEcTloN 7.2 IHt il1'{tT 0r A FUt{CTt0t'l ro7

the left , H(t) approaches 0. As / approaches 0 from
1. There is no single number that H(t) approaches as
lim, ,-o H(t) does not exist. r

We noticed in Example 6 that H(t) approaches 0 as / approaches 0 from the left and
11(t) approaches I as t approaches 0 from the right. We indicate this situation sym-
bolically by writing

,-,lT- fv): L

By comparing Definition I
the following is true.

and lim H(t) - I
/ --0-

(b) lim f(;r) - L
+.r{{]

with the definitions of one-sided limits. we see that

lim H(t) - 0
t -*0*

The symbol "t ---> 0-" indicates that we consider only values of / that are less than
0. Likewise, "t ---> 0+" indicates that we consider only values of t that are sreater
than 0.

Notice that Definition 2 differs from Definition I only in that we require x to be
less than a. Similarly, if we require that x be greater than a, we get "the right-
hand limit of/(x) as.r approaches a is equal ro L" and we wrire

Ii^. f(r) : r

Thus, the symbol "x > e*u means that we consider only r ) c. These definitions
are illustrated in Fisure 9.

FIGURE 9

One-Sided Limits

B Definition We write

,l1y fG): L

and say the left-hand limit of/(r) as.r approaches a [or thelimit of
f (x) as .r approaches a from the leftl is equal to L if we can make rhe
values of/(x) as close to L as we like by taking x to be sufficiently close
to a and x less than a.

B lg fk): L lim f(x): L
x ---+d

and lim f(x)
-fx--+d'

if and only if T
LJ
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EXAMPLE 7 I The
the values (if they

(a) llf sG)

graph of a function g is shown in Figure 10. Use it to state

exist) of the following:

(b) lg" s(x)

(d) l:+ g(x)

(f) liq s(x)

FIGURE IO

r--

-/ . (c) lim g(x)
{ t \-/ 

x-Z

FIGURE I I

(e) lim s(x)
ir -t5 

*

SOLUTION From the graph we see that the values of g("r) approach 3 as r
approaches 2ftom the left, but they approach I as x approaches 2 from the right.
Therefore

tu) 
,1T_ sG) :3 and (b) lim s@) : I

(c) Since the left and right limits are different, we conclude from (3) that

lim"-z g(x) does not exist.

The graph also shows that

(d) 
l11r_ 

sG) :2 and (e) ii4 sU) : 2

(f) This time the left and right limits are the same and so, by (3), we have

riry s@) : z

Despite this fact, notice that g(5) + 2. I

EXAMPLE s r Find 
|tg ; if it exists.

SOIUTION As x becomes close to 0, -r2 also becomes close to O, and lfx2
becomes very large. (See the table at the left.) In fact, it appears from the graph

of the functio"f(*) :1/x2 shown in Figure 1l that the values of/(x) can be

made arbitrarily large by taking x close enough to 0. Thus, the values of/(.r) do

not approach a number, 5o lim"-6 (1/.r'?) does not exist.

r

- x2 - x + 2At the beginning of this section we considered the function f (*)
and, based on numerical and graphical evidence, we saw that

lim(x2 x + 2)-4

v - g(x)

\ li

I

{} .i
( ).1

(il
( ).0.1

()t)l
{r{)(}l

I

I+

t5
l(x)
+(x )

10.(xx)

l.()()().(xx)
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According to Definition l, this means that the values ofl(;) can be made as close
to 4 as we like, provided that we take x sufficiently close to 2. In the following
example we use graphical methods to determine just how close is sufficiently
close.

El exlupr-r g tfff(x): x'- x * 2,howcloseto2doesxhavetobetoensure
thatf(x) is within a distance 0.1 of the number 4?

soLUTloN If the distance from/(-r) to 4 is less than 0.1, then/(.r) lies between
3.9 and 4.1, so the requirement is that

3.9<x2-x+2<4.7

Thus, we need to determine the values of r such that the curve y : x2 - x I 2

lies between the horizontal lines y : 3.9 and y : 4.1. We graph the curve and
lines near the point (2,4) in Figure 12. With the cursor, we estimate that the
x-coordinate of the point of intersection of the line y : 3.9 and the curve

| : x2 - x * 2 is about 1.966. Similarly, the curve intersects the line y : 4.1

when x - 2.033. So, rounding to be safe, we conclude that

2'2 3.9 --x2-x*2<4.1 when l.g1 <x<2.03

Therefore,/(x) is within a distance 0.1 of 4 whenx is within a distance 0.03
ofZ. *

The idea behind Example 9 can be used to formulate the precise definition of a
limit that is discussed in Appendix D.

Exercises

3.7

FIGURE I2

l. Explain in your own words what is meant by the
equation

l'I /(") : 5

Is it possible for this statement to be true and yet

f(2) - 3? Explain.

2. Explain what it means to say that

lim f(x) - 3 and lim f(x) - 7
x*l- "r.+l+

In this situation is it possible that lim,*r /(") exists?
Explain.

For the function/whose graph is given, state the value
of the given quantity, if it exists. If it does not exist,
explain why.
(a) lim f(x)

x -+l

(c) lim f (x)
.I

-r+J'

(e) /(3)

(e) lim /(x)
^+x+- z'

(i) /(-2)

(f) lim f(*)
x --2

(h) lim /(x)
x --2

3.

(b) lim f (x)
x -+3-

(d) lim /(x)
x*3
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State the value of the limit, if it exists, from the given
graph. If it does not exist, explain why.
(a) lim /(x) (b) lim /(") (c) lim f(*)

-r-3 -t-l x--3
(d) lim /(x) (e) lim f(r) (f) lim /('r)

x -2- -t *2+ .r *2

f= 5. Use the graph of the function /(r) - ll\ + r ti'') to
state the value of each limit, if it exists. If it does not
exist, explain why.
(a) 

.11T, 
f(*) (b) llt /(") (c) hm /(x)

6. A patient receives a 150-mg injection of a drug every
4 hours. The graph shows the amount f(t) of the drug
in the bloodstream after / hours. (Later we will be able

to compute the dosage and time interval to ensure that
the concentration of a drus does not reach a harmful
level.) Find

,lf fU) and 
,1f_ fU)

and explain the significance of these one-sided limits.

7-8 r Sketch the graph of an example of a function / that
satisfies all of the given conditions.

9-12 I Evaluate the function at the given numbers (correct
to six decimal places). Use the results to guess the value of
the limit, or explain why it does not exist.

g' g(x): *,rI
x - 0.2,0.4,0.6, 0.8, 0.9, 0.99, 1.8, 1.6, 1.4, 1.2,,

l.l, l.0l;
.rllinr "

x--+l J-' I

'6 - 1

f0. Fft): \
6 - r

:E - I
I inr ,-
r,--+l J t I

I - cos.rll./(x): ,, ;

x - l, 0.5, 0.4, 0.3, 0.2,0.1, 0.05, 0.01;

I - cosxlim ,
^ 

v-

-r+U A

12. g(x) - 16 tn r;
x : I , 0.5, 0.1, 0.05, 0.01, 0.005, 0.001;

' f-,lim /x ln x
-l- --0+

n= f 3. (a) By graphing the function,f(x) - (tan 4x) /x and

zooming in toward the point where the graph
crosses the y-axis, estimate the value of
lim. .n /(x).

(b) Check your answer in part (a) by evaluating /(x) for
values of x that approach 0.

n= 14. (a) Estimate the value of

6'r - z',

I'T, "
by graphing the function ), : (6* - 2.)/x.State
your answer correct to two decimal places.

(b) Check your answer in part (a) by evaluating /(x) for
values of x that approach 0.

| 5. (a) Estimate the value of the limit

r)'i*

to five decimal places. Does this number look
fam i I iar?

(b) Illustrate part (a) by graphing the function

.y : (l * x)u..

The slope of the tangent line to the graph of the

exponential function .), : 2"' at the point (0, 1) is

lim"-*o (2' - l)/*. Estimate the slope to three decimal
places.

lim (l +
x-0

7. lim /(x) : 4, lim /(x) : 2,
-+ --

-tr +"1 ' .l +j

/(3) - 3, f(-2): I

8. lim f (*) - 1, lim /(x) - - l,
"r -0- .l -0+
Iim ./(x) - 1, f(2) - l, /(0)

,r 1/"'

lim f(x) : 2,
"t 

.--2

lim f(x) : 0,
-r -2-

is undefined

ngtl

16.



Evaluate the function/(r) : x' - (2. 11000) for
x:1,0.8,0.6,0.4, 0.2,0.1, and 0.05, and guess

the value of

lim ( *'- 2-. )
r *o \ 1000/

Evaluate/(x) for x - 0.04, 0.02, 0.01, 0.005, 0.003,
and 0.001. Guess again.

Evaluate ft(x) - (tan x - x)lx' for x - l, 0.5, 0.1,

0.05, 0.01, and 0.005.

Guess the value of ri- ElF.
.\''0 ,|-

Evaluate ft(x) for successively smaller values of x
until you finally reach 0 values for lr(x). Are you

still confident that your guess in part (b) is correct?
Explain why you eventually obtained 0 values. (ln
Section 4.5 a method for evaluating the limit will
be explained.)

Sum Law

Difference Law

Constant Multiple Law

sEcTloil 2.3 cALCULATTNG ilt'ltTS UStllG Tt|E ill'llT LAWS

(d) Graph the function h tn the viewing rectangle

[-1,1] by [0, l].Then zoom in toward the point
where the graph crosses the y-axis to estimate the

limit of ft(x) as r approaches 0. Continue to zoom
in until you observe distortions in the graph of ft.
Compare with the results of part (c).

Use a graph to determine how close to 0 we have to
take x to ensure that e* is within a distance 0.2 of the

number 1. What if we insist that e'be within 0.1 of 1?

(a) Use numerical and graphical evidence to guess the

value of the limit

llt

Eg'lt
17 . (a)

(b)

18. (a)

EE te.

EE zo.
(b)

(c) ,{t I
lim --r-=l J x 1

How close to I does x have to be to ensure that the

function in part (a) is within a distance 0.5 of its
limit?

These five laws can be stated verbally as follows:

l. The limit of a sum is the sum of the limits.

2. The limit of a difference is the difference of the limits.

3. The limit of a constant times a function is the constant times the limit of
the function.

(b)

Calculating Limits Using the Limit Laws

In Section 2.2 we used calculators and graphs to guess the values of limits, but we

saw that such methods don't always lead to the correct answer. In this section we

use the following properties of limits, called the Limit Laws, to calculate limits.

himit taws Suppose that c is a constant and the limits

lg fU) and 
1g sk)

exist. Then

f . 1'l [/(*) + s(x)] :19 /(x) + lim s(x)

z.lg t/(') s(x)l: id rk) id gk)

3. lg [./(")] : .111 fk)
4. ly [/(*)s(x)] : lg f(x) 1g s(x)

f(x) lil fG)
5. lim if lim .q(x) + 0;; s(r) lim s(x) -- r-:;'
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FIGURE I
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Product Law

Quotient Law

Power Law

$fituTil0ffi
(a) From the graphs of f and g we

,r11 f(x) : 1

Therefore, we have

lim f(x) : 1.4
x *+2

see that

and lim g(x) -'---+-2

4. The limit of a product is the product of the limits.

5. The limit of a quotient is the quotient of the limits (provided that the limit
of the denominator is not 0).

It is easy to believe that these properties are true. For instance, ifl(-r) is close to
L and g(x) is close to M,it is reasonable to conclude that/(x) + S@) is close to
L + M. This gives us an intuitive basis for believing that Law 1 is true. All of
these laws can be proved using the precise definition of a limit. In Appendix E we
give the proof of Law l.

EXAMPLE I r Use the Limit Laws and the graphs of f and
evaluate the following limits, if they exist.

(a) 
,lal, [/(x) + sg(")] (b) liT lf?)s(*)l (c) lim

x--2

and lim g(x) - 0
x-?

g rn Figure I to

f (x)

g(x)

-l

,t:Trlf(*) +5s(")l: lim f(*) + li-^[5g(x)] ( b,l Litu | )

( b1' ["aw ] )
: Jii fG) + s lim s(x)

-1+5(-l) :-4
(b) We see that lim,-r f@) : 2. But lim,-r g(x) doesn't exist because the left

and right limits are different:

hry_o(x) : -2 ,h1q o(x) : -l
So we can't use Law 4. The given limit doesn't exist.

(c) The graphs show that

Because the limit of the denominator is 0, we can't use Law 5. The given
limit doesn't exist. ffi

If we use the Product Law repeatedly with S(*) : f(x), we obtain the following
law.

G. lT [/(x)],, : [lg f@f where n is a positive integer

7. lim c _ c
x---+a

8. limx_ a
x ---+a

In applying these six limit laws we need to use two special limits:



Root Law
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These limits are obvious from an intuitive point of view (state them in words or
draw graphs of y : c and y : x).

If we now put/(x) : x in Law 6 and use Law 8, we get another useful special
limit.

9. ,lg "" - an where n is a positive integer

A similar limit holds for roots as follows.

10.
n/--

1T V" - {a where n is a positive integer

(If n is even, we assume that a

More generally, we have the following law.

I l. I'T <M -
ln n is even,
L

wj6 where n ls a

that lim f(x)

positive

ol
I

lnteger

EXAMPLE 2 I Evaluate the following limits and justify each step.

(a) l'* (zxz -3x + 4) (b) lim #
5*LUTlON

(a) lim (2*' 3x + 4) - lim (2*') lim (3x) + lim 4 (br' r-.*'s I ancl I )

.r*5 x-5 X'-*5

:Zhmxz 3limx+lim4 (brir
x-5 x--5 x-.5

(b)' .1, ll. unrl 7 )

:39
(b) We start by using Law 5, but its use is fully justified only at the final stage

when we see that the limits of the numerator and denominator exist and the
limit of the denominator is not 0.

x3 + Zxz I lim (x3 + Zxz 1)

lllrl._,:z 5 3x lim (5 3x)
x-'>-2

lim x3 + 2 lim x2 lim I
x -+-2 x'--->-2 x ----'-2

lim5 3 limx
x---+-2 x---+-?

?D3+z?Dz-r
s 3(-2)

I

( bt' Law' 5 )

(bl l,2. and 3)

(br' 9. l{. and 7 )

1l ffi
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Newton and Limits

lsaac Newton was born on Christmas
Day in 1642, the year of Galileo's death.
When he entered Cambridge Univer-
sity in 166l Newton didn't know much

mathematics, but he learned quickly by

reading Euclid and Descartes and by

attending the lectures of lsaac Barrow.
Cambridge was closed because of the
plague in 1665 and a666, and Newton
returned home to reflect on what he

had learned. Those two years were
amazingly productive for at that time
he made four of his major discoveries:
(l) his representation of functions as

sums of infinite series, including the
binomial theorem; (2) his work on

differential and integral calculus;

(3) his laws of motion and law of uni-
versal gravitation; and (a) his prism

experiments on the nature of light and

color. Because of a fear of controversy
and criticism, he was reluctant to
publish his discoveries and it wasn't
until a687, at the urging of the astron-
omer Halley, that Newton published
Principia Mothematico. In this work, the
greatest scientific treatise ever written,
Newton set forth his version of calculus

and used it to investigate mechanics,
fluid dynamics, and wave motion, and

to explain the motion of planets and

comets.
The beginnings of calculus are found

in the calculations of areas and volumes

by ancient Greek scholars such as

Eudoxus and Archimedes. Although
aspects of the idea of a limit are implicit
in their "method of exhaustion,"
Eudoxus and Archimedes never expli-
citly formulated the concept of a limit.
Likewise, mathematicians such as

Cavalieri, Fermat, and Barrow, the
immediate precursors of Newton in the
development of calculus, did not actually
use limits. lt was lsaac Newton who was

the first to talk explicitly about limits.
He explained that the main idea behind

limits is that quantities "approach

nearer than by any given difference."
Newton stated that the limit was the
basic concept in calculus, but it was left
to later mathematicians like Cauchy to
clarify his ideas about limits.

x?l
lim 

-- 

lim
r"'+l X I x--*t

I{OTE . If we let f(r) : 2x' - 3x + 4, then /(5) : 39. In other words, we
would have gotten the correct answer in Example 2(a) by substituting 5 for -r. Simi-
larly, direct substitution provides the correct answer in part (b). The functions in
Example 2 are a polynomial and a rational function, respectively, and similar use

of the Limit Laws proves that direct substitution always works for such functions
(see Exercises 35 and 36). We state this fact as follows.

If f is a polynomial or a rational function and a is in the domain of f, then

lim f(x) : f(a)

Functions with this direct substitution property are called continuous at a and
will be studied in Section 2.4. However. not all limits can be evaluated bv direct
substitution, as the following examples show.

x'-lEXAMPLE3rFindlgr_,

!OLUTIOi{ Letf(x): (r' - l)/(x - 1). We can't find the limit by substituting
x : I because/(l) is not defined. Nor can we apply the Quotient Law because

the limit of the denominator is 0. Instead, we need to do some preliminary
algebra. We factor the numerator as a difference of squares:

x'- | _ (x - t)("r + l)
x-l x-l

The numerator and denominator have a common factor of x - l. When we take
the limit as r approaches I, we have x I I and so.r - I I 0. Therefore, we can

cancel the common factor and compute the limit as follows:

xl

:lim(x+l)

:l+l:2

The limit in this example arose in Section 2.1 when we were trying to find the
tangent to the parabola y : 

"z 
at the point (1, l). t

EXAMPLE 4 r Find lim g(x) where
I

$SLuTB*ru Here g is defined at x - 1 and g(1) - n', but the value of a limit
as .r approaches I does not depend on the value of the function at 1. Since
g(x) : x + I for x + l, we have

lim g(x) - lim (x + l) - 2
x ---+l x +l

.\ l*+1 ifx+1
g\x) - 1e7\ 

ln if x- I

ffi
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"y

-J

2

1

y: /(x)

,y 
: g(;)

FIGURE 2

The graphs of function f (from
Example 3) and g from Example 4.

(:+ li= 9
EXAMPLE 5 I Evaluate 

l,t1

SffiL$Tg#ru If we define

Note that the values of the functions in Examples 3 and 4 are identical except

when x : I (see Figure 2) and so they have the same limit as.r approaches l.

then, 4s in Example 3,

f(0) is undefined. But
we cannot compute
if we simplify F(h)

(9 + 6h + h') 9

limr -o F(h) by letting ft : 0 since

algebraically, we find

6h + h2
F(h)-

(Recall that we consider only h * 0 when letting ft approach 0.) Thus

3+h\2-9
lim #: lim (6 + h):6
h+o h n-o l*

EXAMPIE6 r Find rr^&47 -' 
.

t+0 t-

SOLUTION We cannot apply the Quotient Law immediately, since the limit of
the denominator is 0. Here the preliminary algebra consists of rationalizing the

numerator:

,. JP+9 3
llm--llm
/ --o t' t -*0

JF+e 3

T
(t'+9) 9

tlT+e+3
,nr;E + 3

t2

- lim
/ ---'0

- lim
t -'+0

f(.,ft' + g +
I:

tlt'+ 9 + 3

f(\ft'?+g+3)3)
- lim

t+0

^ltrm(r' +9) +3 3+3
V r--o 

\

This calculation confirms the guess that we made in Example 2 in Section 2'2.

t
Some limits are best calculated by first finding the left- and right-hand limits.

The following theorem is a reminder of what we discovered in Section 2.2. lt
says that a two-sided limit exists if and only if both of the one-sided limits exist

and are equal.

When computing one-sided limits we use the fact that the Limit Laws also hold

for one-sided limits.

Il ttreorem lim f(x) - L
x -'-+cl

if and only if lim f(x): L:
x ---ta ^lg. 

fG)
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The result of Example 7 looks plausible

from Figure 3.

FIGURE 3

FIGURE 4

Other notations for ffxl are [x] and LxJ.

v

4

3

2

I

FIGURE 5

Greatest integer function

EXAMPLE 7 I Show that lim l" | - 0.
x-0

S0l"t"8T*#ru Recall that

Since lrl : x forx

lim l"l- lim x-0
-r ---+0'

For x

,tlT_ lr | 
: lim (-") - o

Therefore, by Theorem l,

lim lrl -0
x --r0

does not exist.

, , f* ifxlxl-1' ' l-x if x

',,ffi

EXAMPLE 8 T

50iljTtsffi

Prove that 1*
rxl

lim I

x*0+ X

x:lim--liml-l
x-0+ X -r-0+

l"l
x

.tlT_ + : llt +: rim (-r) : -r
Since the right- and left-hand limits are different, it follows from Theorem I
that lim, ,ol*l/, does not exist. The graph of the function/(") : I xl/x is
shown in Figure 4 and supports the limits that we found. *

EXAMPTE 9 I The greatest integer function is defined by flxn : the largest
integer that is less than or equal to ,r. (For instance, [4n : 4, [4.8] : a, [n\ -- 3,

IOn : 1, [- +n : - l.) Show that lim,-: [.r] does nor exisr.

SOLUTION The graph of the greatest integer function is shown in Figure 5. Since

flrn : 3 for 3 < x I 4, we have

lim ["n -- lim 3- 3
.{--J r*3'

Since ["n - 2 for Z

lim ["n- lim
,r_-3 r--3-

limits are not equal,Because these one-sided
Theorem l.

2-2

lim""-, flrn does not exist by

properties of limits.

5r

The next two theorems give two additional



E Theorem lf f (x) < g(r) when x is near a (except possibly at a) and the

limits of f and g both exist as x approaches a, then

lg fQ) = lT sG)

E ttre Squeeze Theorem If /(x) < g(x)
possibly at a) and

l'* f(*) 
: 

1g 
h(*): L

then liT g(x) - L

The Squeeze Theorem, sometimes called the Sandwich Theorem or the Pinch-
ing Theorem, is illustrated by Figure 6. It says that if g(x) is squeezed between/(x)
and h(x) rrear a, and ifland hhave the same limit L at a,then g is forced to have

the same limit L at a.

EXAMPLE l0 r Show that lim *'rinI : 0.
r+0 X

SOLUTION First note that we connot vse

lim xz sin 
I 

-x-0 X,

because lirn"*s sin(l/x) does not exist.
since

I
-l x

we have, as illustrated by Figure 7,

-x? x

SECTION 2.3 CALCULATIl{G LIl.IITS USI}IG Tl{E LIl.,III LAWS tt7

lim x2' lim sinl
.r-0 x---+0 X

(See Example 4 in Sectron 2.2.) However,

FIGURE 6

y-- xzsin:

FIGURE 7
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We know that

limx'_ 0 and lim_ x'-0
x --+0 x---+0

Taking/(x) : -x', S@) : x2 sin(l/x), and h(x) : x'in the Squeeze Theorem,
we obtain

^llim x'sin-: 0
x*0 X *

Exercises

l. Given that

lim /(x) : -3
"\ 

4Q

,,r: nk) : 0 
1'* 

h(*) - 8

f(x)(c) lim I f(x)s(x)] (d) lim +
x*o r+-t g(x)

(e) lim x',f(") (f) ti- .,/r + fl")
x-2 x -l

r Evaluate the limit and justify each step by indicating
appropriate Limit Law(s).

x-2
lim (5x2 - 2x * 3) 4. lim 1.r-4 x--_ t J' + 4x 3

lim (t +l)n(rt-1) 6. lim w
t--? -r*-l

lim fi6 -r'
-r -4 -

8. (a) What is wrong with the following equation?

x'+x 6 :x+3
,r2

(b) In view of part (a), explain why the equation

x' +,r 6lim--lim(x+3)
,r*2X2-rt)

is correct.

find the limits that exist.
explain why.
(a) ly t f@) + h(x))

(c) 1.i11 {hG)

, \ ,. fG)(e) llffi 

-
y +u h(x)

'\" fG)(g) lllx _
.Y -u g\x)

If the limit does not exist

(b) lim I f(x)]'
'r+u 

I(d) lim 
-'-o f(x)
ak\(f) lim*

.r -" J (x)

2f (x)(h) lim 

-

x r(.t h(x) f(x)

3-7
the

3.

5.

7.

2. The graphs of /and g are given. Use them to evaluate
each limit, if it exists. If the limit does not exist,
explain why.

9-18 r Evaluate the limit, if
xt x + 12

9. lim
r--3 X +3

(h 5)' 25il. lim _
h-o h

9t
13. lim 

-

',-:; 3 {
E= _,/'

15. lim v'
t-0 t

l- | z l
t7' 

l'-T L. - ' 
-;,-r 

J

it exists.
)x'-x 12

10. lim
.r --j x + 3

,tr'- l
I2. lim "

r.l Xt_ I

xt+ x z
14. lim ,.r*l x'-3x +2

| 6. lim
"r -2

18. lim
hu0

xo-16
x-2

(3 + h)-' 3-r

(a) lim I f(x) + g(x)]
.r *2

(b) lim I f(x) + g(x)]
-r -'l

y - f(x)

) - 9(r)
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tl 19. Use the Squeeze Theorem to show that

lim, *o xt cos 20rrx - 0. Illustrate by graphing the

functions/(x) - -x2, g(x): rtcos 20rx, and h(x) : xt
on the same screen.

EJZO. Use the Squeeze Theorem to show that

lim* *o 16' + rt sin(n/x) : 0. Illustrate by graphing

the functions f, g, and /z (in the notation of the Squeeze

Theorem) on the same screen.

21. If 1 < /(x) < xt + 2x + 2 for all x, find lim".*-',f(x).

22. If 3x</(x) <x3+ 2fsrO<xs2,evaluate
lim"-, ,f(x).

23. Prove that lim ra.o* ? - 0.
-r'-0 X

24. Prove that lim ,/i usin(zrl"r) - 0.
-I'-0+

25-28 t Find the limit. if it exists. If the limit does not

exist, explain why.

sEcTloN 2.3 tALClJLATII'lG Lll,llTS USlllc T}{t Lll'ilT LAWI I t9

32. Let/(x) - x - [xn.
(a) Sketch the graph of /
(b) If n is an integer, evaluate

(i) 
.l1T /(x) (ii) 

.11T- 
/(x)

(c) For what values of a does lim.. -" f(x) exist?

33. If/(x) : flxn + [-xl, show that lim''--z /(r) exists but is
not equal to f (2).

34. In the theorv of relativity, the Lorentz contraction
formula

L - Lo lfr - u'1"

expresses the length L af an object as a function of its
velocity u with respect to an observer, where Lo is the

length of the object at rest and c is the speed of light.
Find lim, -,- L and interpret the result. Why is a left-
hand limit necessary?

35. If p is a polynomial, show that lim,, -, p(x) : p(a).

36. If r is a rational function, use Exercise 35 to show that
lim"-., r(x) - r(a) for every number rz in the domain
of r.

37. Show by means of an example that lim.-*., [ /(x) + g(*)]
may exist even though neither lim,,-,, /(x) nor
lim" -,, g(x) exists.

38. Show by means of an example that lim,-, [/(x)g(x)]
may exist even though neither lim,-" .f(x) nor
lim, .,, g(x) exists.

39. Is there a number a such that

3x2 + ax + & + 3

lii x\x-z
exists? If so, find the value of a and the value of the

limit.

40. The figure shows a fixed circle Cr with equation
(x - |)t + .yt: l and a shrinking circle C2 with radius

r and center the origin. P is the point (0, r), Q is the

upper point of intersection of the two circles, and R is

the point of intersection of the line PQ and the x-axis.
What happens to rR as C: shrinks, that is, as r --- 0*?

25. li- l" + 4l

27. rim (t --L)-".^*o' \x l*ll

tx 2l
26. lim 

-2s ;: lr- -'t,^';; \x lrll

29. Let
(
lx

h(x) : I *'
Is

(a) Evaluate each of
(i) llp h(x)

(iv) ]S h(x)

(b) Sketch the graph

if x < 0

if0(x€?
x if x > 2

the following limits, if it exists.
(ii) lim ft(x) (iii) lim ft(x)

x --+0 .r -*l

(v) lim h(x) (vi) lim h(x)
x-2+ x-2

of h.

30. Let F(x) - ,tt 
- 

,t, .

lx - rl
(a) Find

(i) l* F(x) (ii) ]T F(x)

(b) Does lim,*' F(x) exist?
(c) Sketch the graph of F.

3 | . (a) If the symbol I n denotes the greatest integer
function defined in Example 9, evaluate
(i) lim flrn (ii) lim ["n (iii) lim ["n:r-2+ ,r--,--2 x-*2.4

(b) lf n is an integer, evaluate
(i) lim frn (ii) lim

x --)n J -rl 
+

(c) For what values of a does

[*n

lim*---., [x] exist?
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As illustrated in Figure l, if f is continu-
ous, then the points (x, /(x)) on the
graph of / approach the point (a, /(a))
on the graph. So there is no gap in the
curve.
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Continuity

We noticed in Section 2.3 that the limit of a function as r approaches a can often
be found simply by calculating the value of the function at a. Functions with this
property are called continuous at a. We will see that the mathematical definition
of continuity corresponds closely with the meaning of the word continuity in ev-
eryday language. (A continuous process is one that takes place gradually, without
interruption or abrupt change.)

[I oerinition A function./ is continuous at a number a if

1g /(") 
: f(a)

)'

f(r)
approaches

f (al.

FIGURE I

y : /(x)

" 
of,l .

As x approaches a,

r

f (a1
I

Iflis not continuous at a, we say/ is discontinuou s at a, or f has a discontinu-
ity at a. Notice that Definition I implicitly requires three things if/is continuous
at ai

l.f(a) is defined (that is, c is in the domain of/).
,. l,\/(.r) exists (so/must be defined on an open interval that contains a).

t. 1g f@): f(a).

The definition says that/is continuous at a if /(x) approaches/(a) as r ap-
proaches a. Thus, a continuous function/has the property that a small change in.x
produces only a small change in /(x). In fact, the change in /("r) can be kept as

small as we please by keeping the change in -r sufficiently small.
Physical phenomena are usually continuous. For instance, the displacement or

velocity of a vehicle varies continuously with time, as does a person's height. But
discontinuities do occur in such situations as electric currents. [See Example 6 in
Section 2.2,where the Heaviside function is discontinuous at 0 because limr-o I1(r)
does not exist.l

Geometrically, you can think of a function that is continuous at every number
in an interval as a function whose graph has no break in it. The graph can be

drawn without removing your pen from the paper.

EXAMPLE I r Figure 2 shows the graph of a functionl At which numbers is/
discontinuous? Why?

SOLUTIOH It looks as if there is a discontinuity when a : 1 because the graph
has a break there. The official reason that/is discontinuous at I is that/(l) is
not defined.

The graph also has a break when a : 3, but the reason for the discontinuity
is different. Here, /(3) is defined, but lim,-r /(x) does not exist (because the
left and right limits are different). So/is discontinuous at 3.

What about a -- 5? Here,/(5) is defined and lim,-s /(r) exists (because rhe
left and right limits are the same). But

rim f(*) + f(s)
x-*5

ffit

FIGURE 2

So 
"f 

is discontinuous at 5.
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Now let's see how to detect discontinuities when a function is defined bv a

formula.

EXAMPLE 2 r Where are each of the following

(a)f(x)- x2-x-2
xz (b)

functions discontinuous?

lr
f(*): l; 

ir x + o

Ll if x:0

(c) /(x) : (d) /(x) - ["n

ssl-[iTisl\0
(a) Notice that f (2) is not defined, so "f 

is discontinuous at 2.

(b) Here /(0) : I is defined but

f ,' x zl- ifx*2{xz
fr irx- z

1g fQ):1gi
does not exist. (See Example 8 in Section 2.2.) So,f is discontinuous at 0.

(c) Here f(2) - I is defined and

x'x2lim : lim
x-2 X 2 x--'>2 x2

:l'S("+l)-3
I'S fQ):

exists. But

rrry f@ + f(2)

so/is not continuous at 2.

(d) The greatest integer function /(x) : [.r] has discontinuities at all of the
integers because lim,-, [.r] does not exist if n is an integer. (See Example 9 and

Exercise 3l in Section 2.3.) X

Figure 3 shows the graphs of the functions in Example 2. In each case the graph
cannot be drawn without lifting the pen from the paper because a hole or break or

(a)/(x) :+:*
F lG U R E 3 Graphs of the functions

(b) /(x) :[l,o

in Example 2

if;*0
if ;:0

Ix'-x-2 :c,. I,
(c)/(.r) --lT irx*2

[1 rfx:2
(d) /(x) - [xn
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jump occurs in the graph. The kind of discontinuity illustrated in parts (a) and (c)

is called removable because we could remove the discontinuity by redefining /
at 2. [The function SG) : x * I is continuous.] The discontinuity in part (b) is
called an infinite discontinuity. The discontinuities in part (d) are called jump
discontinuities because the function'Jumps" from one value to another.

E 0efinition A function"f is continuous from the right at a number a if

lim f(x) : f(a)
x -a*

and "f is continuous from the left at a if

lim f(x) : f(a)
x--+a-

EXAMPLE 3 I At each integer n, the function f (*) : ["n [see Figure 3(d)] is
continuous from the right but discontinuous from the left because

lim f(x) : lim fitn : n : f(n)
x ---+n- x ---+n-

but lim f(x) : lim ["n : n I # f(n)
x -----rn .x ----tn

El Def inition A function / is continuous on an interval if it is contin-
uous at every number in the interval. (At an endpoint of the interval we
understand continuous to mean continuous from the right or continuous

from the left.)

#

EXAMPLE 4 I Show that the function f(x) - I
interval [-1,1].
S0LUTlOill If -1 < a

1'*f(x):1T(t Rl
:1-l'*GT

.IT. f@):1:/(-l)

\/R is continuous on the

Laws, we have

t h1 I-urr s I untl 7 t

(br I|)

(lrr ).1.lrnrl ())

l:l fk):1:/(1)

1
I

:l-ffi
: f(a)

Thus, by Definition l,/is continuous ata if -l < a 11. Similarcalculations
show that

so/is continuous from the right at -l and continuous from the left at 1. There-
fore, according to Definition 3,/is continuous on [-1, 1].
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The graph of f is sketched in Figure 4. It is the lower half of the circle
x'+ (y l)t - 1.

r 2t

ffi

FIGURE 4

Instead of always using Definitions l, 2, and 3 to verify the continuity of a

function as we did in Example 4, it is often convenient to use the next theorem,
which shows how to build up complicated continuous functions from simple ones.

El Theorem If f and g arc continuous at a and c is a constant, then the
following functions are also continuous at a:

l.f + g 2.f g 3. cf

A.fg s. I if g(a)+o
g

Proof Each of the five parts of this
Limit Law in Section 2.3. For instance.
are continuous at a, we have

theorem follows from the corresponding
we give the proof of part l. Since / and g

Therefore

1g fU): f(o)

lim (/ + g) (x) -

and lim g(x) : g(a)

l'* [/(") + s(x)]

l'* f(*) + 1g sk)

f(a) + g(a)

(f + s)(a)

This shows that / + g is continuous at a.

It follows from Theorem 4 and Definition 3 that if f and

interval, then so are the functions/ + g, f g, cf, f g, and
following theorem was stated in Section 2.3.

(br' [-uri ll

E

g are contlnuous on an
(if g is never 0) f/ g.The

E Theorem
(a) Any polynomial is continuous everywhere; that is, it is continuous on

R - (-*, *).
(b) Any rational function is continuous wherever it is defined; that is, it is

continuous on its domain.

Proof
(a) A polynomial is a function of the form

P(x) - cnx' + cn-rx"-' + + ctx+ c6

where co, ct, ct1 are constants. We know that

lim co: cs (by'Law'7)
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and lim x- : a^
x----ra

m- lr2r...rfl th1'9t

This equation is precisely the statement that the function/(.r) : x- is a continuous
function. Thus, by part 3 of Theorem 4, the function 9(x) : cx^ is continuous.
Since P is a sum of functions of this form and a constant function, it follows from
part I of Theorem 4 that P is continuous.

(b) A rational function is a function of the form

P(x)
11xt: 

2Q)

where P and Qare polynomials. The domain of/is D : {x € R | 0(r) I 0}. We
know from part (a) that P and p are continuous everywhere. Thus, by part 5 of
Theorem 4, / is continuous at every number in D. E

As an illustration of Theorem 5, observe that the volume of a sphere varies con-
tinuously with its radius because the formula V(r): f zr3 shows that Vis a poly-
nomial function of r. Likewise, if a ball is thrown vertically into the air with a

velocity of 50 ft/s, then the height of the ball in feet after / seconds is given by the
formula h : 50t - 16t2. Again this is a polynomial function, so the height is a
continuous function of the elapsed time.

Knowledge of which functions are continuous enables us to evaluate some lim-
its very quickly, as the following example shows. Compare it with Example 2(b) in
Section 2.3.

x3 + 2x2 I
EXAMPLES I Find lim

.r --*-Z

50tUTf0N The function

53x

x3 + 2x2 1

f(x)- 53x

is rational, so by Theorem 5 it is continuous on its domain, which is {.r I x + {}.
Therefore

x3 + 2x2 I

53x

It turns out that most of the familiar functions are continuous at every number
in their domains. For instance, Limit Law l0 (page 113) is exactly the statement
that root functions are continuous.

From the appearance of the graphs of the sine and cosine functions (Figure l0
in Section 1.2), we would certainly guess that they are continuous. We know from
the definition of sin0 and cos0 that the coordinates of the point P in Figure 5 are
(cos 0, sin 0). As 0 -+ 0, we see that P approaches the point (1,0) and so cos 0 -+ I
and sin 0 -+ 0. Therefore

lim
x --2

lim cosO - 1

d -'0

J:1, fQ) - f(-z)

Fz)3+ze\?-r
5 3(-2)

lim sinO - 0
0 ---+0

1l ffi

6

P(cos d, sin

FIGURE 5



FIGURE 6

)t : tan -tr

The inverse trigonometric functions are

reviewed in Appendix C.

This theorem says that a limit symbol
can be moved through a function symbol
if the function is continuous and the
limit exists. In other words, the order
of these two symbols can be reversed.

SECTION 2.4 TOl'|IINUITY r25

Since cos0 : I and sin0 : 0, the equations in (6) assert that the cosine and sine
functions are continuous at 0. The addition formulas for cosine and sine can then
be used to deduce that these functions are continuous evervwhere (see Exercises 41

and 42).
It follows from part 5 of Theorem 4 that

sln xtanx: 

-
is continuous except where cosr : 0. This happens when x is an odd integer mul-
tiple of rrf2, so y : tanx has infinite discontinuities when x : +n/2, +3n/2,
+5rr/2, and so on (see Figure 6).

The inverse function of any continuous function is also continuous. (The graph
of/-' is obtained by reflecting the graph of/about the line y : x. So if the graph
of/has no break in it, neither does the graph of/-'.) Thus, the inverse trigonomet-
ric functions are continuous.

In Section 1.5 we defined the exponential function y : a'so as to fill in the
holes in the graph of y : c'where x is rational. In other words, the very definition
of ) : a' makes it a continuous function on R. Therefore, its inverse function
y : logox is continuous on (0.-).

ffil fhem erm The following types of functions are continuous at every
number in their domains:

polynomials rational functions root functions

trigonometric functions inverse trigonometric functions

exponential functions logarithmic functions

EXAMPLE 6 r Where is the functio n f (x) : 4++]acontinuous?

SOLUTIOiII We know from Theorem 7 that the function y : ln r is continuous
for x ) 0 and y : tan-lx is continuous on R. Thus, by part 1 of Theorem 4,
y : lnx * tan-rx is continuous on (0,m). The denominator, | : x2 - l, is a
polynomial, so it is continuous everywhere. Therefore, by part 5 of Theorem 4,

/is continuous at all positive numbers r except where x2 - I : 0. So/is
continuous on the intervals (0, 1) and (1, co). I

I

Another *uy of combining continuous functions/and g to get a new continuous
function is to form the composite function/ . g. This fact is a consequence of the
following theorem.

ffi! Uhemrenn If f is continuous at b and
lim, -,, f(g(x)) - f(b). In other words,

lim, ..=, g(x) - b,

/(1T g("))

then

lim f(s(*)) -
x -ta
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Intuitively, this theorem is reasonable because if x is close to a, then g(-r) is close
to b, and since/is continuous atb,if g(x) is close to b,thenf(g(x)) is close tof(b).

ExAMPLE 7 r Evaluate tim ar.si.,( 
t - f \.r*r \l-t/

SOLUTIOI{ Because sin-' is a continuous function, we can apply Theorem 8:

/. /-\ / . -\
lim arcsin{ 

r-- vr I : u..rin{ti- t-- Vt 
)r-, \l-"/ 

)"*' 
l-*/

: ur.rin(ri* ---=+E-)\;;i (r _ Jr)Q + Jx) /
,l\

: ur"rin{ lim - r

\'-r l+t/x/
.1ir: arcsln t: 6 I

El Theorem lf g is continuous at a and,f is continuous at g(a), then
(f " g)(x): f(g(x)) is continuous at c.

This theorem is often expressed informally by saying "a continuous function of
a continuous function is a continuous function."

Proof Since g is continuous at a, we have

ly na : s@)

Since/is continuous at b : g(a), we can apply Theorem 8 to obtain

rrln f(il*)): fk@))

which is precisely the statement that the function h(x) : fQQ)) is continuous
at a; that is, f " g is continuous at a. I

EXAMPLE 8 r Where are the following functions continuous?
(a) ft(-r) : lxl (b) F(x) : ln(l * cos.r)

SOLUTION

(a) Since l*l: E for all x, we have h(x) : /(9(;)), where

g(x): x2 and f(i: Ji

Now g is continuous on R since it is a polynomial and/is continuous on the
range of g, [0,*), because/is a root function. Thus, /r : f " g is continuous on
R by Theorem 9.

(b) We know from Theorem 7 that f(x) : ln x is continuous and

SQ) : I * cosr is continuous (because both y : I and y : cos-r are contin-
uous). Therefore, by Theorem 9, F(x) : fk@D is continuous wherever it is
defined. Now ln(l * cosx) is defined when I * cosx > 0. So it is undefined
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FIGURE 7

FIGURE 9
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when cos.r: -1, and this happens whenx : -r7T, 1-3rr,.... Thus, Fhas dis-
continuities when x is an odd multiple of zr and is continuous on the intervals

10 between these values. (See Figure 7.) G

An important property of continuous functions is expressed by the following
theorem, whose proof is found in more advanced books on calculus.

IO f he Intermediate Value Theorem Suppose that 
"f 

is continuous on the
closed intervalla,bl and let N be any number strictly between f(") and

f(b). Then there exists a number c in (a,b) such that f(c) - N.

The Intermediate Value Theorem states that a continuous function
ery intermediate value between the function values /(a) and f(b).lt
by Figure 8. Note that the value N can be taken on once [as in part
than once [as in part (b)].

takes on ev-

is illustrated
(a)l or more

FIGURE 8 (b)(a)

If we think of a continuous function as a function whose graph has no hole or
break, then it is easy to believe that the Intermediate Value Theorem is true. In
geometric terms it says that if any horizontal line y : N is given between
y : f(a) and y : f(b) as in Figure 9, then the graph of /cannot jump over the
line. It must intersect y : N somewhere.

It is important that the function/in Theorem 10 be continuous. The Intermedi-
ate Value Theorem is not true in general for discontinuous functions (see Exer-
cise 30).

One use of the Intermediate Value Theorem is in locating roots of equations as

in the following example.

EXAMPLE 9 r Show that there is a root of the equation

4x3 6x2 + 3x 2- o

between I and 2.

SOLUTfOII Let f(x) : 4x3 - 6x2 + 3x - 2. We are looking for a solution of the
given equation, that is, a number c between 1and2 such that/(c) : 0. There-
fore we take a : l, b : 2, and N : 0 in Theorem 10. We have

f(r)-4 6+3 2--r

f(2):32 24+6 2:t2

y : /(x)

and



r28 CHAPTER 2 LIl'IIIS AI{D DERI\|ATIVES

Thus/(l) < 0 < f(2),that is,N:0isanumberbetween/(l)andf(2). Now/
is continuous since it is a polynomial, so the Intermediate Value Theorem says

there is a number c between I and2 such that/(c) : 0. In other words, the
equation 4x3 - 6x2 * 3x - 2 : 0 has at least one root c in the interval (1,2).

In fact, we can locate a root more precisely by using the Intermediate Value
Theorem again. Since

f(r.2): -0.128 and /(1.3) : 0.548

a root must lie between 1.2 and 1.3. A calculator gives, by trial and error,

/(1.22) - - 0.007008

so a root lies in the interval ( I .22, | .23).

We use a graphing calculator or computer to illustrate the use of the Intermedi-
ate Value Theorem in Example 9. Figure 10 shows the graph of / in the viewing
rectangle [-1,3] by [-3,3] and you can see the graph crossing the x-axis between
I and 2. Figure ll shows the result of zooming in to the viewing rectangle

1r.2, r.3) by l- 0.2, 0.21.
In fact, the Intermediate Value Theorem plays a role in the very way these

graphing devices work. A computer calculates a finite number of points on the
graph and turns on the pixels that contain these calculated points. It assumes that
the function is continuous and takes on all the intermediate values between two
consecutive points. The computer therefore connects the pixels by turning on the
intermediate pixels.

Exercises

ffi

FIGURE IO

-0.2

FIGURE II

l. Write an equation that expresses the fact that a function
/ is continuous at the number 4.

2. If f is continuous on (-oo, m), what can you say about its
g raph?

1.3

3. (a) From the graph of / state the numbers
discontinuous and explain why.

(b) For each of the numbers stated in part
mine whether/is continuous from the

the left. or neither.

at which / is

(a), deter-
right, or from

4. From the graph of g, state the intervals on which g is
continuous.

5. Sketch the graph of a function that is continuous
everywhere except at r : 3 and is continuous from the

left at 3.

6. Sketch the graph of a function that has a jump discon-
tinuity at x - 2 and a removable discontinuity at x : 4,

but is continuous elsewhere.
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A parking lot charges $3 for the first hour (or part
hour) and $2 for each succeeding hour (or part), up
daily maximum of $10.
(a) Sketch a graph of the cost of parking at this lot

function of the time parked there.
(b) Discuss the discontinuities of this function and

significance to someone who parks in the lot.

Explain why each function is continuous or
discontinuous.
(a) The temperature at a specific location as a function

of time
(b) The temperature at a specific time as a function of

the distance due west from New York City
(c) The altitude above sea level as a function of the

distance due west from h{ew York City
(d) The cost of a taxi ride as a function of the distance

traveled
(e) The current in the circuit for the liehts in a room as

a function of time

9. Use the definition of continuity and the properties of
limits to show that the function

s(x) -(x+ I)/(Zx2- l) 28'

is continuous at the number a - 4.

10. Use the definition of continuity and the properties of
limits to show that the function/(r) : r n/iO - *t it
continuous on the interval l-4, 4].

at the

29.

30.

SECTION 2.4 CONTI|{UITY

E3 Zl-22 I Locate the discontinuities of the function and
illustrate by graphing.

I21."'r": l+ev- 72,},-ln(tan2r)

23-25 I use continuitv to evaluate the limit.

of an

toa

asa

their

7.

5+./;
23. lirtt 

-
,r-4 V5 * x

25. lim e""-'
,t
{ 't

74. 
1g 

sin(x + sin r)

26.1,T,rcran(;-+)

8.

Find the numbers at which the function

fz* + l if r< -l
I

./(x) - 1 3" if -1 < r
I

L2" l il'r>l
is discontinuous. At which of these points is./ contin-
uous from the right, from the left, or neither? Sketch
the graph of 

"f,

The gravitational force exerted by Earth on a unit mass
at a distance r from the center of the planet is

( Gtw,| " ifr<ft
F(r') - { R'

IGM
L; rrrzR

where M is the mass of Earth, rR is its radius, and G is
the gravitational constant. Is F a continuous function
of r?

For what value of the constant c is the function f con-
tinuous on (-m,, ca)?

fr, + I if x € 3
JG)-1 .

1."' 1 ifx)3
Suppose that a function.f is continuous on [0, 1] except
at 0.25 and that/(O) - 1 and/(l) - 3. Let ll: 2.

Sketch two possible graphs of / one showing that/
might not satisfy the conclusion of the Intermediate
Value Theorem and one showing that / might still
satisfy the conclusion of the Intermediate Value Theo-
rem (even though it doesn't satisfy the hypothesis).

If/(x) _ r-t - xt + x, show that there is a number r:

such that f (c) : 10.

Use the Intermediate Value Theorem to prove that there
is a positive number c such that c'n : 2. (This proves
the existence of the numbe r 

"E 
.)

l5-20 I Explain, using Theorems 4,5,7, and 9, why the
function is continuous at every number in its domain. State
the domain.

27.

32.

33-36 r Use the Intermediate Value Theorem to show
that there is a root of the given equation in the specified
interval.

33. x-3 3x + I : 0, (0, l)

I l-14 I Explain why the function is discontinuous
given point. Sketch the graph of the function.

x'Ill. /(x) - 

- 

a_ -1- r+1
f *= I

if x * -112./(x) -1r+l a: -t
I

L6 if x: -1
(*' 2x 8. I ifx+4f3./(x) -{ -r 4 a:1
I

L3 if x - 1

It r ifx<Z
14../(x) -1r, Zx if x >z a-Z

t
3t.

t5. G(x) - {4 + 17

6xz +r l

17 . f(x) : sx sin 5x

| 9. G(r) - ln (to - 1)

16. f(t): 2t + .,/E;F

18. ^F(x) - sin-t1rrz - l)

20. H(x) - cos(e"F)
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ffif; lf-CO r (a) Prove that the equation has at least one real

root.(b) Use your graphing device to find the root correct
to three decimal places.

39. Jx - 5 - x + 3

40.arctanx-l-x

Limits Involving Infinity

To prove that sin is continuous we need to show that
limr-*o sin x : sina for every real number a. lf we let
h - x - c, then x : e + h and-tr --+ a Q 11 -> 0. So

an equivalent statement is that

lim sin(a + h) - sin a
h --*0

Use (6) to show that this is true.

Prove that cosine is a continuous function.

Is there a number that is exactly one more than its cube?

A Tibetan monk leaves the monastery at 7:00 A,M. and

takes his usual path to the top of the mountain, arriving
at 7:00 p.rr,r. The following morning, he starts at 7:00 n.rra.

at the top and takes the same path back, arriving at

the monastery at 7:00 p.vt. Use the Intermediate Value

Theorem to show that there is a point on the path that
the monk will cross at exactly the same time of day on

both davs.

34.

35.

36.

x, : ,f + l, (l,Z)

cos J : x, (0, l)

lnx - e-*, (1,2)

44.

37-38 I (a) Prove that the equation
root. (b) Use your calculator to find
0.01 that contains a root.

37, e* :2 x

38. x5_ x' +2x +3:0

has at least one real
an interval of length

42.

43.

44.

In this section we investigate
whether their graphs approach

the global behavior of functions and, in particular,
asymptotes, vertical or horizontal.

lnfinite

\ Ir

I

( ).5

0l
()"1

0.()5

001
0.(x)l

I

-l

t5
l(x)
+( x)

10.(xx)

l.()()().(xx)

In Example 8 in Section 2.2 we concluded that

lim
x ---+0

I
?x-

does not exist

by observing, from the
the values of Ux' can

Thus, the values of/(x)

table of values and the graph

be made arbitrarily large by

do not approach a number, so

of y - U*' in Figure 1, that

taking x close enough to 0.

lim*"-,a (lfxt) does not exist.

To indicate this kind of behavior we use the notation

I
lim -T : oo

;r---+0 X-

FIGURE I
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@ fnis does not mean that we are regarding oo n, a number. Nor does it mean that the
limit exists. It simply expresses the particular way in which the limit does not
exist: lfx2 can be made as large as we like by taking x close enough to 0.

In general, we write symbolically

lY'rt*l: *

to indicate that the values of /(x) become larger and larger (or "increase without
bound") as x approaches a.

r3l

A more precise version of Definition I

is given in Appendix D.

FIGURE 2

l,rT ff*) : *

Another notation

Again, the symbol oo

read as

for lim x,4. f k) - cc is

/(t) - oo as

is not a number. but the

x ---> a

expression lim .x ..,, f (*) - oo is often

or

or

"the limit of /(x), &s r approaches a, is infinity"

"f (x) approaches infinity as "r approaches A"

"f (*) increases without bound as x approaches a"

This definition is illustrated graphically in Figure 2.
Similarly, as shown in Figure 3,

lim f(x)- -oc
-t ---ro

means that the values of f (x) are as large
are sufficiently close to a, but not equal

The symbol lim.,,-,, f(x) - -6 can
proaches d, is negative infinity" or "f (*)
a." As an example we have

negative as we like for all values of x that
to a.

be read as "the limit of f(x), &s x ap-
decreases without bound as -r approaches

lim
-r'---+0

Similar definitions can be given

l\
,., | - -oox'f

the one-sided infinite

,tlT- fG) : oo

.t:? f(x) : -oo

(

for
FIGURE 3

lim /1.r) : -co
-{ +t/

lim /(*) - oo

x---+Q

lim f(x)- -oo
x --ta-

[ Def inition Let f be a function defined on both sides of a, except pos-
sibly at a itself. Then

lg f(x): co

means that the values of /(x) can be made arbitrarily large (as large as we
please) by taking x sufficiently close to a (but not equal to a).

y : f(x)

y : /(;)

limits
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FIGURE 4

remembering that o'x + a-"
than a, and similarly "x ---> a

these four cases are given in

means that we consider only values of x that are less
*" means that we consider only x ) a.Illustrations of
Fig ure 4.

-f(r) - * (b) lim .f(r) - *
f*rr-

(c) lim .f(x) - -*
\ +(,

(d) lim /(,r) - -m
.\ -trr

B Definition The line x - c is called a vertical asymptote of the curve

.y : ./(x) if at least one of the following statements is true:

lt* f(x) - oo lim_ f (x) - oc 
,tlT. .f(x) - oo

For instance, the y-axis is a vertical asymptote of the

lim.,-o (U*\- oo. In Figure 4 the line x : a is a vertical
four cases shown.

curvey- l/t' because

asymptote in each of the

,, 1
EXAMPLE I r Find lim --:; and lim -- " .

x-3'-t-J x.-.1 X-J

SOLUTION If .r is close to 3 but larger than 3, then the denominator r - 3 is a
small positive number and so 2/ (* - 3) is a large positive number. Thus, intui-
tively we see that

.,

lim --:;- : -
x-3* X - J

Likewise, if x is close to 3 but smaller than 3, then x - 3 is a small negative

number and so 2/ (x - 3) is a numerically large negative number' Thus

2
lim - - -T'
r"o3- X J

(a) lim
.fr{,



The graph of the curve y - 2/ (*
vertical asymptote.
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3) is given in Figure 5. The line x - 3 is a

FIGURE 5

FIGURE 6

FIGURE 7

y: tanx

The problem-solving strategy for
Exampf e 2 is lntroduce Somethin g Extra
(see page 88). Here, the something exrra,
the auxiliary aid, is the new variable r.

Two familar functions whose
and )' - ln x. From Figure 6 we

graphs have vertical asymptotes
see that

t

are y- tanx

Iim lnx - -oc
,t --0'

and so the line x : 0 (the y-axis) is a vertical asymptote. In fact, the same is true
fory : log,x provided that a ) l. (See Figures 13 and 14 in Section 1.6.)

Fieure 7 shows that

,lln, 'u"x: 
@

and so the line x : nf2 is a vertical asymptote. In fact, the lines x : (2n + l)rr/2,
n an integer, are all vertical asymptotes of y : tan x.

E

EXAMPLE2 T Findlim
x-*0

SSLUTION We introduce
t - tan2x -+ tan2 0 - 0
(3), we have

ln(tan2x).

a new variable, t - tanzx.
as ,r -+ Q because tan is a

Thent>0and
continuous function. So, by

lim ln(tan2x) - lim ln r -
.r --0 r-0+ t
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A more

is given

precise version of Definition 4

in Appendix D.

In computing infinite limits, we let x approach a number and the result was that

the values of y became arbitrarily large (positive or negative). Here we let x be-

come arbitrarily large (positive or negative) and see what happens to y.

Let's begin by investigating the behavior of the function/defined by

x'_ lf(x): ., + |

as x becomes large. The table in the margin gives values of this function correct to
six decimal places, and the graph of/has been drawn by a computer in Figure 8.

-r2-l
r'?+l

FIGURE 8

As x grows larger and larger you can see that the values of /(.r) get closer and

closer to 1. In fact, it seems that we can make the values of/(.r) as close as we like
to I by taking x sufficiently large. This situation is expressed symbolically by

writing

x'-l
I'iir,+l:'

In general, we use the symbolism

lim f(x) -
,t ---) an

to indicate that the values of/(r) approach L as.r becomes larger and larger.

EI Oefinition Let f be a function defined on some interval (4,*). Then

l':" f(x): L

means that the values of/(x) can be made as close to L as we like by

taking ,r sufficiently large.

Another notation

The symbol oo does

lim."-,*f(x)-lis

for lirrl"y-- /(x) : L is

f(x)nL asx-->oo

not represent a number. Nonetheless, the expression

often read as

l(.v)

()

fl

rl
1 l
r+

r5
I l0
r50

| 100
I I000

l

(

(

(

(

(

(

(

(

(

6(XXXX)

Ii(X X XX )

sl{1351
ett077
9r{o l et{
geel(x)

9()r)t{(x )

99r)99 ti

"the limit of /(x), &s x approaches infinity, is L"
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or "the limit of f(x), &S x becomes infinite, is L"

or "the limit of /(x), &s x increases without bound, is L"

| 35

The meaning of such phrases is given by Definition 4.
Geometric illustrations of Definition 4 are shown in Figure 9. Notice that there

are many ways for the graph of /to approach the line y: L (which is called a
horizontal asymptote).

Referring back to Figure 8, we see that for numerically large negative values of
r, the values of f(x) are close to l. By letting x decrease through negative values
without bound, we can make /(x) as close to I as we like. This is expressed by
writing

,. x'_ l
'tT"tt*t:l

In general, as shown in Figure 10, the notation

tim f(x): L

FIGU RE 9
Examples illustrating lim f(x) : L

FIGURE IO

Examples illustrating lim /(x) - |

means that the values of f(x) are as close to L
large negative.

Again, the symbol -m does not represent a

lim,---,-cc f(x) : L is often read as

"the limit of /(x), &s x approaches

as we like by taking x sufficiently

number, but the expression

negative infinity, is L"

E 0efinition The line y - L is called a horizontal asymptote of the
curvey: f(*) if either

lim f(*) - L or lim f(*) : L
r --+oo r --|- €

For instance, the curve illustrated in Figure 8 has the line y : I as a horizontal
asymptote because

x2 1lim :l
x--)m x'+ 1

y: f(x)

y : /(x) y: /(x)

y: /(x)

y : /(x)
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FIGURE II
y : tan-lx

FIGURE I2

An example of a curve with two horizontal
ure 11). In fact,

asymptotes is y : tan-rx (see Fig-

lim tan-rx
r---+-f

7T

1
L

lim tan-t* : n
-r---+oc 2

so both of the lines y : -rr/2 and y: rf2 are horizontal asymptotes. (This
follows from the fact that the lines x : +n/2 are vertical asymptotes of the graph

of tan.)

EXAMPLE 3 r Find the infinite limits, limits at infinity, and asymptotes for the

function/whose graph is shown in Figure 12.

SOLUTION We see that the values of f(x) become large as x -+ - I from both
sides. so

lim f(x) - oo

x--+- I

Notice that/(x) becomes large negative as r approaches 2 from the left, but large
positive as.r approaches 2 from the right. So

lim /(x) : -co and lim /(x): m

Thus, both of the lines x - - I and x : 2 are vertical asymptotes.
As x becomes large, we see that f (x) approaches 4. But as x decreases

through negative values,"f(x) approaches 2. So

lim f(x) - 4 and lim f(x) - 2
r---+cc .tr---t-tc

This means that both y - 4 and y : 2 are horizontal asymptotes.

EXAMPLE 4 r Find lim - and lim
,t---+:c X X---+-& X

SOLUTI0N Observe that when x is large , Lf x is small. For instance,

E

ffi

1 _ 0.01
100 - 0.0001 : 0.000001

10,000 1,000,000

In fact, by taking x large enough, we can make lfx as close to 0 as we please.

Therefore, according to Definition 4, we have

Similar reasoning shows that
we also have

Ilim--0
x-"+x X

when x is large negative, Ilx is small negative, so

1lim -0r--+-r X
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It follows that the line y : 0 (the x-axis) is a horizontal asymptote of the curve
y : l/x.(This is an equilateral hyperbola; see Figure 13.) I

Most of the Limit Laws that were given in Section 2.3 also hold for limits at
infinity. It can be proved that the Limit Laws listed in section 2.3 (with the excep-
tion of Laws 8, 9, and )0) are also valid if "x ---> a" is replaced by .,x + @', or
"x ---> -cn." In particular, if we combine Law 6 with the results of Example 4 we
obtain the following important rule for calculating limits.

FIGURE I3

lim 1:0. lim I :0
r+co X r--* J

B If n is a positive integer, then

Ils;: o lim I

J -)-cc Xn

:0

EXAMPLE 5 I Evaluate

lim
J ---+ cc

3x2x2
5x2 + 4x + Ilim

x----r6

soLurl0N To evaluate the limit at infinity of a rational function, we first divide
both the numerator and denominator by the highest power of x that occurs in the
denominator. (we may assume that x * 0, since we are interested only in large
values of .r.) In this case the highest power of x is x2 and so, using the Limit
Laws, we have

3x2xz
3xzx2
T: lim

,tr ---+0c5x? + 4x + 1 5xz + 4x + I - lim
,r ---+oc

nl2
J

xx7
415+ +
xx7x2

/ t z\rimt3-l -lx+3c\ X X-/

/t4liml5+
-r --+.c \ X

lim3 timl zlim
I+co J---).c X -f---+cc

;)
1

?x-

lim5+4
f --+ao

300

I
lim - + lim
J---+cc X -r --+oc

1

x-

lby (6)l5+0+0

A similar calculation shows that the limit as .tr - + - oo is also J . Figure 14

illustrates the results of these calculations by showing how the graph of the
given rational function approaches the horizontal asymptote y - 3.

_3
5

ffi

3x2-x-2
J 

5,r'2 + 4.r * I

FIGURE 14
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FIGURE I5

FIGURE I6

lim(,F+t x)

'ffi1+x
- lim

r.-.-)f,c J*, + I + x

EXAMPLE 6 I Compute lim (/.r'? + 1 - "r).

SOIUTION We first multiply numerator and denominator by the conjugate radical:

'ffi+x

_ lim
r -+cc 'F+ I + x

The Squeeze Theorem could be used to show that this limit is 0. But an easier

method is to divide numerator and denominator by.r. Doing this and remem-

bering that x : $ tot x > 0,we obtain

lim (JTt "r) : lim
_tr ---+ac

trg+l

-+1

:0

Figure 15 illustrates this result.

The graph of the natural exponential function ! : e" has the line y : g 
111tt

.r-axis) as a horizontal asymptote. (The same is true of any exponential function
with base a > l.) In fact, from the graph in Figure 16 and the corresponding table

of values. we see that

lim e*-0
.r---r- rc

Notice that the values of e* approach 0 very rapidly.

()

-l
)
-)

.'t

5

I
l0

I.(XXXX)

0. i (rT fi fi

0, I .t5l-l
0.0+97e
0. (x )6 7-l

0. (x x )j-+

0. (x xx )5

EXAMPLE 7 t Evaluate

$0l-UTilSN If we ket t -
Therefore, by (8),

lim et/'.
x -0-

l/x, we know from Example 4 that t + -oo as -r --+ 0-

1

x

1

?x-

*

ET

lim etl* - lim e' -- 0
x*o- t--+-m 

t 
*
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EXAMPLE 8 r Evaluate lim sin x.

SOLUTION As.r increases, the values of sin-r oscillate between I and -1 infi-
nitely often. Thus, lim"-- sin x does not exist. lt

l,* f(x) : oc

is used to indicate that the values of/(x) become
meanings are attached to the following symbols:

JfT" fQ): co lg f(*): -oo

From Figures 16 and 17 we see that

lim e'\ - n lim x3 - oo

-{ -+cc ,t ---}tc

but, as Figure 18 demonstrates, y - e"' becomes
ratethany-J'.

EXAMPLE 9 I Find lim (*' x).
J +:a

large as x becomes large. Similar

lim f(*) : -oc
,\"+-:c

lim xt : -w
X -+-T-

large as x ---) m at a much faster

FIGURE I7

FIGURE I8

Infinite Limits lnfinity

The notation

@ $OL{rTlSf't Note that we cannot write

lim (x2 - x) : lim x2 - lim.r
r+€ f,+- x+t

:@-@

The Limit Laws cannot be applied to infinite limits because oc is not a number
(* * - cannot be defined). However, we can write

lim (x2 - x) :limx(x - l) : -
I+* X+@

because both x and .r - I become arbitrarily large. I

ExAMPIE l0 r Find 1'g;+
SOLUTION We divide numerator and denominator by "r (the highest power of .r
that occurs in the denominator):

x2 + x
lim _- lim
x-+tn 3 X ,r-+,c

x + I

- 

: _oo
3

I
x

because,r + I ---+ oo and 3/x I --+ -1 as x -+ oo ffi
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Exe rc i ses

l. Explain in your
fol lowing.
(a) lim /(x) :

x*2
(c) lim /(x) -

2. (a) Can the graph of .)' : f (*) intersect a vertical
asymptote? Can it intersect a horizontal asymptote?

Illustrate by sketching graphs.
(b) How many horizontal asymptotes can the graph of

y : f (x) have? Sketch graphs to illustrate the
possibi I ities.

3. For the function.f whose graph is given, state the

following.
(a) lim /(x)

.r:2
(c) lim /(*)

r+
-r+-l

(e) lim /(x)

For the function g whose graph is given, state the

follow ing.
(a) lim s(x) (b) lim s(x)

own words the meaning of each of the

x. (b) lim f(x): -co
x-l +

5 (d) 
_t1T" 

fG) - 3

(b) lim f (x)
-r --l-

(d) lg /(x)

(f) The equations of the asymptotes

(d) lim s(x)
x -+0

(f) The equations of the asymptotes

5-8 r Sketch the graph of an example of a function / that

satisfies all of the given conditions.

5. /(0) : 0, /(1) : l, lim /(x) : 0, /is odd

6. lim f(x): @, lim ;;; : -€, lim /(x) : 1,
_r--:Qt x*0- ;+r

.tT" fQ): I

7.lim /(x) - -ffi, lim /(x): *, lim /(x):0,
x*2 .f,-+ac -f,----)-.c

lim f(x): @, lim f(x) - -oo
r *0+ x --+0-

8. lim f(x) : ffi, lim /(x) : 3, lim /(x) - -3
X*-2 -{._-.c -X--+f,c

9. Guess the value of the limit
'l

X-

lg"
by evaluating the function /(") - x' /2' for x : 0, I, 2,

3,,4,5, 6, 7,8,9, 10, 20, 50, and 100.

10. Determine lim .! and lim +-
x--+r- x- ;*;; xt I

(a) by evaluating f(x) : LlQt - 1) for values of x that
approach I from the left and from the right,

(b) by reasoning as in Example 1,

(c) from a graph of 
"f,

w'ta
ngTI limit.I l- l 2 I Use a graph to estimate

3xz
I l. lim " 17.

{ +v- 2x' + 25 sin x

the value of the

rs ('-:)'
4. n= l3-14 I Use a graph to find all the

asymptotes of the curve.

x3
13' Y : xj - zx + r

14. y: tan(2sinx), zr s x s zr

vertical and horizontal

(c) lim g(x)
.r *3

(e) lim s(x)
4+

.t 
--l.

l5-29 I Find the limit.

I
15. lim

;; (x - 3)*

xl
17 . lim 1,

x--2+ x'(x + 2)

x + 4
19. lim ^

x+T x' - 2x + 5

6tz + 5t

16. lim csc -r
-r - -r7r

18. lim ln(x 5)
.r --*-5 +

7t3 + 4t
20. lim-v' ;-; 2t3 t2 + 3

JT+4r
7-2. lim 

-

jr+cc 4 * x
21. lim

t'--+ *x (1 t) (2t 3)
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for a function that has vertical asymp-
-r - 3 and horizontal asymptote .y : l.

for a function f that satisfies the follow-

lim /(x) - -ffi, f(2): 0,
-r*0

lim f(x)- -oa
_r =+.1 '

l4l

23.tim(ffi-x)
-r -)cc

25. lim cos r
,tr -+ac

x'1
27. lim .

.x+1c Xo + I

29.lim sin !
,{ ---}m X

sin2x
24. lim ,

-r+et X-

26. lim tan-r(x4 - x')
J --+cc

28. lim g tan"{

a .-(n/Z)+

EI ro. (a) Graph the function

/(') : ,,tr-, + r

3x-5
How many horizontal and vertical asymptotes do
you observe? Use the graph to estimate the values of
the limits

(b) By calculating values of /(x), give numerical esti-
mates of the limits in part (a).

(c) Calculate the exact values of the limits in part (a).

Did you get the same value or different values for
these two limits? [In view of your answer to part
(a), you might have to check your calculation for the
second limit.l

,EFT r
lim 

-- 

and
-r-,-+co 3x 5

/;.,,lZxr * I
lllll

r,,+-.c 3x - 5

vertical asymptotes of
graphing the curve and

x-9
32. .y -

34. Find a formula
totesx:land

35. Find a formula
ing conditions:
lim /(*) : 0,

-r --'ICC'

tim f(x)-T,
x-*3-

El I l-32 r Find the horizontal and
each curve. Check your work by
estimating the asymptotes.

x' + 4
31. .\.,: 

", _ I W
33. Match each function in

I-VI). Give reasons for

(a)y- I

.r-l
I(c)_y: 

L{_ lf
(e)y: *

(x l)'

(a)-(f) with its graph (labeled
your choices.

(b) y- xl
I

(d) y : r, _ |

(f) ) : 
x

xtl

36. By the end behavior of a function we mean a descrip-
tion of what happens to its values as J --+ * and as

'tr ---> -oo.
(a) Describe and compare the end behavior of the

functions

P(x)-3.trs-5x3+2x QG) - 3xs

by graphing both functions in the viewing
rectangles [ -2,2] bV [ -2,2] and [ - 10, 10] by

[- 10,000, 10,000].
(b) Two functions are said to have the same end

behavior if their ratio approaches I as x ---> m. Show
that P and Q have the same end behavior.

37. Let P and Q be polynomials. Find

P( x)
lim ----i
r---+.c Qk)

if the degree of P is (a) less than the degree of Q and
(b) greater than the degree of Q.

38. Make a rough sketch of the curve y : x" (n an integer)
for the following five cases:
(i) n:O (ii) n20,n odd
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(iii) t'r > 0, n even (iv) n I 0, n odd
(v) n < 0, r? even

Then use these sketches to find the followine limits.
(a) lim x" (b) lim x"

,r *{J+ .r -'0-
(c) 

1T 
t' (d) lim x"

39. Find lim, -"', /(x) if
1r*_1 . -,, ,4x7+3x< ,l(xi < ,

J -{-

40.

forallx)5.
In the theory'of relativity, the mass of a particle with
velocity u is

tlln
,rl 

-------:,T-uW
where m0 is the rest rnass of the particle and c is the

speed of light. What happens as u -> c-?

(a) A tank contains 5000 L of pure water. Brine that
contains 30 g of salt per liter of water is pumped
into the tank at a rate of 25 L/min. Show that the

concentration of salt after I minutes (in grams per
liter) is

c(r) - 30r

200+t
(b) What happens to the concentration as / --+ oo?

In Chapter 7 we will be able to show, under certarn
assumptions, that the velocity a(r) of a falling raindrop
at time f is

u(t) : u*(l e ur/u+1

where g is the acceleration due to gravity and u* is the

terminal velocity of the raindrop.
(a) Find lim, -. ult).
(b) Graph u(r) if 'u* :1 mls and g :9.8 m/st. How

long does it take for the velocity of the raindrop to

reach 99Vo of its terminal velocity?

(a) Show that limr-** e-rllo : 0.

(b) By graphing y : ,-'t/n and ) - 0.1 on a common
screen, discover how large you need to make x so

that €-.rt' ',, < 0.1.

(c) Can you solve part (b) without using a graphing
device?

4x2 5x
(a) Show that hm *1 1 - 2.

(b) By graphing the function in part (a) and the line
y : 1.9 on a common screen, find a number l/ such

that

4x] 5x. t 1.92x'+1 when x ) l/

Eg
II

Eg
fI

42.

43.

44,
41.

ng
II

What if 1.9 is replaced by 1.99?

Tangents,Velocities, and Other Rates of Change

In Section 2.1 we guessed the values of slopes oftangent lines and velocities on the

basis of numerical evidence. Now that we have defined limits and have learned

techniques for computing them, we return to the tangent and velocity problems

with the ability to calculate slopes of tangents, velocities, and other rates of
change.

I -or,g".,.,

If a curve C has equation y : f(x) and we want to find the tangent to C at the
point P(a, /(a)), then we consider a nearby point Q(x, /(.r)), where x # a, and
compute the slope of the secant line PQ:

/(x) f (a)
MPQ :

-ra

Then we let Q approach P along the curve C by letting x approach a. lf mpe ap-
proaches a number m, then we define the tangent r to be the line through P with



slope ru. (This amounts
the secant line PQ as Q
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to saying that the tangent line is the limiting position of
approaches P. See Figure l.)

(b)(a)

FIGURE I

Point-slope form for a line through the
point (xr, y1) with slope rz:

.Y - Yt: m(x - xr)

Il 0efinition The tangent line to the curve y : f (x) at the point
P(a, f(o)) is the line through P with slope

M:1Try
provided that this limit exists.

In our first example we confirm the guess we made in Example I in Section 2.1.

EXAMPLE I r Find an equation of the tangent line to the parabola y : x2 at the
point P(l,1).

SOLUTfON Here we havea: I and/(.x):.r', so the slope is

x2 I
m -limu - lim

x ---+l

- lim
t--+l

- lim
x---+l

xlx-t xl
(x - 1)(x + 1)

xl
(x+1):1+l-2

Using the point-slope form of the equation of a
the tangent line at (1, 1) is

y l-2(x 1) or

line, we find that an equation of

y-2x 1

We sometimes refer to the slope of the tangent line to a curve at a point as the
slope of the curve at the point. The idea is that if we zoom in far enough toward the

ffi

Q(*,/(x))

f(x) - f(a)
P(o,f(a))
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point, the curve looks almost
cedure for the curve y : x' in
parabola looks like a line. In
guishable from its tangent line.

like a straight line. Figure 2 illustrates this pro-
Example 1. The more we zoom in, the more the

other words, the curve becomes almost indistin-

r.5

0.5

FIGURE 2

Zooming in toward the point (1, I ) on the parabola y - xz

FIGURE 3

There is another expression for the slope of a tangent line that is sometimes eas-
ier to use. Let

h:x-a
Then x:a j h

so the slope of the secant line PQ is

f(a+h)-f(o)mpe: 
h

(See Figure 3 where the case ft > 0 is illustrated and Q is to the right of P. If
h < 0, however, p would be to the left of P.)

Notice that as r approaches a, h approaches 0 and so the expression for the slope
of the tangent line in Definition I becomes

m- lim
h---+0

f(a + h) f(a)
h

l.l1.5 0.9

B

Q(o + h, f(a + h))

P(o,f(a)) f(a+h)-f(a)



EXAMPLE 2 I Find an equation of
the point (3, 1).

$Sf-flJTl$ffi Let f (x) - 3/*.Then the
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f(3 +

the tangent line to the hyperbola y - 3/x at

slope of the tangent at (3, l) is

h) f (3)
m -- lim

h--o0

3

3+h 1

- lim : lim
ft-+o h h---+o

-h
- linr : lim

h-o h(3 + h) h-o

I

3-(3+h)
3+ h

,
I

3+hv

x*3y-6:0 3
r

(3, l)
Therefore? an equation

3

of the tangent at the point (3, 1)

y t--*t* 3)

x+3y 6-0which simplifies to

The hyperbola and

Velocities

its tangent are shown in Figure 4.

In Section 2.1 we investigated the motion of a ball dropped from the CN Tower and

defined its velocity to be the limiting value of average velocities over shorter and

shorter time periods.
In general, suppose an object moves along a straight line according to an equa-

tionof motion s: f(t), wheresisthedisplacement(directeddistance)of theob-
ject from the origin at time r. The function/that describes the motion is called the
positionfunctionof theobject. Inthetimeintervalfrom /: atot: a * hthe
change in position is f(a + h) - f(a) (see Figure 5). The average velocity over
this time interval is

average velocity -
displacement _ f(a + h) - f(a)

time h

which is the same as the slope of the secant line PQ in Figure 6.

Now suppose we compute the average velocities over shorter and shorter time
intervals la, a I ft]. In other words, we let h approach 0. As in the example of the

falling ball, we define the velocity (or instantaneous velocity) a(a) attime t : a

to be the limit of these averase velocities:

u(a) - lim
h'--O h

is

--.u

\
\

FIGURE 4 I

M

position at position at

time t: a time t: a * h

P(o, f(a\)

o a*h

f(a+h)-f(a)
h

average velocity
This means that the velocity
at P. (Compare Equations 2

at time / - a is equal to the slope of the tangent line
and 3.)

E

trtpe:

Q(@ + h, f(a + h))

FIGURE 6
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Recall from Section 2.1: The distance (in

meters) fallen after t seconds is 4.9t2.

Now that we know how to compute limits, let's reconsider the problem of the
falling ball.

EXAMPLE 3 I Suppose that a ball is dropped from the upper observation deck of
the CN Tower, 450 m above the ground.
(a) What is the velocity of the ball after 5 seconds?
(b) How fast is the ball traveling when it hits the ground?

SOLUTION We first use the equation of motion s : f(t) : 4.9t2 to find the
velocity a(a) after a seconds:

f(a + h) f(a) 4.9(a + h)' 4.9a2
a(a) - lim

h--O

- lim
h---+0

- lim
h---+0

h

+

: lim
h---+0

4.9(a2 Zah + hz a2\

h

4.9(2ah + h')

:9.6s

h

4.9(2a + h): 9.8a

: lim
h---O

(a) The velocity after 5 s is u(5) : (9.8X5) : 49 m/s.

(b) Since the observation deck is 450 m above the ground, the ball will hit the
ground at the time t1 when s(r') : 450, that is,

4.9t1 - 4s0

This gives

^ 450
tt-- 43 

and

The velocity of the ball as it hits the ground is therefore

: 94 mlsu(t):9.8rr:9.8

I Other Rates of Change

ffi

Suppose y is a quantity that depends on another quantity.r. Thus, y is a function of
x and we write y : /(x). If .r changes from x1 to x2, then the change in .r (also
called the increment of x) is

A^x : xz x1

and the corresponding change in y is

Ay : f(xr) - f(x,)

Ay _ f(x) - f(xr)
Ax x2 x1

450

49

The difference quotient



FIGURE 7

A Note on Units

The units for the average rate of change

AZAx are the units for Af divided by

the units for Ax, namely, degrees Cel-

sius per hour. The instantaneous rate of
change is the limit of the average rates

of change, so it is measured in the same

units: degrees Celsius per hour.

LT 3.9_ 
- - 1.3"c/hAx3

SECTION 2.6 IAilGIl'I15. 
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is called the average rate of change of y with respect to .r over the interval

lxt,xrf and can be interpreted as the slope of the secant line PQ in Figure 7.

average rate of change = npp
instantaneous rate ofchange : slope oftangent at P

By analogy with velocity, we consider the average rate of change over smaller and

smaller intervals by letting,r2 approach.xr and therefore letting Ax approach 0. The
limit of these average rates of change is called the (instantaneous) rate of change
of y with respect to x at x : x t, which is interpreted as the slope of the tangent to
the curve y : f(x) at P(xr, fGrD:

4 instantaneous rate of change - lim +
A.r-+o AX

- lim
12 .--r l

yft) y(xr)
xv x1

EXAMPTE 4 r Temperature readings 7 (in degrees Celsius) were recorded every

hour starting at midnight on a day in April in Whitefish, Montana. The time x
is measured in hours from midnight. The data are given in the table at the left.
(a) Find the average rate of change of temperature with respect to time

(i) from noon to 3 p.u. (ii) from noon to 2 p.v.

(iii) from noon to I p.lra.

(b) Estimate the instantaneous rate of change at noon.

S0LUTtolt
(a) (i) From noon to 3 p.v. the temperature changes from 14.3"C to 18.2oC, so

LT : r(15) - r1D - 18.2 14.3 - 3.9 "C

while the change in time is Ax-3 h. Therefore, the average rate of
change of temperature with respect to time is

(ii) From noon to 2 p.M. the average rate of change is

Lr r1q r02) _ n.3 - r4.3 _

P(",, f(x,))

v (h) f('C) \ (h) /' ( "t')

0

I

l
1.!

-+

5

6

7

li

I
l0
ll
ll

6..s

6. I

5.6

-+.9

4.2

-1.0

-tr.0

1.,3

6. I

8.3

I0.t)
ll. r

r-1.3

t-)
l-1

t-t

15

l6
t7
1,3

It)

l0
ll
!)
1')j -')

ll

6.0

7.3

It.l
t3.tt

1.6

6.0

-1. I

t.5

0.2

9.0

I .L)

7.0

Ax14 122 1.5 "c/h



148 CHAPTER 2 LII-IITI AI{D DERIVATIVEI

FIGURE 8

(iii) From noon to 1 p"M. the average rate of change is

Lr r(13) r04 16.0 r4.3

I
I

t.l "clh
Ax 13 12

(b) Wb plot the given data in Figure 8 and use
that approximates the graph of the temperature
tangent at the point P where x : 12 and, after
ABC, we estimate that the slope of the tangent

lrcl _ to.3 _
lecl s.s

them to sketch a smooth curve
function. Then we draw the

measuring the sides of triangle
line is

1.9

Therefore, the instantaneous rate of change of temperature with respect to time
at noon is about 1.9'C/h.

15 16 t7

x

The velocity of a particle is the rate of change of displacement with respect to
time. Physicists are interested in other rates of change as well-for instance, the
rate of change of work with respect to time (which is called power). Chemists who
study a chemical reaction are interested in the rate of change in the concentration
of a reactant with respect to time (called the rate of reaction). A steel manufacturer
is interested in the rate of change of the cost of producing r tons of steel per
day with respect to r (called the marginal cost). A biologist is interested in the
rate of change of the population of a colony of bacteria with respect to time. In
fact, the computation of rates of change is important in all of the natural sciences,
in engineering, and even in the social sciences. Further examples will be given in
Section 3.3.

All these rates of change can be interpreted as slopes of tangents. This gives
added significance to the solution of the tangent problem. Whenever we solve a
problem involving tangent lines, we are not just solving a problem in geometry. We
are also implicitly solving a great variety of problems involving rates of change in
science and engineering.

T

l8

l6

t4

t2

l0

I
6

1

2
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Exercises

l. A curve has equatiott .)' - /(r).
(a) Write an expression for the slope of the secant line

through the points P(3, /(3)) and Q(x, /(*)).
(b) Write an expression for the slope of the tangent line

at P.

2. Suppose an object moves with position function

'' - f(t)'
(a) Write an expression for the average velocity of the

object in the time interval from t - a to t : (t + h.

(b) Write an expression for the instantaneous velocity at

time t : a.

3. Consider the slope of the given curve at each of the five
points shown. List these five slopes in decreasing order
and explain your reasoning.

4. Graph the curve -)' - e.in the viewing rectangles

[-1, l] by [0,2], [-0.5,0.5] by [0.5, 1.5], and [-0.1,0.1]
by [0.9, 1.1]. What do you notice about the curve as you
zoom in toward the point (0, l)?

5. (a) Find the slope of the tangent line to the parabola

), - ,r2 + 2x at the point (-3,3)
(i) using Definition I (ii) using Equation 2

(b) Find the equation of the tangent line in part (a).

E= (c) Graph the parabola and the tangent line. As a check
on your work, zoom in toward the point (-3.,3)
until the parabola and the tangent line are

indistinguishable.

6. (a) Find the slope of the tangent line to the curve 14.

)' - x'at the point (-1, -1)
(i) using Definition I (ii) using Equation 2

(b) Find the equation of the tangent line in part (a).

(c) Graph the curve and the tangent line in successively

smaller viewing rectangles centered at (-1, -l)
until the curve and the line appear to coincide.

7-9 r Find the equation of the tangent line to the curve at

the given point.

7. y - VF, (1,1) 8. .),- x/ (l x), (0,0)

g. y- l/*',, (-Z,i)

EE tO. (a) Find the slope of the tangent to the parabola

-), - 1 + J * x2 at the point where x : rI.

(b) Find the slopes of the tangent lines at the points
whose x-coordinates are (i) -1, (ii) - +, and (iii) 1.

(c) Graph the curve and the three tangents on a com-
mon screen.

EE t I . (a) Find the slope of the tangent to the curve

)'_- 1-r - 4x * I at the point where x - rt.

(b) Find the equations of the tangent lines at the points
(1, -2) and (2, 1).

(c) Graph the curve and both tangents on a common
se reen.

frl lZ. (a) Find the, slope of the tangent to the curve

)' : l/J5 2x at the point where r : a.

(b) Find the equations of the tangent lines at the points
(2,1) and (-2,+).

(c) Graph the curve ancl both tangents on a common
screen.

13. The graph shows the position function of a car. Use

the shape of the graph to explain your answers to the

following questions.
(a) What was the initial velocity of the car?
(b) Was the car going faster at B or at C?
(c) Was the car slowing down or speeding up atA, B,

and C?
(d) What happened between D and E?

Valerie is driving along a highway. Sketch the graph of
the position function of her car if she drives in the

following manner: At time / : 0 rnin, the car is at mile
marker l5 and is traveling at a constant speed of
55 mi/h.She travels at this speed for exactly an hour.

Then the car slows gradually over a two-minute period

as Valerie comes to a stop for dinner. Dinner lasts
26 min; then she restarts the car, gradually speeding up

to 65 mi/h over a two-minute period. She drives at a
constant 65 mi/h for two hours and then over a three-
minute period gradually slows to a complete stop.

NJ
TI

wII
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15. If a ball is thrown into the air with a velocity of 40 ft/s,
its height (in feet) after / seconds is given by

.)' : 40r 16t2. Find the velocity when t - 2.

16. If an arrow is shot upward on the moon with a velocity
of 58 m/s, its height (in meters) after / seconds is given
byH-58r 0.8312.

(a) Find the velocity of the arrow after 1 s.

(b) Find the velocity of the arrow when t - G.

(c) When will the arrow hit the moon?
(d) With what velocity will the arrow hit the moon?

17. The displacement (in meters) of a particle moving in
a straight line is given by the equation of motion
s - 4t3 + 6t + 2, where f is measured in seconds. Find
the velocity of the particle at times t - e, t : 1,, t - 2,

and/-3.

18. The displacement (in meters) of a particle moving in a

straight line is given by r : tv - 8r + 18, where f is
measured in seconds.
(a) Find the average velocities over the following time

i nterval s:

(i) [3, 4] (ii) [3. s, 4]
(iii) [4,5] (iv) [4,4.5]

(b) Find the instantaneous velocity when t : 4.

(c) Draw the graph of s as a function of r and draw the
secant lines whose slopes are the average velocities
in part (a) and the tangent line whose slope is the
instantaneous velocity in part (b).

19. A warm can of soda is placed in a cold refrigerator.
Sketch the graph of the temperature of the soda as a
function of time. Is the initial rate of change of temper-
ature greater or less than the rate of change after an

hour?

20. A roast turkey is taken from an oven when its temper-
ature has reached 185 "F and is placed on a table in a

room where the temperature is 75 "F. The graph shows
how the temperature of the turkey decreases ernd eventu-
ally approaches roorn temperature. (In Section 7.5 we
will be able to use Newton's Law of Cooling to find an
equation for f as a function of tirne .) By measuring the
slope of the tangent, estimate the rate of change of the
temperature after an hour.

T ("F)

l?00

l?0 r50.
qmln )

21. (a) Use the data in Exarnple 4 to find the average rate
of change of temperature with respect to time
(i) from 8 p"Ha. to I I P.M.

(ii) from I p.tr,t. to l0 p.rvl.

(iii) from 8 p.m. to 9 P.M.

(b) Estimate the instantaneous rate of change of Z with
respect to time at 8 p.M. by measuring the slope of a

tangent.

22. The population P (in thousands) of the city of San Jose,

California, from l9B4 to 1994 is given in the table.

Ycu r I rlti-l l (")l({r l9fiti l 9q0 t 99l Irlrl,J

I 6r)5 7 lfr '-'! -t -1

7r{l l.i0( ) f{ t7

23.

74.

(a) Find the average rate of growth
(i) from 1986 to 1992
(ii) from 1988 ro 1992
(iii) from 1990 to 1992
(iv) from 1992 to 1994
In each case, include the units.

(b) Estimate the instantaneous rate of growth in 1992
by taking the average of two average rates of
change. What are its units?

(c) Estimate the instantaneous rate of growth in 1992
by measuring the slope of a tangent.

The cost (in dollars) of producing r units of a certain
commodity is C("r) : 5000 + lgx + 0.05x2.
(a) Find the average rate of change of C with respect to

x when the production level is changed
(i) fromr*l00tox- 105

(ii) from r' - 100 to ,r - 101

(b) Find the instantaneous rate of change of C with
respect to ; wtren ,r : 100. (This is called the
n'targinal c:ost. Its significance u'ili be explained in
Section 3.3.)

If a cylindrical tank holds 10f1,000 gallons of water.
which can be drained from the bottom of the tank in
I h, then Torricelli's Law gives the volume V of water
rernaining in the tank after / rninutes as

v(t):roo.ooo(r #)' o=r<60

Find the rate at which the water is flowing out of the
tank (the instantaneous rate of change of V with respect
to r) as a function of /. What are its units? For tirnes
I : 0, l0 , 20, 30, 40, 50, and 60, find the f low rate and

the amount of- water remaining in the tank. Sumrnarize
your findings in a sentence or two. At what time is the
flow rate the sreatest? The least?
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Derivatives

In Section 2.6 we defined the
y : f (x) at the point where x :

trm:
We also saw that the velocity of
t_ais

slope of the tangent to a curve with equation

atobe

lim
/r ---+0 h

an object with position function s

f (a)

- f(r) at time

sciences or engineering,
in economics. Since this
and notation.

u(a) : lim
h ---0

In fact. limits of the form

f(o + h)

lim
/r -*0

f(a + h) f(a)

arise whenever we calculate a rate of change in any of the

such as a rate of reaction in chemistry or a marginal cost

type of limit occurs so widely, it is given a special name

f'(a) is read 'f prime of a."

E Definition The derivative of a function f at a numbet a, denoted by

f '(a), is

f'(a): l*
if this limit exists.

If wewritex- a + h,thenh- x
proaches a. Therefore, an equivalent way

as we saw in finding tangent lines, is

E

EXAMPLE I r Find
number a.

a and h approaches 0 if and only if x ap-

of stating the definition of the derivative,

f'(a): lim fQ) - f(a)
tXA

the derivative of the function /(x) - xz - 8x + 9 at the

SOIUT|ON From Definition 2 we have

f'(a): lim f(a + h) - f(a)
h

l(o + h)' 8(a + h) + 9l lo' 8a + 9l
h

a'+zah+h2 8a th+9 o'+8a 9

Zah + h2 th
h

-lim(2a + h 8)
h--O

h---+0

- lim
h---+O

-- lim
h---+O

h "-A

_2a 8 ffi
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FIGURE I

Geometric interpretation of the derivative

FIGURE 2

Thus, the geometric
as shown in Figure

In Section 2.6 we defined the tangent line to the curve y : f(x) at the point
P(a, f(a)) to be the line that passes through P and has slope m given by Equa-
tion l. Since, by Definition 2, this is the same as the derivativef'(a), we can now
say that

The tangent line to y : f (*) at (a,, f (n)) is the line through (a , f (o))
whose slope is equal to f'(a), the derivative of/ at a.

interpretation of a derivative [as defined by either (2) or (3)] is
l.

(a)/'(a):y:XW
- slope of tangent at P

- slope of curve at P

(b)/'(a):tgry=@
: slope of tangent at P

- slope of curve at P

If we use the point-slope form of the equation of a line, we can write an equa-
tion of the tangent line to the curve y : f(x) ar the point (a, f(a)):

y - f(a): f'(a)(x - o)

EXAMPLE 2 r Find an equation of the tangent line to the parabola
y : x2 - 8r * 9 at the point (3, -6).
SOLUTION From Example 1 we know that the derivative of f(x) : x' - 8-r * 9
at the number aisf'(a):2a - 8. Therefore, the slope of the tangent line at
(3,-6) is/'(3) :2(3) - 8 : -2. Thus, an equation of the tangenr line, shown
in Figure 2, is

EXAMPLE 3 t Let f(x) : 2'. Estimate the value of /'(0) in two ways:
(a) By using Definition 2 and taking successively smaller values of lr.

Ei tUl By interpreting/'(0) as the slope of a tangent and using a graphing calcu-
lator to zoom in on the graph of y : 2'.

SOLUTION

(a) From Definition 2 we have

,ffi

/'(o) - lim f@) : f(o) :rim 2h - r

h--o h h---+o h

Interpretation of the Derivative As the Slope of a Tangent

y : /(x) y : /(x)

/(x) - f(a)
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Zooming in on the graph of y -
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Since we are not yet able to evaluate this limit exactly, we use a calculator to
approximate the values of (2h - l)/ft. From the numerical evidence in the table
we see that as ft approaches 0, these values appear to approach a number near
0.69. So our estimate is

f'(o) = o'69

(b) In Figure 3 we graph the curve y : 2' and zoom in toward the point (0, l).
We see that the closer we get to (0, l), the more the curve looks like a straight
line. In fact, in Figure 3(c) the curve is practically indistinguishable from its
tangent line at (0, 1). Since the .r-scale and the y-scale are both 0.01, we estimate
that the slope of this line is

0.14_ - 0.7
0.20

So our estimate of the derivative is/'(0) : 0.7.In Section 3.5 we will show
that, correct to six decimal places,/'(0) -' 0.693147.

(b) [-0.5, 0.5] by [0. 5, I . 5] (c) [-0.1,0.r] bv [0.9, 1.1]

2'' near (0, I )

M Interpretation of the Derivative As a Rate of Change

In Section 2.6 we defined the instantaneous rate of change of y : /(.t) with re-
spect to x at x : .rr as the limit of the average rates of change over smaller and

smaller intervals. If the interval is [xr,rz], then the change in x is Lx : xz - xr,
the corresponding change in y is

Ay : f(xr) - 7Q)

t

and

tr instantaneous rate of change -
Av

lim
.l.r -0 AX .r2 --r I xp -x1

FromEquation3werecognizethislimitasbeingthederivative of f atxr, thatis,
,f'(x'). This gives a second interpretation of the derivative:

The derivativef'(a) is the instantaneous rate of change of y : f(x) with
respecttoxwhenx: a.
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FIGURE 4

The r-values are changing rapidly
at P and slowly at" Q.

The connection with the first interpretation is that if we sketch the curve
y -- f(x), then the instantaneous rate of change is the slope of the tangent to this
curve at the point where x : a. This means that when the derivative is large (and
therefore the curve is steep, as at the point P in Figure 4), the y-values change rap-
idly. When the derivative is small, the curve is relatively flat and the y-values
change slowly.

In particular, if s : "f(r) is the position function of a particle that moves along
a straight line, then/'(a) is the rate of change of the displacement s with respect to
the time /. In other words, f'(a) is the velocity of the particle at time I : a. (See

Section 2.6.) The speed of the particle is the absolute value of the velocity, that is,

I f'(a)1.

EXAMPLE 4 r The position of a particle is given by the equation of motion
s : f(t): l/(l + t), where t is measured in seconds and s in meters. Find the
velocity and the speed after 2 seconds.

SOtUTlOif The derivative of f when t : 2 is

f(2 + h) f(2)

1

r+Q+h) 1+2
f'(2) : lim

/r *0

3 (3+h)
3+h 3 3(3+h)

- lim 

-: 

lim 

-

tr--+o h h-o h

:lim h 
-lim 

I

tt*o 3(3 + h)lt /, 'o 3(3 + h) 9

speed isThus, the velocity after 2 s is f'(2)- - * */r, and the

l/'(2) l-l-+l:+m/s.
EXAMPLE 5 I A manufacturer produces bolts of a fabric with a fixed width.
The cost of producing -r yards of this fabric is C : f(x) dollars.
(a) What is the meaning of the derivative/'(x)? What are its units?
(b) In practical terms, what does it mean to say that/'(1000) : 9?

(c) Which do you think is greater,/'(50) or/'(500)? What about/'(5000)?

s0LUTlol{
(a) The derivative /'(x) is the instantaneous rate of change of C with respect

to r; that is, /'(x) means the rate of change of the production cost with respect to
the number of yards produced. (Economists call this rate of change the marginal
cosf. This idea is discussed in more detail in Sections 3.3 and 4.7.\

Because

f,(,):llg#
the units for f'(x) are the same as the units for the difference quotient LC/A,x.

Since AC is measured in dollars and A; in yards, it follows that the units for
f'(x) are dollars per yard.

(b) The statement that/'(1000) : 9 means that, after 1000 yards of fabric
have been manufactured, the rate at which the production cost is increasing
is $9/yard. (When ; : 1000, C is increasing 9 times as fast as x.)

- lim
h. *0

$#r
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Since A; : I is small compared with x : 1000, we could use the

approximation

/,(looo) -E:f :ot

and say that the cost ofmanufacturing the l000th yard (or the l00ls0 is about $9.

(c) The rate at which the production cost is increasing (per yard) is probably
lower when .x : 500 than when .x : 50 (the cost of making the 500th yard is
less than the cost of the 50th yard) because of economies of scale. (The manu-
facturer makes more efficient use of the fixed costs of production.) So

"f'(50) > /'(5oo)

But, as production expands, the resulting large-scale operation might become
inefficient and there might be overtime costs. Thus, it is possible that the rate of
increase of costs will eventually start to rise. So it may happen that

/'(5000)

The following example shows how to estimate the derivative of a tabular func-
tion, that is, a function defined not by a formula but by a table of values.

EXAMPLE 6 r Let P(4 be the population of the United States at time r. The
table at the left gives approximate values of this function by providing mid-
year population estimates from 1984 to 1992.Interpret and estimate the value
of P'(1988).

SOLUTION The derivative P'(1988) means the rate of change of P with respect to /
when / : 1988, that is, the rate of increase of the population in 1988.

According to Equation 3,

ffi

.. PG) - P(re88)
P'(1e88) : 

,Il]1, ---1188

So we compute and tabulate values of the difference quotient (the average rates

of change) as follows:

t
P(r ) - P( l9ttlt )

t - l98tt

9 tt,+

9t36

990

992

2^t7 I .750
?,18tt,500

2..459.000

2 .490.7 5 0

Another method is to plot the popula- From this table we see that P'(1988) lies somewhere between 2,188,500 and
tion function and estimate the slope of 2,459,000. We estimate that the rate of increase of the population of the United
the tangent line when t : 1988' (see States in 1988 was the average of these two numbers, namely
Example 4 in Section 2.6.)

P'(1988) : 2'3 million people/year I

t Plr\

9f{-+

r)ti6

98ri

990
t)L)2

236.370.(X)0

l-10.680.(xx)
2-+5 .05 7 .(XX)

l-19.e75.(xx)
255.020.(XX)



t56

f . On the given graph of f,
f (2),f (2 + h), f (2 + h)

mark lengths that represent

- f(2), and &. (Choose ft > 0.)
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Exercises

2.

What line has slope
+h)-f(2)1f(2

For the function / whose graph is shown in Exercise 1,

arrange the following numbers in increasing order and
explain your reasoning:

o f'(2) /(3) - f(2) ltrr+l - fQ)l
For the function g whose graph is given, arrange the
following numbers in increasing order and explain your
reason ing:

0 s'(-2) g'(0) s'(2) s'(4)

If the tangent line to )' : f(x) at (4,3) passes through
the point (0, 2), find f (1) and f '(4).

5. Sketch the graph of a function / for which /(0) : 0,

/'(0) - 3,f'(l) : 0, and f'(2) : - l.
6. Sketch the graph of a function g for which g(0) : 0,

g'(0) - 3, g'(1) : 0, and g'(2) : l.

7. If /(x) : 3x2 - 5x, find f'(2) and use it to find the
equation of the tangent line to the parabola

.y - 3xz - 5x at the point (2,2).

8. If g(x) : 1 - x', find g'(0) and use it to find an equa-
tion of the tangent line to the curve ) : I - x3 at the
point (0, 1).

g. (a) If F(x) - xu - 5x + l, find F'(l) and use ir ro
find an equation of the tangent line to the curve

)' - .tr' 5x + I at the point (1, -3).

f= G) Illustrate part (a) by graphing the curve and the
tangent line on the same screen.

10. (a) If G(x) - xl(l + 2x), find G'(a) and use ir ro find
an equation of the tangent line to the curve

.), - xl\ + Zx) at rhe poinr (- i,- +).

E= (b) Illustrate part (a) by graphing the curve and the
tangent line on the same screen.

f l. Letf(x) : 3'". Estimate the value of,f'(l) in two ways:
(a) By using Definition 2 and taking successively

smaller values of h.

n= (b) By zooming in on the graph of .y - 3* and
estimating the slope.

12. Let g(x) - tan r. Estimate
ways:
(a) By using Definition 2

smaller values of h.

n= (b) By zooming in on the
estimating the slope.

f 3-16 I Find f'(a).

13..f(x) - 1 * x - Zxz

14. /(x) - .r3 + 3x

15. /(x) : -+ .x*-l

16. /(.r) : nF- l

the value of g'(nl4) in two

and taking successively

graph of -y - tan x and

3.

4.

17-77 r Each limit represents the derivative of some func-
tion f at some number a. State / and a Ln each case.

17. lim
A --0

(2 + lr)' 8
18. lim 

-

/t=-o h

Ju - I
19. lim 

-

x -l J I

cosx * I
20. lim

-r*3n' X 3rr

21. lim
r +{)

3"{-l
22. lim 

--x*0 J

\F* o - |

h

,,"(f *')

Y 
: /(x)

)' - g(,r)

I



2l-24 r A particle moves along a straight line
tion of motion s - f (t), where s is measured in
r in seconds. Find the velocity when t : 2.

21. f(t) : tz 6t 5

24.f(t)-2t3-t+1

with equa-
meters and

25. The cost of producing .r ounces of gold from a new gold
mine is C : "f(") dollars.
(a) What is the meaning of the derivative f'(*)? What

are its units?
(b) What does the statement /'(800) - 17 mean?
(c) Do you think the values of ,f'(x) will increase or

decrease in the short term? What about the long
term? Explain.

26. The number of bacteria after / hours in a controlled
laboratory experiment is n : f(t).
(a) What is the meaning of the derivative/'(5)? What

are its units?
(b) Suppose there is an unlimited amount of space and

nutrients for the bacteria. Which do you think is
larger, /'(5) or f '(10)? If the supply.of nutrients is
limited, would that affect your conclusion? Explain.

27. The fuel consumption (measured in gallons per hour)
of a car traveling at a speed of u miles per hour is
c - f(a)'
(a) What is the meaning of the derivative f'(u)? What

are its units?
(b) Write a sentence (in layman's terms) that explains

the meaning of the equation f'(20) - -0.05.

28. The quantity (in yards) of a certain fabric that is sold

by a manufacturer at a price of p dollars per yard
is0-f(p).
(a) What is the meaning of the derivative /'(16)? What

are its units?
(b) Is "f'(16) positive or negative? Explain.
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Let C(t) be the price of coffee beans on the commodity
market at time f. The table gives values of C(r) in
dollars per kilogram. (Prices have been adjusted for
inflation and are quoted in constant 1990 dollars.) Inter-
pret and estimate the values of C'(1983) and C'(1990).

Life expectancy has improved dramatically in this cen-
tury. The table gives values of E(t), the life expectancy
at birth (in years) of a male born in the year / in the
United States. Interpret and estimate the values of
E'(1910) and E'(1950).

3l-32 r Determine whether or not/'(0) exists.

29.

30.

3l. /(x) :

32. f(x) -

ifx*0
if x - 0

if x +0

if x - 0

{;"'+

{;"i" 

I

Early Methods for Finding Tangents

The first person to formulate explicitly the ideas of limits and derivatives was Sir Isaac
Newton in the 1660s. But Newton acknowledged that "If I have seen farther than other
men, it is because I have stood on the shoulders of giants." Two of those giants were
Pierre Fermat (1601-1665) and Newton's teacher at Cambridge, Isaac Barrow
(1630-1677). Newton was familiar with the methods that these men used to find
tangent lines, and their methods played a role in Newton's eventual formulation of
calculus.

II l9nI Irltt2 l9t{3 l9t{-+ l9rt.5 tefi6

C(r ) 2.88 2.44 1.0.s 3.s2 ll9 L5(r

l l 987 l9tttt I 989 lgrx) t99l I 9el

C(r) 2.2,:I I .66 1.3 l I 2l l.lt{ 1.0,1

I t 900 l9l0 lc)10 19.10 t e+0

Elt l -ttt.3 51" l 55.2 5 7.-1 61.5

t
I 1950 I 960 1 970 l9riO 1 990

I:(t I 65.6 66.6 67.1 7f).0 7l.t{
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Tho following references contain explanations of these methods. Read one or more of
the references and write a report comparing the methods of either Fermat or Barrow to
modern methods. In particular, use the method of Section 2.7 to find an equation of the
tangent line to the curve l * x' + 7x at thepoint (1,3) and show how either Fermat or
Barrow would have solved the same problem. Although you used derivatives and they
did not, point out similarities between the methods.

f . Carl Boyer and Uta Merzbach, A History of Mathematics (New York: John Wiley,
1989), pp. 389,432.

2. C. H. Edwards, The Historical Development of the Calculus (New York: Springer-
Verlag, 1979), pp. 124, 132.

3. Howard Eves, Az Intoduction to the History of Mathematics, 6th ed. (New York;
Saunders, 1990), pp. 391,395.

4. Morris Kline, Mathematical Thought frorn Ancient to Modern Tirnes (New York:
Oxford University Press, 1972), pp.344,346.

The Derivative as a Function

In the preceding section we considered the derivative of a function f at a fixed num-
ber a:

f '(a) - lim
It' ,o

f(a + h) f(a)

Here we change our point of view and let the number d vary.
Equation 1 by a variable x, we obtain

If we replace a in

f '(r) - lim
/r "0

f(x + h) f(x)
It

Given any number,r for which this limit exists, we assign to x the number/'(x). So

we can regardf' as a new function, called the derivative of/and defined by Equa-
tion 2. We know that the value of f' at x, f '(x), can be interpreted geometrically as

the slope of the tangent line to the graph of f at the point (r, f(*)).
The function/' is called the derivative of/because it has been "derived" from/

by the limiting operation in Equation 2.The domain of/'is the set {xl f'(x) ex-
ists) and may be smaller than the domain of /.

EXAMPLE I I The graph of a function/is given in Figure 1. Use it to sketch the
graph of the derivative/'.

SOLUTION We can estimate the value of the derivative at any value of x by draw-
ing the tangent at the point (x, f(x)) and estimating its slope. For instance, for

tr

B

y: /(x,)

FIGURE I
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.x : 5 we draw the tangent at P in Figure 2(a) and estimate its slope to be about

l, so/'(5) - 1.5. This allows us to plot the point P'(5,1.5) on the graph of/'
directly beneath P. Repeating this procedure at several points, we get the graph
shown in Figure 2(b). Notice that the tangents at A, B, and C are horizontal, so

the derivative is 0 there and the graph of/' crosses the.r-axis at the points A',
B' , and C', directly beneath A, B, and C. Between A and B the tangents have
positive slope, so/'(x) is positive there. But between B and C the tangents have

negative slope, so/'(x) is negative there.

y : /(x)

(a)

y: f'(x) P' 15, I .5;

(b) ffi

If a function is defined by
mate values of its derivative,

a table of values, we can construct a table of approxi-
as in the next example.

FIGURE 2
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I

I I(r\

r) fl -l

9ti4
9ti5

986
r)ti7

c)8,\

c)f{9

c)90

9() l

r) 91

8.62

9.51

7.11)

5.e7

5.r{3

6.61

,s.l I

7 5r

5.-l r

3+6

Figure 3 illustrates Example 2 by show-
ing graphs of the treasury-bill rate
function 1(r) and its derivative I'(t).

I'(r990t) :

(This is the average rate
"have

EXAMPLE 2 r The interest rate on U.S. Treasury bills is a function of time. The
table at the left gives midyear values of this function 1(t) over a nine-year period
(as a percent per year.) Construct a table of values for the derivative of this
function.

SOLUTION We assume that there were no wild fluctuations in the interest rate
between the stated values. Let's start by approximating 1'(1990), the rate of
change of the interest rate in 1990. Since

I'(1990) : ls
/(1ee0 + h) /(1ee0)

r(r990 +

h

h) /(1ee0)
we have I'(1990) -

for small values of ft.
For h - l, we get

r(reer) - /(leeo) : 5.41 7.51 : -2.10I

of change between 1990 and 1991.) For ft - -1, we

r'(tggo) - /(1e8e) - I(leeo)
-(8.11 7.5t) - -0.60

which is the average rate of change between 1989 and 1990. We get a more
accurate approximation if we take the average of these rates of change:

/'(1990) -|1-Z.to -0.60) :-1.35

This means that in 1990 the interest rate on U.S. Treasury bills was decreasing
at a rate of about l.35qo per year.

Making similar calculations for the other values (except at the endpoints), we
get the table of approximate values for the derivative. r

v

l0

8

6

4

2

v - I(t)

1988 t992

-t
I I (/)

9S_l
() l{+

e ti5

986

e87

9 titi
r)l{ I
99( )

991

991

095
0.5(r5

ln0
0 81

0i5
l t-t

0 11

I ..1.s

-I015
|.e5

0

y - I',(t)

FIGURE 3
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EXAMPIE 3 T
(a) If /(.r) : xt - -r, find a formula for f'(x).

f: O) Illustrate by comparing the graphs of f and f' .

soLUTlor{
(a) When using Equation 2 to compute a derivative, we must remember that the
variable is lr and that,r is temporarily regarded as a constant during the calcu-
lation of the limit.

t6r

f '(x) - lim
h--->o

- lim
h--O

- lim
h ---+0

: lim
h---rO

- lim
h--0

+h3

h

x3 + 3x2h + 3xh2

h

x h x3 + x
h

3xzh + 3xh2 + h3 h

h

(3*' + 3xh + h2 l) - 3xz I

FIGURE 4

(b) We use a graphing device to graph/andf in Figure 4. Notice that
f'(r) :0 when/has horizontal tangents andf'(x) is positive when the tangents
have positive slope. So these graphs serve as a check on our work in part (a). *
EXAMPTE a t fff(x): J;, find the derivative ofl State the domain of/'.
SOLUTION

Here we rationalize the numerator.

(a)y-..6

(b) y':

FIGURE 5

f '(x) - lim
ir ---+0

- lim
h ---+0

- lim
h --+0

- lim
h---+0

- lim
h-='0

h

J.+h 'f
h

J.+h 6 J.+h + '/;
h

(x + h) x

,/*+n+r/;

h(rF+ h + ,/;)
1

{x+h+,,f
1l

I
2 rl;

Jv + Ji zrE

We see thatf'(x) exists if -r > 0, so the domainof f is (0,m). This is smaller
than the domain of J which is [0, oo). ffi

Let's check to see that the result of Example 4 is reasonable. When x is close

to 0, .',is also close to 0, so/'(-r) : l/(2.6-) ir very large and this corresponds
to the steep tangent lines near (0,0) in Figure 5(a). When-r is large,/'(x) is very
small and this corresponds to the flatter tangent lines at the far right of the graph.
Figure 5(b) shows the graph of the derivative y' : /'(-r). Notice the relationship
between the graphs of f and f' .
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Notations

If we use the traditional notation y

is x and the dependent variable is

the derivative are as follows:

: f (x) to indicate that
y, then some common

the independent variable
alternative notations for

f'(x) - y' - f(*): Df(x) : D,f(x)

The symbols D and dfdx are called differentiation operators because they

indicate the operation of differentiation, which is the process of calculating a

derivative.
The symbol dy/dx, which was introduced by Leibniz, should not be regarded as

a ratio (for the time being); it is simply a synonym for f'(x). Nonetheless, it is a

very useful and suggestive notation, especially when used in conjunction with in-
crement notation. Referring to Equation 4 in Section 2.7,we can rewrite the defini-
tion of derivative in Leibniz notation in the form

If we want to indicate the
cific numbet a. we use the

Av
- lim

Ax----o AX

derivative dyldr in Leibniz notation at a spe-

which is a synonym for f'(a).

EI Definition A function/is differentiable at a
entiable on an open interval (a,b) [or (4, oo) or
is differentiable at everv number in the interval.

it f '(a) exists. It is differ-
(-oo, a) or (-oo, co)] if it

EXAMPLE 5 I Where is the function/(x) - lxlAifferentiable?

$S-UTlOr If x > 0, then l*l - x and we can choose h small enough that

x + h

f'(x) - lim
h'O

l.r+ hl l"l

,. @+h) x'lT 
h

and so,f is differentiable for any x > 0.

Similarly, for x
thatx + h

f'(x) - lim
h'--O

lx + hl l"l

: lim
lr -_i0

d

dx
df
dx

dy_
dx

Gottfried Wilhelm Leibniz was born
in Leipzig in 1646 and studied law,

theology, philosophy, and mathematics
at the university there, graduating with
a bachelor's degree at age 17. After
earning his doctorate in law at age 20,

Leibniz entered the diplomatic service
and spent most of his life traveling to
the capitals of Europe on political
missions. In particular, he worked to
avert a French military threat against

Germany and attempted to reconcile
the Catholic and Protestant churches.

His serious study of mathematics

did not begin until 1572 while he was

on a diplomatic mission in Paris. There
he built a calculating machine and met
scientists, like Huygens, who directed
his attention to the latest developments

in mathematics and science. Leibniz
sought to develop a symbolic logic and

system of notation that would simplify
logical reasoning. In particular, the
version of calculus that he published in

1684 established the notation and the
rules for finding derivatives that we use

today.

Unfortunately, a dreadful priority
dispute arose in the 1690s between
the followers of Newton and those of
Leibniz as to who had invented calculus

first. Leibniz was even accused of pla-

giarism by members of the Royal

Society in England. The truth is that
each man invented calculus independ-
ently. Newton arrived at his version
of calculus first but, because of his

fear of controversy, did not publish it
immediately. So Leibniz's 1684 account

of calculus was the first to be published.

dy

dx

value of a
notation

I

dyl
d- l,:"

ay1or 
d* ],:"

h
-lim-h---0 h

--liml-l
lr -0

and h can be chosen small enough

ft). Therefore, for x

-hlim -: lim(-1): -l
h----o h h -'o

and so.f is differentiable for any x < 0.



For x - 0 we have to investigate

/'(o) - lim
h--r0

- lim
/r-0

h

lo+ hl lol

Let's compute the left and right limits separately:

lo+ hl lol
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(if it exists)

163

lim
ft --*0+ - lim

ir *0+

- lim
h -,0-

lim
h'--0+

lim I
h -rO+

th! :
h

lhl:
h

h

h -lh

lo + hl loland lim
h-.0-

-hlim 
-: 

lim (-l) - -1h-,0- n h -O-

Since these limits are different,,f'(0)
all x except 0.

A formula for /' is given by

and its graph is shown
ref lected geometrically
gent line at (0, 0). [See

does not exist. Thus, / is differentiable at

I
*1f'(x): {

in Figure 6(b).
in the fact that
Figure 6(a).1

ifx
ifx

The fact that f'(0) does not exist is
the curve y - | " I 

does not have a tan-

FIGURE 5 (a)y:f(x) :lxl

Both continuity and differentiability
have. The following theorem shows how

(b)y:-f'(;)

are desirable properties for a function to
these properties are related.

#

El ttreorem lt f is differentiable at a, then / is continuous at a.

Proof To prove that/is continuous aI a, we have to show that lim,-o f G) : f (a).
We do this by showing that the difference/(x) - f(a) approaches 0.
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rt,t _ f(a)f'(a):t\-ff
exists. (See Equation 3 in Section 2.7.)To connect the given and the unknown, we

divide and multiply /(x) - f(") by x - a (which we can do when x * a);

f(*) f(a) - f(*) - !(") u a)xa

Thus, using the Product Law and Equation 3, we can write

timlf(*) f(o)l:limfk)-f(")Q a)
--+e X A

To use what we have just proved, we start with/(x) and add and subtract/(a):

:1'S f@) + lg [/(") f(a)]

:f(a)+0:f(a)

Therefore, f is continuous at a.

@ iloTt . The converse of Theorem 4 is false; that is, there are functions that are

continuous but not diff'erentiable. For instance, the function f(x) : lx I is continu-
ous at 0 because

l'11/t') 
: 

I'g t'l 
: o: /(o)

(See Example 7 in Section 2.3.) But in Example 5 we showed that/is not differen-
tiable at 0.

The given information is that 
"f 

is differentiable at a, that is

f How Can a Function Fail to Be Differentiable?

In Example 5 we saw that the function y : lx I is not differentiable at 0. In general,

if the graph of a function/has "corners" or "kinks" in it, then the graph of/has no

tangent at those points and/is not differentiable there. [In trying to compute/'(a),
we find that the left and right limits are different.l

Theorem 4 gives another way for a function not to have a derivative. It says that

if/is not continuous at c, then/is not differentiable at c. So at any discontinuity
(for instance, a jump discontinuity)/fails to be differentiable.

tr



vertical
tangent
line

FIGURE 7
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A third possibility is that the curve has a vertical tangent line when x : a,
that is,/is continuous at a and

|'gl/'t')l:*
This means that the tangent lines become steeper and steeper as r ---> a. Figure 7
shows one way that this can happen; Figure 8(c) shows another. Figure 8 illustrates
the three possibilities that we have discussed.

(a) A comer (b) A discontinuity (c) A vertical tangent

A graphing calculator or computer provides another way of looking at differen-
tiability. Iflis differentiable at a, then when we zoom in toward the point (a, f (a))
the graph straightens out and appears more and more like a line. (See Figure 9. We
saw a specific example of this in Figure 3 in Section 2.7.) Blt no matter how much
we zoom in toward a pclint like the ones in Figures 7 and 8(a), we cannot eliminate
the sharp point or corner. (See Figure 10.)

FIGURE 8

Three ways for / not to be

differentiable at a

FIGURE 9

/ is differentiabl e 
^t 

a

FIGURE IO

/ is not differentiable at a

If/is a differentiable function, then its derivative/'is also a function, so/'may
have a derivative of its own, denoted by (f')' : /". This new function/" is called
the second derivative of/because it is the derivative of the derivative of/. Using
Leibniz notation, we write the second derivative of y : /(x) as

: d'y
dx2*(#)

Derivative
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FIGURE II

.s

r20

100

80

60

4A

20

FIGURE I2
Position function of a car

EXAMPLE6 t If/(x)

S$l-tiTl$ru In Example
the second derivative

-3t,

3we
is

x, find and interpret f "(x).

found that the first derivative is /'(x) : 3xz 1. So

h

[3(x + h)' 1] l3*' 1l

f"(x) - lim
hnO

: lim
h--O

-Iim
/r *0

-- lim
A ---0

h

3x2 + 6xh + 3hz 1 - 3xz + I

(6x + 3h):6x

The graphs of f, f ' , and f " are shown in Figure 1 l.
We can interpretf"(x) as the slope of the curve y: f'(x) at the point

(", f'(x)).In other words, it is the rate of change of the slope of the original
curve y : f(*).

Notice from Figure ll thatf"(x) is negative when y : f'(*) has negative slope

and positive when y : f'(") has positive slope. So the graphs serve as a check

on our calculations. tr

In general, we can interpret a second derivative as a rate of change of a rate

of change. The most famous example of this is acceleration, which we define

as follows.
If s : s(l) is the position function of an object that moves in a straight line, we

know that its first derivative represents the velocity u(t) of the object as a function
of time:

u(t):s'1t1 :!!
dt

The instantaneous rate of change of velocity with respect to time is called the

acceleration a(t) of the object. Thus, the acceleration function is the derivative of
the velocity function and is therefore the second derivative of the position function:

or, in Leibniz notation,

a(t)- u'(t): s"(r)

da d'sa: a: dr,

EXAMPLE 7 r A car starts from rest and

shown in Figure 12, where ,s is measured

graph the velocity and acceleration of the

t - 2 seconds?

$SLilTISN By measuring the slope of the

and 5, and using the method of Example

the graph of its position function is

in feet and / in seconds. Use it to
car. What is the acceleration at

graph of s : f (t) at t - 0, 1,2,3,, 4,

1, we plot the graph of the velocity



The units for acceleration are feet per
second per second, written as ft/sz.
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function o: f'(t) in Figure 13. The acceleration when r: 2 s is a: f'(2),the
slope of the tangent line to the graph of /'when t -- 2.We estimate the slope of
this tangent line to be

a(2) : f'(2) : u'(2) - ! : e r1"'
J

Similar measurements enable us to graph the acceleration function in Figure 14.

FIGURE I3
Velocity function

FIGURE I4
Acceleration function *

usually denoted
tained from f by

The third derivative f "' ,s the derivative of the second
So /"'(x) can be interpreted as the slope of the curve y -
change of f"(x). tf y : f (*), then alternative notations for

j"": f"'(x):+(t+\:+' dx \d*' I dx3

The process can be continued. The fourth derivative /"" is
In general, the nth derivative of/is denoted by fvt and is ob
entiating n times. If y : f (*), we write

derivative: f"' : (f")'.
f " (r) or as the rate of
the third derivative are

by f 'o'.
differ-

,at: ya\x) _ d"y

dxn

EXAMPLE a t If f(x): x'- x,findf"'(x) and/(a)("r).

S0tUIlOt{ In Example 6 we found thatf"(x): 6.r. The graph of the second
derivative has equation y : 6x and so it is a straight line with slope 6. Since
the derivative f"'(*) is the slope of f"(x), we have

f"'(x) : 6

for all values ofx. Solf"'is a constant function and its graph is a horizontal line.
Therefore, for all values of x,

I-fto'(r) : o

We can interpret the third derivative physically in the case where the function is
the position function s : s(t) of an object that moves along a straight line. Since
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l-2 I Use the given graph to estimate the value of each

derivative. Then sketch the graph of f'.
3. Match the graph of each function in (a)-(d) with the

graph of its derivative in I-IV. Give reasons for your
choices.

CHAPTER 2 LII'IITS Al{D DERI|,ATIVES

J"' : (s")' : a' , the third derivative of the position function is the derivative of the

acceleration function and is called the jerk:

. da d's
t dt dt3

Thus, the jerk j is the rate of change of acceleration. It is aptly named because a

large jerk means a sudden change in acceleration, which causes an abrupt move-

ment in a vehicle.
We have seen that one application of second and third derivatives occurs in ana-

lyzing the motion of objects using acceleration and jerk. We will investigate an-

other application of second derivatives in Section 2.10, where we show how

knowledge of /" gives us information about the shape of the graph of I In Sec-

tion 8.9 we will see how second and higher derivatives enable us to obtain more

accurate approximations of functions than linear approximations and also to repre-

sent functions as sums of infinite series.

Exercises

l. (a) /'(1)
(c ) f '(3)

2, (a) /'(0)
(c) f'(2)
(e) f'(4)

(b) f'(2)
(d) f'(4)

(b) /'(l)
(d) f'(3)
(f) 

"f'(5)

(a)



4*fl3 ffi Trace or copy
(Assume that the axes
method of Example I

the graph of the given function /
have equal scales.) Then use the
to sketch the graph of f' below it.
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l4-16 I Make a careful sketch of the graph of/and below
it sketch the graph of f in the same manner as in Exer-
cises 4-13. Can you guess a formula for f'(*) from its
graph?

14. f(x) - sin x

16. f(x) : lnx

15. /(x) - e*

n= 17. Let f (x) : xt.
(a) Estimate the values of /'(0) ,f'(*),, f'(l), and f,(:Z)

by using a graphing device to zoom in on the graph
ot f.

(b) Use symmetry to deduce rhe values of /'(- + ),
f'(-l), and f'(-Z).

(c) Use the results from parts (a) and (b) to guess a
formula for /'(x). '

(d) Use the definition of a derivative to prove that your
guess in part (c) is correct.

n= 18. Let f (x) : xt.
(a) Estimare rhe values of /'(0) ,,f'(i),.f'(t), f'(Z), and

f'(3) by using a graphing device to zoom in on rhe
graph of"f,

(b)

(c)
(d)
(e)

Use symmetry to deduce the values of /'(- + ),
f '(- l),,f'( -2), and f'(-3).
Use the values from parts (a) and (b) to graphl''.
Guess a formula for f'(*).
Use the definition of a derivative to prove that your
guess in part (d) is correct.

l9-23 r Find the derivative of the given function using the
definition of derivative. State the domain of the function
and the domain of its derivative.

20. f(x) : x' - x' + 2x

22. g(x)
1

x'

19. /(x) : 5x + 3

2t. g(x) - Jr + 2;

x + I
23. 11x ) :- x- I

24. (a) Sketch the graph of f(x) - ,16 x by starring with
the graph of y - rf and using the transformations
of Section 1 .2.

(b) Use the graph from parr (a) ro sketch rhe graph

(c) ll{';n* definition of a derivarive ro find f'(x). what
are the domains of f and f'?

f! (d) Use a graphing device to graph /' and compare with
your sketch in part (b).

25. (a) If /(x) : x (2/*), find f '(*).n= .') 
:,1'.',\Jil:::ffIlff ,il';ffi: :? ; jll ;, :"

26. (a) If/(r) :61(l + r2), findf'(t).
E= ft) :,Tt':ffi;iffJilJ ;lil'Jj;ifi:fl " 

reason
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27.

28.

29.

30.

CHAPTER 2 tII'IITS AIID DERI',ATIVES

The unemployment rate U(t) varies

gives the percentage of unemployed
force from 1983 to 1992.

with time. The table

in the U.S. labor

t
I l98t{ 19t39 I 990 ti)9 I I 9ql

Ll(r) 5.4 5.2 5.4 6.6 1.3

(a) What is the meaning of U'(t)7 What are its units?

(b) Construct a table of values for U'(t).

Let the smoking rate among high-school seniors at time

/ be S(r). The table gives the percentage of seniors who

reported that they had smoked in the past 30 days.

I tL)77 lgTr) I t)f{ I l9t{l t9tt5

S(r ) 1t{ 1.1 l9 3r 30

t
I l9t{7 l9tt9 tq9l I 993

5(r ) l9 2t{ 27 30

(a) What is the meaning of S'(r)? What are its units?

(b) Construct a table of values for S'(r).

(c) Graph S and S'.

(d) How would it be possible to get more accurate

values for S'(r)?

The graph of / is given. State, with reasons, the
numbers at which f is not differentiable.

Graph the function f (x)_ x + tfiil Zoom in
repeatedly, first toward the point (-1,0) and then

toward the origin. What is different about the behavior
of f in the vicinity of these two points? What do you

conclude about the differentiability of /?

Zoom in toward the points (1,0), (0, 1), and (-1,0) on

the graph of the function g(x) : ("t l)tl'. What do

you notice? Account for what you see in terms of the

differentiability of g.

The figure shows the graphs of f, f', and f".Identify
each curve, and explain your choices.

The figure shows graphs of f, f', f", and f"'.Identify
each curve, and explain your choices.

The figure shows the graphs of three functions. One is

the position function of a car, one is the velocity of the

car, and one is its acceleration. Identify each curve, and

explain your choices.

The figure shows the graphs of four functions. One is

the position function of a car, one is the velocity of the

The graph of g is given.
(a) At what numbers is g
(b) At what numbers is g

discontinuous? Why?
not differentiable? Whv?

EE rr.

EE rz.

33.

34.

35.

t t9f(3 l9lt:l l9r{5 l e86 l 9n7

tJ(r) 9.5 7 .,1 t.l 6.9 6.1

,r,,rr," b

ab c d

\^\lw=\
36.



car, one is its acceleration, and one is its jerk. Identify
each curve, and explain your choices.

SECTION 2.9 LIl'{[AR APPRO)(II,IATIO|'lS tfl

(b) Use the acceleration curve from part (a) to estimate
the jerk at / * 10 s. What are the units for jerk'/

Let /(x) - J;.
(a) If a # 0, use Equation 3 in Section 2.7 to find .f'(a).
(b) Show that /'(0) 99.s nor exisr.
(c) Show that .l' : i/x has a vertical tangent line at

(0, 0). (Recall the shape of the graph of "f See

Figure 5 in Section 1.2.)

(a) If g(x) : rt''t, show that .r/'(0) does not exist.
(b) lf a * 0, find g'{a).
(c) Show that ), : tr'l'/r has a r,'ertical tangent line

ar (0' 0).
(d) Illustrate part (c) by graphing .y - rt"t.

Show that the I'unction /'(x) - I,r 6 | is nor clil'-
ferentiable at 6. Find a formula for f' and sketch its
graph.

44. (a) Sketch the graph of the function/(*) : ",r lx i.
(b) For what values of x is 

"f differentiable?
(c) Find a formula for/'.

45. Recall that a function,f is calle d et,en if /(-x) : ,f(r)
for all x in its domain and odd if f(-x) - - f(*) for all
such x. Prove each of the following.
(a) The derivative of an even function is

function.
(b) The derivative of an odd function is

function.

4r.

[! f Z*f A t [Jse the definition of a derivative ro

f"(x). Then graph f, f',,and,f" on a common
check to see if your answers are reasonable.

37. f(x) : I + 1x rt 38. f(x) - t/x

find /'(r) and
screen and

ng'lr

47.

43.

39. If /(x) - Zx2 - xr. find J^'k), f"(x), f "'(x), and,f ,0,(").

Graph .f, .f', /", and J'"' on a common screen. Are the
graphs consistent with the geometric interpretations of
these derivatives?

40. (a) The graph of a position function of a car is shown.
where s is measured in feet and r in seconds. [Jse it
to graph the velocity and acceleration of the car.
What is the acceleration at / : l0 seconds?

an odd

an even

46. When you turn on a hot-water faucet, the temperature r
of the water depends on how long the water has been
running.
(a) Sketch a possible graph of f as a function of the

time / that has elapsed since the faucet was turned
on.

(b) Describe how the rate of change of 7 with respect to
/ varies as r increases.

(c) Sketch a graph of the derivative of f.

Linear Approximations

We have seen that a curve lies very close to its tangent line near the point of tan-
gency. In fact, by zooming in toward a point on the graph of a differentiable func-
tion, we noticed that the graph looks more and more like its tangent line. (See

Figure 2 in Section 2.6 and Figure 3 in Section 2.7.) This observation is the basis
for a method of finding approximate values of functions.

The idea is that it might be easy to calculate a value f(a) of a function, but
difficult (or even impossible) to compute nearby values of I So we settle for the
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FIGURE I

-0.5 1 .

FIGURE 2

We will see in Sections 3.8 and 8.9 that
linear approximations are very useful in

physics for the purpose of simplifying a

calculation or even an entire theory.

I + 0.69

easily computed values of the linear function I whose graph is the tangent line of

f at (a, /(a)). (See Figure 1.) The following example illustrates the method.

EXAMPLE ; r Use a linear approximation to estimate the values of 20t and2o1.

SOLUTION The desired values are values of the function/(x) :2" near a:0.
From Example 3 in Section 2.7 we know that the slope of the tangent line to the

curve y : 2' at the point (0, l) is/'(0) - 0.69. So the equation of the tangent

line is approximately

y - 1 --0.69(x - 0) or y : I + 0.69.r

Because the tangent line lies close to the curve when x : 0.1 (see Figure 2), the

value of the function is almost the same as the height of the tangent line when

x : 0.1. Thus

Similarly,

2{tr - /(0.1) : I + 0.69(0.1) - 1.069

204: /(0.4) : I + 0.69(0.4) - 1.276

It appears from Figure 2 that our estimate for 20' is better than our estimate

for 20 
a and that both estimates are less than the true values because the tangent

line lies below the curve. In fact. this is correct because the true values of these

numbers are

20t:1.07111 ...

use the tangent line at (a,

is near a. An equation of

zo 
4 
- 1.31950.

and the approximation

is called the linear approximation or tangent line approximation of/at a.The
linear function whose graph is this tangent line, that is,

L(x): f(a) + f'(a)(x - a)

is called the linearization of fat a.

EXAMPLE 2 r Find the linear approximation for the function/(.r) : Jx ar

a : l. Then use it to approximate the numbers JUgg, Jlil, and .,/1.05. Are
these approximations overestimates or underestimates?

SOLUTION We first have to find/'(l), the slope of the tangent line to y : Ji
whenx : 1. We could estimate/'(l) using numerical or graphical methods as

in Section 2.7, or we could find the value exactly using the definition of a

derivative. In fact, in Example 4 in Section 2.8, we found that

0.5

r#

In general, we

)' - f (x) when x
f (a)) u* an approximation to the curve

this tangent line is

1

2Jxf'(x)
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and so /'(l) - Therefore, an equation of the

UI-y r- 1) or

l_
2. tangent line at (1, 1) is

y-** + +iG
and the linear approximation is

6 : L6):
In particular, we have

.t6.ee - L(o.ee):;(g.ee) + j: o.ws

/rJr- - L(l.ol) : jll.ory + j : r.oos

/r^ot - L(1.05) : j(r.os) + ): t.ozs

In Figure 3 we graph the root function y : Ji and its linear approximation
L(x): i* + i. We see that our approximations are overestimates because the
tangent line lies above the curve.

In the following table we compare the estimates from the linear approxima-
tion with the true values. Notice from this table, and also from Figure 3, that

,.s tht tangent line approximation gives good estimates when -r is close to I but
the accuracy of the approximation deteriorates when .r is farther away from l.

Frorrr /,( r') l\ctuill vitluc

1\ ).99

t.(x)l

ior
rii:
t.l
*.t\

0.99.s

l.(xx)5

l .(x)5

I.015

1 .05

l.l5
r.5

). r)r)_lr) s 7+-1

.(xx)-lee87

(x)-19fi756

"01-169507

.0-1ti 808 8-l

.ll-17-l-+rJ7

.-+ 142 r.156

Of course, a calculator can give us better approximations than the linear ap-
proximations we found in Examples I and 2. But a linear approximation gives an
approximation over an entire interval and that is the reason that scientists often use
such approximations. (See Sections 3.8 and 8.9.)

The following example is typical of situations in which we use a linear approxi-
mation to predict the future behavior of a function given by empirical data.

EXAMPIE 3 r Suppose that after you stuff a turkey its temperature is 50 "F and
you then put it in a 325"F oven. After an hour the meat thermometer indicates
that the temperature of the turkey is 93'F and after two hours it indicates
129"F. Predict the temperature of the turkey after three hours.

SOLUTfON ff f G) represents the temperature of the turkey after t hours, we are
given that f(0) : 50, f(l) : 93, and fQ) : 129. lnorder to make a linear
approximation with a : 2, we need an estimate for the derivative 7'(2). Because

|* + +

FIGURE 3

ffi

-0.5
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l. (a) If /(x) - 3', estimate the value of /'(0) either
numerically or graphically.

(b) Use the tangent line to the curve.)'- 3'at (0, 1)

to find approximate values for 30'05 and 30''.

(c) Graph the curve and its tangent line. Are the
approximations in part (b) less than or greater

than the true values? Whv?

2. (a) If /(x) _ ln r. estirnate the value of ./'(1)
graphically.

(b) Use the tangent line to the curve .)' - ln r at (1,0)
to estimate the values of ln 0.9 and ln 1.3.

(c) Graph the curve and its tangent line. Are the esti-
mates in part (b) less than or greater than the true
values? Why?

3. (a) If /(x) - :l;, estimate the value of /'(l).
(b) Find the linear approximation for/ at a : l.
(c) Use part (b) to estimate the cube roots of the num-

bers 0.5, 0.9, 0.99, 1 .01 , 1.1, I .5, and 2. Compare
these estimates with the values of the cube roots
from your calculator. Did you obtain underestimates
or overestimates? Which of vour estimates are the
most acc u rate'l

CHAPTER 2 LII'IITt AI{D DERIVAII'lTS

we could estimate T'(2) by the difference quotient with t : 1:

T'(2) - r0 - T@ - 93 - -129 :36
L - L -1

This amounts to approximating the instantaneous rate of temperature change by
the average rate of change between t : I and t : 2. which is 36'F/h. With this
estimate, the linear approximation for the temperature after 3 h is

T(3)*T(2)+T'(2)(3-2)
:129+'36'1:165

So the predicted temperature after three hours is 165'F.
We obtain a more accurate estimate for T'(2) by plotting the given data, as in

Figure 4,and estimating the slope of the tangent line at t:2tobe

T'(21 : 33

Then our linear approximation becomes

T(3) : r(2) + T'(2)' | - r29 + 33 : 162

and our improved estimate for the temperature is 162 "F.

Because the temperature curve lies below the tangent line, it appears that the
actual temperature after three hours will be somewhat less than 162'F, perhaps

closer to 160"F. ffi

Exercises

NJ
IT (d) Graph the curve y - :/i and its tangent line at

(1, l). Use these graphs to explain your results from
parr (c).

fE 4. (a) If /(x) - cosr, estimate the value of f'(nl3).
(b) Find the linear approximation for./'at cI : nl3.
(c) Use the linear approximation to estimate the values

of cos I, cos 1.1, cos 1.5, and cos 2. Are these under-
estimates or overestimates? Which of vour estimates
are the most accurate?

(d) Graph the curV€ l - cos r and its tangent line at

bl3, +). Use these graphs to explain your results
from part (c).

5-5 I
(a) Use the definition of a derivative to compute /'(1).
(b) Use the linear approximation for f at a_ I to estimate

/(x) for x - 0.9, 0.95, 0.99, 1.01, 1.05, and 1.1. How do
these estimates compare with the actual values?

EE t*l Graph/and its tangent line at (1,1).Do the graphs sup-
port your comments in part (b)?

5. l'(x) - .tr2 6. ,f(r) - x3

7. The turkey in E,xample 3 is removed from the oven

when its temperature reaches 185 "F and is placed on a

NJ,IJ

ngII
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table in a room where the temperature is 75 "F. After
10 minutes the temperature of the turkey is Il}'F and

after 20 minutes it is 160'F. Use a linear approximation
to predict the temperature of the turkey after half an

hour. Do you think your prediction is an overestirnate
or an underestimate? Why?

Atmospheric pressure P decreases as altitude /r

increases. At a temperature of l5 "C, the pressure is
101.3 kilopascals (kPa) at sea level, 87.1 kPa at

h- I krn, and 74.9 kPa at h - 2 km. [Jse a linear
approximation to estimate the atmospheric pressure at

an altitude of 3 km.

The table gives the percentage of high-school seniors

who said they were smokers (in the sense that they had

smoked in the past 30 days). lJse a linear approximation
to estimate the smoking rate among high-school seniors
in 1994 and 1995.

I I 9S9 l9u{) | -(.)tl I Itlq: l9rll

"\(r) trL'
-{'} lq lr{ 17.5 l0

SECTION 2.IO Wt|AT DOIS f' sAY ABOUT f ? 17,

(a) Use a linear approximation to predict the bee popu-
lation after 18 weeks and after 20 weeks.

(b) Are your predictions underestirnates or over-
estimates? Why?

(c) Which of your predictions do you think is the more

accurate'l Whv'l

Suppose that the only information we have about a func-
tion"/ is that/(1) : 5 and the graph of its derivative is
as shown.
(a) Use a linear approximation to estimate/(0.9)

and/(l.l).
(b) Are your estimates in part (a) too large or too

small? Explain.

il.

9.

t0. The figure shows
honevbees raised

the graph of a population of Cyprian
in an apiary.

17. Suppose that we don't have a formula for g(x) but we

know that g(2)- -4 and g'(x) - vtt +5 for all x.
(a) Use a linear approximation to estimate g(1.95)

and s(2.05).
(b) Are your estimates in part (a) too large or too

small? Explain.

What Does f'Say about f ?

Many of the applications of calculus depend on our ability to deduce facts about a

function / from information concerning its derivative /'. Because /'(x) represents

the slope of the curve y : f(*) at the point (x, f(r)), it tells us the direction in
which the curve proceeds at each point. So it is reasonable to expect that informa-
tion about/'(-r) will provide us with information about/(x).

In particular, to see how the derivative of/can tell us where a function is in-
creasing or decreasing, look at Figure 1. (Increasing functions and decreasing

functions were defined in Section 1.1.) Between A and B and between C and D, the

tangent lines have positive slope and so /'(x) ) 0. Between -B and C, the tangent
lines have negative slope and so/'(x) < 0. Thus, it appears that/increases when

/'(x) is positive and decreases when/'(x) is negative.

Number of bees
(in thousands)

Time (in weeks)

FIGURE I
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FIGURE 2

FIGURE 3

It turns out, &s

graphed in Figure
in Chapter 4, that what we
true. We state the general

observed for the function
result as follows.

we will see

1 is always

exnupt'p I r
(a) If it is known that the graph of the derivative f' of a function is as shown in
Figure 2,what can we say about/?
(b) If it is known that /(0) : 0, sketch a possible graph of I
so[uTtoll
(a) We observe from Figure 2thatf'(x) is negative when -l ( x ( l, so the
original function/must be decreasing on the interval (-1,1). Similarly,/'(x) is
positive forr ( -l and forx ) l, so;f is increasing on the intervals (--,-l)
and (1,o). Also note that, since/'(-l) : 0 and/'(l) : 0, the graph of/has
horizontal tangents when r : al.
(b) We use the information from part (a), and the fact that the graph passes

through the origin, to sketch a possible graph of/in Figure 3. Notice that
,f'(0) : -1, so we have drawn the curve y : f(x) passing through the origin
with a slope of -1. Notice also that/'(x) - I as x --->'rcr, (from Figure 2). So

the slope of the curve y : f(x) approaches 1 as x becomes large (positive or
negative). That is why we have drawn the graph of/in Figure 3 progressively
straighter as .r -> +oo.

tr

We say that the function/in Example I has a local maximum at -l because
near x: -l the values of f(x) are at least as big as the neighboring values. Note
that/'(-r) is positive to the left of - I and negative just to the right of - 1. Similarly,
/has a local minimum at l, where the derivative changes from negative to posi-
tive. In Chapter 4 we will develop these observations into a general method for
finding optimal values of functions.

I WhatDoesJ SayaboutJ?

Let's see how the sign of f"(x) affects the appearance

f " - (f ')', we know that rf f"(x) is positive, then/' is an
says that the slopes of the tangent lines of the curve y -

of the graph of f. Since

increasing function. This

f (x) increase from left to

It f '(x)

It f '(x)

on an interval, then,f is

on an interval, then "f is

increasing on that interval.

decreasing on that interval.

y: f '(xl

y : /(x)
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right. Figure 4 shows the graph of such a function. The slope of this curve be-
comes progressively larger as x increases and we observe that, as a consequence,
the curve bends upward. Such a curve is called concave upward. In Figure 5,
however,/"(.r) is negative, which means that/' is decreasing. Thus, the slopes of/
decrease from left to right and the curve bends downward, This curve is called
concave downward. We summarize our discussion as follows. (Concavity is dis-
cussed in greater detail in Section 4.3.)

FIGURE 4

Since f "(x) > 0, the slopes increase

and f is concave upward.

FIGURE 5

Since f "(x) < 0, the slopes decrease
and / is concave downward.

FIGURE 6

If f"(x) > 0 on an interval, then"f is concave upward on that interval.

If f"(x) < 0 on an interval, then"f is concave downward on that interval.

EXAMPLE 2 r Figure 6 shows a population graph for Cyprian honeybees raised
in an apiary. How does the rate of population increase change over time? When
is this rate highest? Over what intervals is P concave upward or concave
downward?

Number of bees
(in thousands)

Time (in weeks)

SOLUTIOI{ By looking at the slope of the curve as t increases, we see that the
rate of increase of the population is initially very small, then gets larger until it
reaches a maximum at about t : 12 weeks, and decreases as the population
begins to level off. As the population approaches its maximum value of about
75,000 (called the carrying capacity), the rate of increase, P'(r), approaches 0.
The curve is concave upward on (0,12) and concave downward on (12,18). il

y : /(x) y : l(x)
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In Example 2, the population curve changed from concave upward to concave

downward at approximately the point (12,38,000). This point is called an inflec-
tion point of the curve. The significance of this point is that the rate of population
increase has its maximum value there. In general, a point where a curve changes

its direction of concavity is called an inflection point.

EXAMPTE 3 I Sketch a possible graph of a function/that satisfies the following
conditions:

(i) f'(*) > 0 on (-o, l), f'(x) < 0 on (1, m)

(iD f"(x) > 0 on (-m, -2) and, (2,a), f"(") < O on (-2,2)
(iii) lim /(x) : -2, lim /(x) : 0

SOIUTIOI{ Condition (i) tells us that/is increasing on (-m,l) and decreasing on
(1,o). Condition (ii) says that/is concave upward on (-oo, -2) and (2,0o), and

concave downward on (-2,2). From condition (iii) we know that the graph of /
has two horizontal asymptotes: y : -2 and y : 0.

We first draw the horizontal asymptote y : -2 as a dashed line. (See

Figure 7.) We then draw the graph of/approaching this asymptote at the far
left, increasing to its maximum point at x : I and decreasing toward the x-axis
as r --t co. We also make sure that the graph has inflection points when x : -2
and 2. Notice that the curve bends upward for .r ( -2 and x ) 2, and bends

downward when x is between -2 and 2.

FIGURE 7

I Antiderivatives

t

In many problems in mathematics and its applications, we are given a function /
and we are required to find a function F whose derivative isl If such a function F
exists, we call it an antiderivative ofl In other words, an antiderivative of/is a

function F such that F' : I (In Example I we sketched an antiderivative / of the

function /i)

EXAMPLE 4 r Let F be an antiderivative of the function/whose graph is shown

in Figure 8.

(a) Where is F increasing or decreasing?
(b) Where is F concave upward or concave downward?
(c) At what values of x does F have an inflection point?



y : /(x)

FIGURE 8
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(d) If F(0) : 1, sketch the graph of F.
(e) How many antiderivatives does/have?

s0tuTt0N
(a) We see from Figure 8 that/(x) ) 0 for all.r ) 0. Since F is an anti-
derivative of J we have F'(x) : f(x) and so F'(-r) is positive when x > 0. This
means that F is increasing on (0,co).

(b) F is concave upward when F"("r) > 0. But F"(x) : /'(x), so F is concave

upward when/'(x) > 0, that is, when/is increasing. From Figure 8 we see that/
is increasing when 0 I x 1 I and when x ) 3. So F is concave upward on (0,1)
and (3,m). F is concave downward when F"(.r) : f'(x) < 0, that is, when/is
decreasing. So F is concave downward on (1,3).

(c) F has an inflection point when the direction of concavity changes. From
part (b) we know that F changes from concave upward to concave downward at

x: l, so Fhas an inflection point there. Fchanges from concave downward to
concave upward when x : 3, so F has another inflection point at x : 3.

(d) In sketching the graph of 4 we use the information from parts (a), (b),

and (c). But, for finer detail, we also bear in mind the meaning of an anti-
derivative:Because F'(x): f(x),the slopeof y: F(x) atanyvalueof xisequal
to the height of y : /(x). (Of course, this is the exact opposite of the procedure

we used in Example I in Section 2.8 to sketch a derivative.)
Therefore, since/(0) : 0, we start drawing the graph of F at the given point

(0, l) with slope 0, always increasing, with upward concavity to .r : l, down-
ward concavity to r : 3, and upward concavity when .r > 3. (See Figure 9.)
Notice that/(3) - 0.2, so y : F(x) has a gentle slope at the second inflection
point. But we see that the slope becomes steeper when r ) 3.

FIGURE 9

An antiderivative of /
FIGURE IO

Members of the family of
antiderivatives of /

(e) The antiderivative of/that we sketched in Figure 9 satisfies F'(0) : 1, so its
graph starts at the point (0, l). But there are many other antiderivatives, whose

graphs start at other points on the y-axis. In fact,/has infinitely many anti-
derivatives; their graphs are obtained from the graph of F by shifting upward or
downward as in Figure 10. I

-y 
: F(x)
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f -2 r The graph of the derivative f'of a function / is

shown.
(a) On what intervals is / increasing or decreasing?
(b) At what values of x does / have a local maximum or

minimum?
(c) If it is known that/(01 : 0, sketch a possible graph ofl

CHAPTER 2 LII,IIII AI{D DERI\'ATI\'ES

Exercises

(a) Sketch a curve whose slope is always positive and

i ncreasing.
(b) Sketch a curve whose slope is always positive and

decreasing.
(c) Give equations for curves with these properties.

The president announces that the national deficit is
increasing, but at a decreasing rate. Interpret this
statement in terms of a function and its derivatives.

A graph of a population of yeast cells in a new labora-
tory culture as a function of time is shown.
(a) Describe how the rate of population increase varies.
(b) When is this rate highest?
(c) On what intervals is the population function con-

cave upward or downward?

(d) Estimate the coordinates of the inflection point.

7. The table gives population densities for ring-necked
pheasants (in number of pheasants per acre) on Pelee
Island, Ontario.
(a) Describe how the rate of change of population

varies.
(b) Estimate the inflection points of the graph. What

is the significance of these points?

A particle is moving along a horizontal straight line.
The graph of its position function (the distance to the
right of a fixed point as a function of time) is shown.
(a) When is the particle moving toward the right and

when is it moving toward the left?
(b) When does the particle have positive acceleration

and when does it have nesative acceleration?

Let K(r) be a measure of the knowledge you gain by
studying for a test for r hours. Which do you think is
larger, K(8) K(7) or K(3) K(2)? Is the graph of K
concave upward or concave downward? Why?

Coffee is being poured into the mug shown in the figure
at a constant rate (measured in volume per unit time).
Sketch a rough graph of the depth of the coffee in the
mug as a function of time. Account for the shape of the
graph in terms of concavity. What is the significance of
the inflection point?

L3. tJse the given graph of 
"f 

to estimate
which the derivative./' is increasing

the intervals on

or decreasing.

4.

5.
9,

6.

10.

Number
of

yeast cells

700

600

500

400

300

200

100

6 8 l0t2 14

Time (in hours)

y : .f '(x)
-y 

: 
.f '(x)

f IrjlT lq-1{) l()"ll tql.+ l9 6 telt{ Irl-10

Plrt 0.1 0.6 )5 4.( .-t.li 15 1.0

)' : f(x)



ll-12 r The graph of the derivative f' of a function/ is

shown.
(a) On what intervals is / increasing or decreasing?
(b) At what values of x does f have a local maximum or

minimum?
(c) On what intervals is / concave upward or downward?
(d) State the x-coordinates of the points of inflection.
(e) Assuming that,f is continuous and /(0) : 0, sketch a

graph of .f

| 3. Sketch the graph of a function whose first and second
derivatives are always negative.

14. Sketch the graph of a function whose first derivative is

always negative and whose second derivative is always
positive.

l5-18 r Sketch the graph of a function that satisfies the
given conditions.

15. ,f'(-l) - ,f'(1) : 0o /'(x) < 0 if lx | < 1,

f'(x) > o if lx | > l, /(-l) - 4, /(1) : 0,

f"(x) < 0if x { 0, f"(*) > 0 if x > 0

16. f '(- l) : 0, f '(l) does not exist,

f'(*) < 0 if lx l < 1, f'(x)
f(-1):4, /(l):0,
f"(*) < 0 if x * I

17. f'(2) : 0, f(2) - -1, /(0) : 0,

f'(*)<0if0{x<2, f'(x)
f"(*) <0if 0sx{lorif x> 4,

f"(*) > 0 if I ( x < 4, lim"_** /(x) - 1,

f (- *) : "f 
(x) for all x

18. lim" -u fk) - -ff, f"(*) < 0 if x + 3, "f'(0) 
: 0,

f'(x) > 0if x ( 0orx ) 3, f'(x) < 0if 0 < x { 3

sEcTloN 2.10 wt|AT D0ES f' 5AY AB0UT/l r8l

Supposef'(x): xe-".
(a) On what interval is / increasing? On what interval

/ decreasing?
(b) Does / have a maximum or minimum value?

20. lf f '(x) - e-.", what can you say about /?

2l-22 t The graph of a function/is shown. Which graph

an antiderivative of f and why?

21. y

19.

1S

IS

ll.

23.

24. The graph of the velocity function of a car is shown in
the figure. Sketch the graph of the position function.

The graph of a function is shown in
rough sketch of an antiderivative F,

the figure. Make a

given that f(0) : 0.

El z5-26 I Draw a graph af f and

sketch of the antiderivative that

25. f(x) - sin(x2), 0 < x { 4

use it to make a rough

passes through the origin.

76. f(x) - Ilfta + 1)
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Chapter 2 Review
I CONCEPT CHECK o

l. Define each of the following in your own words. (Check

by referring to the definition in the text.)

(a) 
l* /(x) - L (b) lim /(") : L

(c) .tT fk) - L (d) id t,") - @

(e) 
It13, 

ftO : L (f) Vertical asymptote

(g) Horizontal asymptote

2. State the basic Limit Ltrws.

3. (a) Define the derivative of a function / at a number d.
(Give two expressions for the lirnit that defines this
derivative.) Cheek by referring to Sectisn 7.J.

(b) Give two interpretations of the derivative.

4. Define the second derivative of a function.

5. Let s - f(r) be the position function of a particle that
moves along a straight line. Define
(a) the velocity of the particle at t - e,

(b) the speed of the particle at r - cti

(c) the acceleration of the particle at t - a.

6. (a) What does it mean forl.to be continuous at cr?

(b) What does it mean for.f to be differentiable at a7
(c) What is the relation between the differentiability

ancl continuity of a function?

7. (a) State the Squeeze Theorem.
(b) State the Intermediate Value Theorem.

8. Which of the following curves have vertical asymp-
totes? Which have horizontal asymptotes?
(a) )n - r-4

(c ) .)' : tan .r
(e) .)' - €'
(e))-U*

(b) -)r - sin r
(d) -)' - tan 'r
(f) )'- lnx
(h) -I : r[

9. (a) What does the sign of /'(x) tell us about.f ?

(b) What does the sign of /"(x) tell us about/?

| 0. (a) Define the linear approximation to .f at a.
(b) Define an antiderivative of .f,

A TRUE.FALSE QUrz a

/zxB'\2.rt{l. lirrrl - 
- 

| : lirrl 

- 
- linr

,-+\x 4 .{-4/ r-4,T-1 t.4-d 4
t0.

-trt + 6x 1
2. lirrr ,r-l .tr'+ 5-r 6

x3
3. lirn -

-r -t -,Tt + 2X 4

8.

9.

il.

t2.

r3.

t4.5.

t5.

Determine whether the statement is true or false. If it is
true, explain why. If it is false, explain why or give ern

example thart disproves the statement.

lim (x2 + 6x - 7)
.t'-l

lim ("t + 5r - 6)
.r .l

lirn (-r 3)
,r -l

Irm (.{t + h.-+)
-r -l

If lim,-,t ./(x) - 2 and lim,. ,s g(x) : 0, then
lim,, ,, I f(x)lg(x)] does not exist.

lf lim,-t l.(.r-) : 0 and lim,-s g(.r) : 0, then
lim, =, [.f(x)7g(,{)J does nor exisr.

6. If lirn' -.61 .fk)gk) exists, then rhe limit musr be/(0) 061.

7. If p is a polynomial, then lim" + p(x) - p(b).

I f li rrt , -{) /(t) - dr and lim ._ -, gk) - cc., then
lim, .,, [/(r) g(,r)] - 0.

If the line x : 1 is a l'ertical asymptote of -l!' - "f(*),.
then "/ is not definecl at l.

If/(l) > 0 ancl/(3) < 0, then there exists a number c
between I and 3 such thert f(r) : 0.

If f is continuous at 5 and/(5) - 2 and .f(4) - 3, then
lim,-n.f(4rt - ll) _ 2.

If .f is continLrous on [- l. 1] ancl /(- 1) - 4 and

/(1):j,thenthereexistsanumberrsuchthat|r|<
and /(r) : rr.

4. If .f is continuolls at a, then ,f is differentiable at a.

si: ra)'
r/x: \ ,1" I

An equation of the tangent
at (- 7,4) is .l' 4 - 2;(x

line to the parabola y :
+ 2),

')
J-

15. If /'(r) exists, then lirn. -,, .f(x) : f(r).



l. The graph of f is given.
(a) Find each limit, or explain why it does not exist.

(i) ]* f(x) (ii) 
"IT. 

/(x)

(iii) 
.tlT. f(*) (iv) lg fG)

(v) l'* f(*) (vi) l+ f(x)

(vii) 1': /(x) (viii) .ry" fU)

(b) State the equations of the horizontal asymptotes.
(c) State the equations of the vertical asymptotes.
(d) At what numbers is / discontinuous?

2. Sketch the graph of an example of a function "f that
satisfies all of the following conditions:
lim f(*): -2, lim /(x) - 1, /(0) : -1,

CHAPTTR 2 RTVIEW

* ExERcrsEs *
EE l7-18 r Use graphs to discover the asymptotes of the

curve. Then prove what you have discovered.

costx
17. -\t : 

"rt

18. )'-ffi - r/;'z- x

r83

19. If 2x 1 = /(*) < xt for 0 ( x

20. Prove that lim"-,6 x2 cos( 1f rz) -
2l. Let

f(x)

(a) Evaluate

(i) lim
x-0+

0.

l= ifx<o
3 x if0(x
(x 3)n ifx>3

:{

each

f(x)

limit, if it exists.

(ii) lim /(x) (iii) lim /(x)
-r*0- x-0

(v) lim f(x) (vi) lim /(x)
x *-J* .t 'J

(iv) lim /(x)
., ,1-

x*0+

lim /(x) -
it ----)1,

lim /(x) -
.{ - -}:c

.r -*0-
@, lim "f(r) - -ffi,

r'*2+

3, lim /(t) - 4
_tr +-tC

(b) Where is / discontinuous?
(c) Sketch the graph of /.

22. Show that each function is continuous on its domain.

State ttre doftn__

(a) s(x): # (b) h(*): re'in*

23-24 r Use the Intermediate Value Theorem to show that

there is a root of the equation in the given interval.

23. 2x3 + x', + 2 : 0, (-2, -1)

24. e-" : x, (0, l)

25. The displacement (in meters) of an object moving in a

straight line is given by s - I + 2t + t'/4, where r is
measured in seconds.
(a) Find the average velocity over the following time

periods.
(i) [1, 3]

(iii) [1,1.s] (iv) [1,1.1]
(b) Find the instantaneous velocity when / - l.

According to Boyle's Law, if the temperature of a con-

fined gas is held fixed, then the product of the pressure

P and the volume V is a constant. Suppose that, for a
certain gas, PV : 800, where P is measured in pounds

per square inch and V is measured in cubic inches.

(a) Find the average rate of change of P as V increases

from 200 in3 to 250 in3.

3-16 I Find the limit.

3. lim tan("t)
.r-0

(l+h)= I
J. llttt 

-

/r--'(l h

x'x2
T.ttttl-

.r*-t r- + 3x 2

t7
9. linr;*; (r 6)=

.. lx 8lll. lim
x*8- X- 8

1-Fp
13. lim 

-

-r-0 J

f s. 1g e-*'

t+l4. lim l
/-*-l t' - t

(r+h)' 1

6. lim 

-

It-o h

x'_ x 2
8. lim

-(-+-t x" * 3x + 2

10. lim
.t--6+ J + 6

12. lim ln(100 x')
x *10-

I + 2x -rt
14. lim 

-

"';*;1-x+zx'

16. lim arctan( - xz)
I+cc

(ii) [], 2]

26.
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(b) Express V as a function of P and show that the
instantaneous rate of change of V with respect to P
is inversely proportional to the square of P.

27. For the function/whose graph is shown, arrange the
following numbers in increasing order:

0 | f'(2) f'(3) /'(s) f"(s)

28.

l

l

1l
I

lI

ngIT

EY zs.

30,

(a) Use the definition of a derivative to find f'(2),
where f(*): r' - 2x.

(b) Find an equation of the tangent line to the curve
y : .r3 2x at the point (2,4).

(c) Illustrate part (b) by graphing the curve and the
tangent line on the same screen.

(a) If /(x) : e-"', estimate the value of f'(l) graphi-
cally and numerically.

(b) Find an approximate equation of the tangent line to
the curve y - e -*- at the point where x : 1.

(c) Illustrate part (b) by graphing the curve and the
tangent line on the same screen.

Find a function / and a number a such that

(2 + h\o 64

lgf:r'(a)
The total cost of paying off a student loan at an interest
rate of r Vo per year is C : f (r).
(a) What is the meaning of the derivative f'(r)? What

are its units?
(b) What does the statement,f'(10) : 1200 mean?
(c) Is/'(r) always positive or does it change sign?

ng'aa

ng
'L

EI rs.

35. (a) If /(x) - $ - 5-, use the definition of a derivative
to find .f'(x).

(b) Find the domains of f and /i
(c) Graph/and.f'on a common screen. Compare the

graphs to see whether your answer to part (a) is
reasonable.

36. (a) Find the asymptotes of the graph of
f (x) : (4 x) I G + x) and use rhem ro sketch the
graph.

(b) Use your graph from part (a) to sketch the graph
off'.

(c) Use the definition of a derivative to find f'(*).
(d) Use a graphing device to graph.f' and compare with

your sketch in part (b).

37. The graph of f is shown. State, with reasons, the num-
bers at which / is not differentiable.

31.

32-34 | Trace or copy the graph of the given function.
Then sketch a graph of its derivative directly beneath. The figure shows the graphs of .f, f', and f". Ident

each curve, and explain your choices.
ifv



(a) If /(x) - sx, what is the value of /'(0)?
(b) Find the linear approximation for f at a - 0.
(c) Use the linear approximation to estimate the values

af e-\.r,, e*,.r, ,-0.0r, co.ot , €0.t, and eo"r.

(d) Are your approximations overestimates or under-

estimates? Which of vour estimates are the most

accurate?

The cost of living continues to rise, but at a slower rate.

In terms of a function and its derivatives. what does this
statement mean?

The graph of the derivative /' of a function / is given.
(a) On what intervals is / increasing or decreasing?
(b) At what values of x does / have a local maximum

or minimum?
(c) Where is / concave upward or downward?
(d) If /(0) : 0, sketch a possible graph of /

44.

3.0

2.5

2.0

1940 1950 1960 r97 0 1980 1990

45. A car starts from rest and its distance traveled is
recorded in the table in 2-second intervals.

46.

(a) Estimate the speed after 6 seconds.
(b) Estimate the coordinates of the inflection point of

the graph of the position function.
(c) What is the significance of the inflection point?

The graph of a function is shown. Sketch the graph of
an antiderivative F, given that f(0) - 0.

(l{APTTR I RTl'IEW

f"(*) > 0 on (-oo,0) and (12, *;,
f" (x)

The total fertility rate at time f, denoted by F(t), is an

estimate of the average number of children born to
each woman (assuming that current birth rates remain
constant). The graph of the total fertility rate in the
United States shows the fluctuations from 1940 to 1990.
(a) Estimate the values of F'(1950) , F'(1965), and

F',(1987).
(b) What are the meanings of these derivatives?
(c) Can you suggest reasons for the values of these

derivatives?

r85

41.

39.

40.

42.

43.

3.5

The figure shows the

function /
(a) Sketch the graph
(b) Sketch a possible

graph of the derivative f '

of f".
graph of f.

ofa

Sketch the graph of
conditions:

/(o) : o, f'(-2)
lim,---* f(*) : 0,

f'(x)<0on(-ffi,
f'(x) > 0 on (-2,

a function that satisfies the given

: f,(l) : f,(g) : 0,
lim,--*o f(x) - -ffi,

-Z), (1,6), and (9, *),
1) and (6,9),

v - F(r)

y : /'(x)

/ ( sec0nrls) o -t 6 rt l0 ll IJ

(t'ect ) o f{ -l( ) 95 I ttO 160 -jlr) .373

)' : -f '(x)



In our discussion of the principles of problem solving we considered the problem
solving strategy called Introduce Something Extra (see page 88). In the following
example we show how this principle is sometimes useful when we evaluate limits.
The idea is to change the variable-to introduce a new variable that is related to
the original variable-in such a way as to make the problem simpler. Later, in
Section 5.5, we will make more extensive use of this general idea.

Exarnple 1 Evaluate 
1,1x +, where c is a constant.

Solution As it stands, this limit looks challenging. In Section 2.3 we evaluated
several limits in which both numerator and denominator approached 0. There
our strategy was to perform some sort of algebraic manipulation that led to a

simplifying cancellation, but here it's not clear what kind of algebra is necessary.
So we introduce a new variable / by the equation

r - t/-r +..t

We also need to express r in terms of r, so we solve this equation:

/3 : 1 + cx

Notice that x ---+ 0 is equivalent to / ---+ 1. This allows us to convert the given
limit into one involvins the variable t:

t3 I
-4.

(:

i'/r + -* Ilim ' - lim
.r:'0 X / -l

r - I

tr- t)/.

c(t 1)

13 - I

relartively complicated limit by a
Factoring the denominator as a

c(r 1)

(t l)(rn+ t+ 1)

- lim
/- +I

The change of variable allowed us to replace a

simpler one of a type that we have seen before.
difference of cubes, we get

c(r l)lim-.-lim
t --l t '' 1 r---= I

C

- linr 1

r--+r t' +t+ I

Example 2 How many lines are tangent to both of the parabolas y : -l - x'
and y : 1 + x2? Find the coordinates of the points at which these tangents
touch the parabolas.

Solution To gain insight into this problem it is essential to draw a diagram.
So we sketch the parabolas.1l : I + x2 lwhich is the standard parabola ! : x2

shifted I unit upward) and y : -l - x2 (which is obtained by reflecting the
first parabola about the x-axis). If we try to draw a line tangent to both

C

3

Before you look at Example 2, cover up

the solution and try it yourself first.



parabolas, we soon discover that there are only two possibilities, as illustrated
in Figure l.

Let P be a point at which one of these tangents touches the upper parabola

and let a be its x-coordinate. (The choice of notation for the unknown is impor-
tant. Of course we could have used b or c or xo ot xt instead of a. However, it's
not advisable to use .r in place of a because that r could be confused with the

variable -r in the equation of the parabola.) Then, since P lies on the parabola

y : I + .r', its y-coordinate must be | * a2. Because of the symmetry shown

in Figure l, the coordinates of the point Q where the tangent touches the lower
parabola must be (-a,-(l + o')).

To use the given information that the line is a tangent, we equate the slope of
the line PQ to the slope of the tangent line at P. We have

nI pe
l+a?-(-l-a?) _l*az

a (-a) a

of the tangent line at P is f'(a). Using the

Section 2.J, we find that f'(a) - 2a. Thus, the

that

l*a7 
-za

a

Figure I

Problerns

If /(x) - 1 + x2, then the sloPe

definition of the derivative as in
condition that we need to use is

Solving this equation, we get | * a2 :2a2,so a' : I anda: +1. Therefore,
the points are (1,2) and(-1,-2). By symmetry, the two remaining points are

(-r,2) and (1, -2).

The following problems are meant to test and challenge your problem-solving
skills. Some of them require a considerable amount of time to think through, so

don't be discouraged if you can't solve them right away. If you get stuck, you might
find it helpful to refer to the discussion of the principles of problem solving on

page 87.

3r
l. Evaluate tirn Vl - I 

.

"-tJx-l

2. Find numbers a and bsuch that ,r^ @ - ' : ,.
x-0 x

3. Evaluate lim
't -0

lz* tl lz*+11

4. The figure shows a point P on the parabolay : *' and the point Q where the per-

pendicular bisector of OP intersects the y-axis. As P approaches the origin along

the parabola, what happens to Q? Does it have a limiting position? If so, find it.

5. If ffxl denotes the greatest integer function, find fim $
.{+:c ll,{ll

Figure for Problern 4



6. Sketch the region in the plane defined by each of the following equations.
(a) [rn'+ [yn'- I (b) [rn2 - []n2 : 3

(c) [x + ]'n2:1 (d) frn + fiyn - I

7. Find all values of a such that / is continuous on R:

8. A fixed point of a function/is anumber c in its domain such that/(c) : c. (The
function doesn't move c; it stays fixed.)
(a) Sketch the graph of a continuous function with domain [0,1] whose range also

lies in [0,1]. Locate a fixed point ofl
(b) Try to draw the graph of a continuous function with domain [0, l] and range in

[0, l] that does not have a fixed point. What is the obstacle?
(c) Use the Intermediate Value Theorem to prove that any continuous function with

domain [0, 1] and range in [0, t] must have a fixed point.

9. (a) If we start from 0" latitude and proceed in a westerly direction, we can let
T(x) denote the temperature at the point x at any given.time. Assuming that 7
is a continuous function ofx, show that at any fixed time there are at least
two diametrically opposite points on the equator that have exactly the same
temperature.

(b) Does the result in part (a) hold for points lying on any circle on Earth's surface?
(c) Does the result in part (a) hold for barometric pressure and for altitude above

sea level?

10. (a) The figure shows an isosceles triangle ABC with LB : LC. The bisector of
angle B intersects the side AC at the point P. Suppose that the base BC remains
fixed but the altitude leUlof the triangle approaches 0, so A approaches the
midpoint M of BC. What happens to P during this process? Does it have a

limiting position? If so, find it.
(b) Try to sketch the path traced out by P during this process. Then find the equa-

tion of this curve and use this equation to sketch the curve.

f f. Find points P and Q onthe parabola y : | - x2 so that the triangle ABC formed by
the x-axis and the tangent lines at P and Q is an equilateral triangle.

12. Water is flowing at a constant rate into a spherical tank. Let V(l) be the volume of
water in the tank and H(t) be the height of the water in the tank at time t.
(a) What are the meanings of V'(l) and H'(t)? Are these derivatives positive, nega-

tive, or zero?
(b) Is V"(l) positive, negative, or zero? Explain.
(c) Let t1,t2,and rrbethetimeswhenthetankisone-quarterfull,half full,and

three-quarters full, respectively. Are the values H"(tt), H"(tr), and H"(t)
positive, negative, or zero? Why?

13. Suppose/is a function that satisfies the equation

f * + l if x(a
f(x)- 1 ,

[x' tf x ] a

Figure for Problem lO

Figure for Problern I I f(x+)):./(x)
for all real numbers -r and y. Suppose

lim
r-=0

(b) Find /'(0).

+ /( y) * x21' + -r)'2

also that

f(x)l
I

x

(c) Find f'(x).(a) Find /(0).



Figure for Problem 14

14. A car is traveling at night along a highway shaped like a parabola with its vertex at
the origin. The car starts at a point 100 m west and 100 m north of the origin and
travels in an easterly direction. There is a statue located 100 m east and 50 m north
of the origin. At what point on the highway will the car's headlights illuminate the
statue?

15. If lim lf(r) + sQ)|: 2 andtimlf(x) - s|)l: l, find lim f(x)s|).

f6. If/is a differentiable function and g(x) : xf(x), use the definition of a derivative to
show that

g'(x): xf'(x) + f(x)
17. Suppose/is a function with the property that | /(r) | < -r2 for all .r. Show that

/(0) : 0. Then show that/'(O) : Q.

18. (a) Supposelim.-- f(x):2andf'(x) >0forallx.Doeslim,--l'(*)exist?If so,
what is its value? Give an intuitive explanation, supported by a sketch.

(b) Sketch the graph of a function / for which lim,-- f(x) : 2 but lim,,- /'(x)
does not exist.
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I These photographs represent der"ivatives tn

various contexfs. The racing car driver wants to know his

speed at a given time. Because blood flows more slowly near

the wall of a blood vessel, w€ might want to know the rate at

which blood veloc:iQ inu"eases with respect to distance from
the w,all. The rate at which a rumor spreads depends on the

number of people involved and the way they react to infor'

mation. The rate of expansion of the internet is exponential.

(The depiction of the glohal structure of the multicast hack-

bone show,s the major arteries of the internet and is used to

help plan its future expansion.) These rates ofc:hange are all
special cases of a single mathematical idea, the derivatit'e.

W We have seen how to interpret derivatives as slopes and rates of

change. We have seen how to estimate derivatives of functions given

by tables of values. We have learned how to graph derivatives of func-

tions that are defined graphically. We have used the definition of a

derivative to calculate the derivatives of functions defined by formulas.

But it would be tedious if we always had to use the definition, so in

this chapter we develop rules for finding derivatives without having to

use the definition directly. These differentiation rules enable us to

calculate with relative ease the derivatives of polynomials, rational

functions, algebraic functions, exponential and logarithmic functions,

trigonometric and inverse trigonometric functions. We then use

these rules to solve problems involving rates of change, tangents to

parametric curves, and the approximation of functions.

A

A

.A

A

,M

A

A

.'.. --=:, --j-: 'ilr\\,h'%'-w
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Derivatives of Polynomials and Exponential Functions

In this section we learn how to differentiate constant functions, power functions,
polynomials, and exponential functions.

Let's start with the simplest of all functions, the constant function f(x) : c.
The graph of this function is the horizontal line ! : c, which has slope 0, so we
must have/'(r) : 0 (see Figure l). A formal proof, from the definition of a deriva-
tive, is also easy:

f'(x) : lim
h--+0

f(x + h) f(x)

FIGURE I

The graph of /(x) - c is the line ! : c,

so 
"f 

'(r) - 0.

,. c c: llmh-o h

:lim0:0
h-0

In Leibniz notation, we write this rule as follows.

Derivative of a Constant Function

d

d-
(r):o

I Power Functions

slope - 0

We next look at the functions /(x)
graph of /(x) - )c is the line y :

- xn, where n is a positive integer.If n: l, the
x, which has slope 1 (see Figure 2). So

FIGURE 2

The graph of /(x) : x is the line ! : x,
so /'(x) - l.

* <.>: I
ax

(*,): 2x *(r,) 
: 3x2E

Forn:4wefindthe

tr

(You can also verify Equation I from the definition of a derivative.) We have al-
ready investigated the cases /! : 2 and n : 3. In fact, in Section 2.8 (Exercises 17

and 18) we found that

d

d.

derivative of /(x) - xa as follows:

(x + h)o x4
f'(x) : lim

h---+O

_ lim
h---+O

_ lim
h---+O

: lim
h--0

x4 + 4x3h + 6x2hz + 4xh3 + h4 x4

h

4x3h + 6xzhz + 4xh3 + h4

h

+ 4xhz + ht) : 4x3: lg @x3 + 6xzh



Thus

E

Comparing the equations in
be a reasonable guess that,
turns out to be true.

Proof If /(x) : xn, then

f '(*) : lim
lr -r0

In finding the derivative of xo we had to expand (x +
(r + h)" and we use the Binomial Theorem to do so:

The Power Rule If n is a positive integer, then

d
- (*"): nxn-t

dx \'

sEcTlol{ 3.1 DtRlvATl'/Es 0t P0tYt't0HtAt5 At{D txp0l'|tilTtAt ruilcTl0r{5 193

d
+ ("0) - 4x3
clx

(1), (2), and (3), we see a pattern emerging. It seems to
when n is a positive integer, (d/dx) (*') - nxn-t. This

- lim
h----0 h

h)o.Here we need to expandThe Binomial Theorem is given on the
front endpapers.

f'(x) - lim
h---O

- lim
h--+0

because

What
ask you

, n(n 1)
t

2

h

x"-zh + + nxh"-z +

t- n(n l) I
l-' + nxn-lh+ ry*n-27? + + nxhn-t + h"l xn

h

nxn-th+ n(n-l) *n-zpz+ + nxh,-t + hn2^'

_ lim
h_*0

_ nxo

every

h"-')
t-
I nx"- |

L

about power functions with negative integer exponents?
to verify from the definition of a derivative that

d lr\ I
t-t:

dx \*/ x'

term except the first has h as a factor and therefore approaches 0.
E

We illustrate the Power Rule using various notations in Example l.

EXAMPLE I T
(a) lf f(x) - x6, then f'(x) - 6xs

(c) If y 'dt

If y - x'ooo, then y' - l000xeee

d ...tl (rt) - 3r2
ar

(b)

(d)
ili.

In Exercise 5l we
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Figure 3 shows the function y in
Example 2(b) and its derivative y'.
Notice that y is not differentiable at 0
()" is not defined there). Observe that

.y' is positive when y increases and is

negative when y decreases.

2

FIGURE 3

-l

FIGURE 4

We can rewrite this equation as

d

d- 
(t -') _ (- l)x -t

and so the Power Rule is true when n : -l.In fact, we will show in the next sec-

tion (Exercise 41) that it holds for all negative integers.
What if the exponent is a fraction? In Example 4 in Section 2.8 we found that

which can be written as

d/-1
d*'l* 

: 
zG

*k'/')
I: 
1X

-t/2

This shows that the Power Rule is true even when n : l.In fact, we will show in
Section 3.7 that it is true for all real numbers n.

The Power Rule (General Yersion) lf n is any real number, then

)
+ (x') - nxn-l
ax

EXAMPLE 2 r Differentiate:

(a) f(il:*. cu) y: W
SOLUTICIN In each case we rewrite the function as a power of x.
(a) Since f (x) - x-2, we use the Power Rule with n : -2:

(b)
d ir) ):Tvx- :+G'/t)
dx ax

:2ve/3\-t -2v-l/33n 3^ fl3

dy

dx

EXAMPLE 3 r Find an equation of the tangent line to the curve y: xJx atthe
point (1, l). Illustrate by graphing the curve and its tangent line.

SOtUTfot{ The derivative of /(.r) -- , Ji - xxt/z : xt/' is

f,(x) : |*rtrrt-t : |*rtz :|J;

So the slope of the tangent line at (1, l) is/'(l) : j. Therefore, an equation of
the tangent line is

y l- 1)1t*

We graph the curve and its tangent line in Figure 4. ffi
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I New Derivatives from Old

195

When new functions are formed from old functions by addition, subtraction, or
multiplication by a constant, their derivatives can be calculated in terms of deriva-
tives of the old functions. In particular, the following formula says that the deriva-
tive of a constant times a function is the constant times the derivative of the

function.

Geometri c Interpretation
of the Constant Multiple Rule

Muf tiplying by c : 2 stretches the graph
vertically by a factor of 2. All the rises

have been doubled but the runs stay the
same. So the slopes are doubled, too.

Using the prime notation, we can write
the Sum Rule as

(/ + 9)' : f' + g

Proof Let g(x) : c f (x). Then

g'(x) : lim
ft --.+0

: ltsr[

-clim
h---O

- cf '(x)

f(* +

s(x + h) g(x) cf(x + h) cf(x)

The Constant Multiple Rule If c is a constant and/is a differentiable
function, then

dd
, Lcf(x)J:c , f(x)ax ax

h

f(x + h) f(x)
h

h) f (x)

lim
h*-0

J

(bv L'ru'3 ol' limits)

EXAMPLE 4 I
d

(a) + (3*o) :
ax
d(b) , (-x)-
ax

t*(*o):3(4x3) : rzx3

*t(-r)"1 
: (-1) *nr: -r(r): -r

E

ffi

The next rule tells us that
derivatives.

the derivative of a sum of functions is the sum af the

The Sum Rule It .f and g are both differentiable, then

d f r/-\ r -./,-\r d ^, \ d ,, LfQ) +g(x)l- , f(x) + , s(x)ax ax ax

Proof Let F(x) : f(x) + g(x). Then

F'(x) - lim
h --*0

F(x + h) r(x)

: lim
h --+A

h

lf(* + h) + s(x +

:l,gI
: lim

:^;;.) + s'(.1

f(x +

h

, g(x + h) g(x)
t-

h

+ lim
h---+0

2f (x)

'f Y:/(x)

s(x + h) s(x)
1by Litw I )

E
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FIGURE 5

The curve ) : Jo - 6x? * 4 and

its horizontal tangents

The Sum Rule can be extended to the sum of any number of functions. For in-
stance, using this theorem twice, we get

(f + s + h)'--l(f + d + hl': (f + d' + h' : f' + s' + h'

By writing f - S as/ * (-l)9 and applying the Sum Rule and the Constant

Multiple Rule, we get the following formula.

These three rules can be combined with the Power Rule to differentiate anv
polynomial, as the following examples demonstrate.

EXAMPLE 5 T

!G- + r2xs - 4xo + loxJ - 6x + 5)dx'
r d .. d ^. d d d._,: * ("') + t2+ (*') - 4 auo) + r0+(x') - o jitr) + +(s)dx dx ax ax ax ax

: 8"r7 + t2(5xa) - 4(4x3) + l0(3x'z) - 6(l) + 0
:8x7+6oxa- 16.r3+30x2-6 *

EXAMPLE6 r Findthepointsonthecurvey: xo - 6x2 + 4 wherethetangent
line is horizontal.

SOLUTION Horizontal tangents occur where the derivative is zero. We have

dvdd-d
d;-- d_ 

(x")-6 
*(x-)+ *(+)

: 4x3 - 12x r 0: 4x(xz - 3\

Thus, dy/dx: 0 ifx : 0 or x' - 3: 0, that is,x : *u5. So the given curve
has horizontal tangents when x : O, Jt, and -JT. The corresponding points

are (0, q,(Jr,-5), and (-Jr,-5). lSee Figure 5.)

tffi

The Difference Rule If f and g are both differentiable, then

ddg(.r)l--::-f("*) , g(x)ax ax
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EXAMPLET r Theequationof motionof aparticleiss:2/3 - 5t2 + 3t + 4,
where s is measured in centimeters and t in seconds. Find the acceleration as a
function of time. What is the acceleration after 2 seconds?

SOLUTION The velocity and acceleration are

dsu(t):;:6tz l0r+3

du(t(t): 
fu-lZt l0

The acceleration after 2 s is a(2) - 14 cm/s2

Exponential Functions

Let us try to compute the derivative of the exponential function f (x) : a' using
the definition of a derivative:

I

f '(-r) - lim
/r -0

f(x + h) f(x)
h

a-'al' a''
- lim - lim

lz-0 n h -0

The factor a' doesn't depend on h, so we can take

or+h a'
- lim

A-0 h

a"'(a" I )

h

it in front of the limit:

f'(x): a'li^o" -'
h-0 h

Notice that the limit is the value of the derivative of f at 0, that is,

(th Ilim f'(0)h"-o h

Therefore, we have
tiable at 0, then it is

4 f'(*) - 7'(o)a'

This equation says that the rate of change of any exponential function is propor-
tional to the function itself. (The slope is proportional to the height.)

Numerical evidence for the existence of /'(0) is given in the table at the left
for the cases d : 2 and a : 3. (Values are stated correct to four decimal places.
For the case d : 2, see also Example 3 in Section 2.7.)lt appears that the limits
exist and

shown that if the exponential function.f(x) - e' is differen-
differentiable evervwhere and

for a- z, /'(o) - lim +:0.69
h -0 h

for a-3, /'(o)- lim 
t" 

, 
t : l.lo

h-o h

Ir
lt', I

Ir

3/', I

h

t). l

0.0 I

0.(x) I

0.(xx) |

o .l t7l
0.6956

0.693-t

0.6e 3 2

l6l2
t017
0gc)2

09r{ 7
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ln Exercise I we will see that e lies

between 2.7 and 2.8. Later we will be

able to show that, correct to five
decimal places,

e : 2.71828

,l
* e.l| : 0.6s3r47ax 

| ,:0

Thus, from Equation 4 we have

E * (2.) : (0.6e)2.

,l

*o\l :1.0e8612
ax l":o

i-(3,,) -; (r.lo)3,
dx \ /

In fact, it can be proved that the limits exist and, correct to six decimal places, the

values are

Of all possible choices for the base a in Equation 4, the simplest differentiation
formula occurs when/'(0) : l. In view of the estimates of /'(0) for a:2 and

a : 3, it seems reasonable that there is a number c between 2 and 3 for which

,f'(0) : l. It is traditional to denote this value by the letter e. (In fact, that is how

we introduced e in Section 1.5.) Thus, we have the following definition'

Definition of the Number e

e is the number such that lim
h---0

ehl
h -l

Geometrically, this means that of all
the function f(*) : e* is the one whose

is exactly l. (See Figures 6 and 7.)

exponential functions y - a*,

at (0, l) has a slope/'(0) that
the possible

tangent line

FIGURE 6 FIGURE 7

If we put a: e and, therefore,/'(0) : I in Equation 4, it becomes the follow-
ing important differentiation formula.

Derivative of the Natural Exponential Function

d
, (e') - e''

dx

Thus, the exponential function/(x) : e" has the property that
tive. The geometrical significance of this fact is that the slope

the curve y _ e" is equal to the y-coordinate of the point (see

it is its own deriva-
of a tangent line to
Figure 7).

slope : e"\



FIGURE 8

FIGURE 9

(a) How is the number e defined?
(b) Use a calculator to estimate the values of the limits

2.7h I z.gh - I
lim 

- 

and lim
h---0 h h--0 h

correct to two decimal places. What can you con-
clude about the value of e?

2. (a) Sketch, by hand, the graph of the function

f (*) - €*, with particular attention to how the
graph crosses the y-axis. What fact allows you to
do this?

(b) What types of functions are f (x) : e* and

g(x) - xu? Compare the differentiation formulas
for f and g.

(c) Which of the two functions in part (b) grows more
rapidly when x is large?

3-20 r Differentiate the function.

3..I:J8 4.y_ :E
5. y:x-zls 6.y:5e"+ 3

7. f(x) - x' - lOx + 100 8. g(x): xr00 a 50r * I

g. v(r) - Inr' 10. s(r) - tB + 6t7 - rStz + zt

sEcTlol{ 3.1 DtRrvATtvts 0t P0LYt{0],ilA1s At{D t)(p0}tEt{ItAt tut{cTt0t{5 r99

EXAMPLE 8 r If /(x) : e' - x, find f' and f'!
SOLUTIOI{ Using the Difference Rule, we have

f'(x) : 4 k' - x) : ! k) - 4 ul : e" - |ax ax ax

In Section 2.8 we defined the second derivative as the derivative ofli so

f"(x) : 4 k,- r) : 4 G) - 4 (D : r'ax ax ax

We know that e'is positive for all -r, so/"(r) ) 0 for all r. Thus, the graph ofl
is concave upward on (-o,o). This is confirmed in Figure 8. n

EXAMPTE 9 r At what point on the curve ) : e' is the tangent line parallel to
theliney:2x?
SOLUTION Since y -- e' , we have y' : e'. Let the x-coordinate of the point in
question be a. Then the slope of the tangent line at that point is e". This tangent
line will be parallel to the line y : 2x if it has the same slope, that is, 2.
Equating slopes, we get

en:2 a:lnZ

Therefore, the required point is (a,e")- (Ln2,2). (See Figure 9.)

Exercises

ffi

12.

14.

ll.

13.

l. Y(t) - 6t-e

F(x) : (l6x)3

g(x) -- x' + +x-

x? + 4x*3

Jio.
R(x) : --i-x

H(t):iftU + z)

f(t) -,fr - +
\/ t

x'- zr/i
v-

16.15.

18.17. y: ,r
19. y - 3x + 2e*

x

20.Y:rx+t+1

Elzl-26 t Find f'(x). compare the graphs of f and/' and use

them to explain why your answer is reasonable.

21. f(x) - Zxz - xa 22. f(x) : 3x5 - 20x3 + 50x

73. f(x) - 3xrs - 5x3 + 3 24. J'Q) : x + I

25.f(x):x -3xUt 26.f(x) -t2+2e'

By zooming in on the graph of f(x) : x2l5, estimate
the value of f'(2).
Use the Power Rule to find the exact value of f'(2)
and compare with your estimate in part (a).

El zt. (a)

(b)
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EJzA.(a) By zooming in on the graph of/(x) - vz

estimate the value of /'(1).
(b) Find the exact value of "f'(1) and compare

estimate in part (a).

2e' ,

with your

where

a : 2325.67

c:2.4463Ix1010

b--1.306488x107

d--1.5265gx1013

EE Zg-lZ I Find an equation of the tangent line to the given

curve at the specified point. Illustrate by graphing the curve
and the tangent line on the same screen.

7g'l-':J +4, (2,45 30'.Y:'t''"'t, (4,32)
r

31. y - .{ + u[, (1,2) 32..]r : F2 + 2e*, (0,2)

33-34 I Find the first and second derivatives of the
function.

33. .f(") : ro - 3;3 + l6x

34. G(r) : r,F + ii?

EE l5-36 r Find the first and second derivatives of the
function. Check to see that your answers are reasonable
by comparing the graphs of l; f', and f".

35. f(x): 2x 513"0

37. The equation of rnotion of a particle is s - t' 3t,
where s is in meters and r is in seconds. Find
(a) the velocity and acceleration as functions of /.
(b) the acceleration after 2 s.

(c) the acceleration when the velocity is 0.

38. The equation of motion of a particle is

s - 2t3 7t2 + 1t + 1. where s is in rneters and r is
in seconds.
(a) Find the velocity and acceleration as functions of r.
(b) Find the acceleration after I s.

f= (c) Graph the position. velocity, and acceleration
functions on the same screen.

fE lg. The table gives the population of the world in the 20th
century.

[Jse this expression to find a model for the rate of
population growth in the 20th century.
Use part (b) to estimate the rates of growth in 1920

and 1980. Compare with your estimates in part (a).

Estimate the rate of growth in 1985.

interest rate on treasury bills is a function of time .

following table gives midyear values of this func-
/(r) over a nine-year period (as a percent per year).

(c)

(d)

EE +0. The
The
tion

Yclrt

I)npttlutiott
( in nr illiurt s )

TJ(X }

q i{)
ql( 

)

u,i()
L)+0

()5( 
)

l()5(

| 75(

I hifi(

l()7{

1.10(

l5l(

Ycu t'

Populutiott
( irt rtt il lions )

9(r0

970
q80

9rl0

996

l0l0
3 70{)

.+,150

5lilt)
5 710

(a) Estimate the rate of population growth in 1920 and

in 1980 by averaging the slopes of two secant lines.
(b) In Example 2 in Section 1.7 we found a cubic func-

tion that models these data remarkably well:

P-ctt\ + bt7+ct + d

t Ir)8fi I q89 l 9LlO lgrll Ir")92

Ilr\ 6.6 7 8.1 I 7.5l 5.-t l 1.-t6

(a) Use the methods of Section 1.7 to model these data
by a fourth-degree polynomial.

(b) Use part (a) to find a rnodel for I'(t).
(c) Estimate the rate of change of interest rates in 1988

and 1991.
(d) Graph the data points and the models for 1 and 1'.

41. On what interval is the function f(x)_ I + ?e* - 3x

increasing?

42. On what interval is the function/(x) - r'- 4xz + 5x

concave upward?

43. Find the points on the curve.)'- xl -,trt - x + I
where the tangent is horizontal.

44. For what values of "r does the graph of

,f(r) - 2x3 3x? - 6x + 87 have a horizontal tangent?

45. Show that the curve y - 6x 3 + 5x 3 has no tangent
line with slope 4.

Elqe.At what point on the curve l - I + 2e' * 3x is the
tangent line parallel to the line 3x -'!t:5? Illustrate
by graphing the curve and both lines.

47. Draw a diagram to show that there are two tangent
lines to the parabola ), - x2 that pass through the point
(0, -4). Find the coordinates of the points where these

tangent lines intersect the parabola.

48. Find the equations of both lines through the point
(2, _3) that are tangent to the paraboln.),' - x2 + .r.

49. The normal line to a curve C at a point P is, by
definition, the line that passes through P and is
perpendicular to the tangent line to C at P. Find an

equation of the normal line to the parabola .)' - 1 - xt

I I q83 t9t{-l let{5 l9tlfl I q87

llrl fi.6l 9.5 7 7.-l.tl 5.97 5.Hl
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at the point (2, -3). Sketch the parabola and its normal
line.

50. Where does the normal line to the parabola.y - x - xt
at the point (1,0) intersect the parabola a second time?
Illustrate with a sketch.

Use the definition of a derivative to show that if
,f(r) : lfx, then/'(x) - -L/xt. (This proves the Power
Rule for the case n - - l.)
Find ttre nth derivative of the function by calculating
the first few derivatives and observing the pattern that
occurs.
(a) /(x) : *' (b) /(x) : l/x

53. Find a second-degree polynomial P such that P(2) : 5,

P'(2) - 3, and P"(2) - 2.

54. The equation )," + y' 2), - xt is called a differential
equation because it involves an unknown function y
and its derivatives y' and y". Find constants A, B, and C
such that the function _y 

: Axz + Bx + C satisfies this
equation. (Differential equations will be studied in
detail in Chapter 7.)

55. (a) In Section 2.10 we defined an antiderivative of"f to
be a function F such that F' : f.Try to guess a
formula for an antiderivative of /(x) : rt. Then

Ar u A,u

uLl u A,a

FIGURE I

The geometry of the Product Rule
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check your answer by differentiating it. How many
antiderivatives does .f have?

(b) Find antiderivatives for/(x) : rtt and/(x) : "tr4.

(c) Find an antiderivative for/(x) : r", where n * -1.
Check by differentiation.

56.

58.

Use the result of Exercise 55(c)
of each function.
(a) /(x) : u[ (b) /(r) :

to find an antiderivative

e-* + 8r3

52. 57. Find a parabola with equation ! : Ax! + bx whose
tangent line at (1, 1) has equation ) - 3x 2.

59,

A tangent line is drawn to the hyperbola r_)' - c at a
point P.

(a) Show that the midpoint of the line segment cut from
this tangent line by the coordinate axes is P.

(b) Show that the triangle formed by the tangent line
and the coordinate axes always has the same area,
no matter where P is located on the hyperbola.

xr000 _ 
1

Evaluate lim
-r*l -f I

Draw a diagram showing two perpendicular lines that
intersect on the 1'-sxis and are both tangent to the
parabola y : "d2. Where do these lines intersect?

60.

The Product and Quotient Rules

The formulas of this section enable us to differentiate new functions formed from
old functions by multiplication or division.

E Tne Froqucc Rure

By analogy with the Sum and Difference Rules, one might be tempted to guess, as

Leibniz did three centuries ago, that the derivative of a product is the product of
the derivatives. We can see, however, that this guess is wrong by looking at a par-
ticular example. Letf(x) : x and SG) : x'. Then the Power Rule gives/'(r) : 1

and g'(x) : 2x. But ( fdG\ : -r', so (fd'G) : 3x2. Thus, (/9)' I f'g' . The cor-
rect formula was discovered by Leibniz (soon after his false start) and is called the
Product Rule.

Before stating the Product Rule, let's see how we might discover it. In the case
where u : f(*) and, u : g(x) are both positive functions, we can interpret the
product uu as an area of a rectangle (see Figure 1). If -r changes by an amount Ax,
then the corresponding changes in u and a are

Au Au : f(x + Ax) f(*) Lu : g(x + Ax) g(x)

and the new value of the product, (u -l A,u) (u + Lu), can be interpreted as the area
of the large rectangle in Figure I (provided that L,u and Au happen to be positive).

@
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Recall that in Leibniz notation the defini-
tion of a derivative can be written as

The change in the area of the rectangle is

tr L(ua): (u+ L^u)(u + La) uu : u\u + aLu + LuLu

- the sum of the three shaded areas

dv Av
lim

dx ax:o A.T

lf we divide by Ax, we get

L(ua) Lu Lu , a Lu
u.Tu.Ti-J.u^Ax Ax Ax Ax

If we now let Ax --; 0, we get the derivative of uu:

d , \ L(uu) .. ( Lu Lu
;luu):: lrm . - lim lu + u +
lx r' -o Ax A.t *o \ Ax Ax

LuLu/\lim +u lim +llimLul
t.r*o AX tx-o AX \-r.-o /
du + rdu + o.'lY
dx dx dx

B +tud: "++ r+7X AX AX

^,*)

(**#)

(Notice that Au -+ 0 as Ax --+ 0 since/is differentiable and therefore continuous.)
Although we started by assuming (for the geometric interpretation) that all the

quantities are positive, we notice that Equation I is always true. (The algebra is
valid whether u, a, A,u, and Au are positive or negative.) So we have proved Equa-
tion2, known as the Product Rule, for all differentiable functions u and u.

The Product Rule If f and

d

;lf(x)s(x)l

g are both differentiable, then

dd: f(x\; Is(*)] + gG);11(x)1

In words, the Product Rule says that the derivative of a product of two functions
is the first function times the derivative of the second function plus the second

function times the derivative of the first function.

EXAMPLE I r A telephone company wants to estimate the number of new

residential phone lines that it will need to install during the upcoming month.
At the beginning of January, 1997,the company had 100,000 subscribers, each

of whom had 1.2 phone lines, on average. The company estimated that its sub-

scribership was increasing at the rate of 1000 monthly. By polling its existing
subscribers, the company found that each intended to install an average of 0.01

new phone lines by the end of January. Estimate the number of new lines the

company will have to install in January, 1997,by calculating the rate of increase

of lines at the beginning of the month.

SOLUTION Let s(r) be the number of subscribers and let n(t) be the number of
phone lines per subscriber at time /, where t is measured in years and r : 0

corresponds to the beginning of 1997. Then the total number of lines is given by

L(t) - s(r)rz(r)
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and we want to find I:(0). According to the Product Rule, we have

203

r:(t) : fibt',n1,11- 'G) * n(t) + n(t) *'r,
We are given that s(0) : 100,000 and z(0) : 1.2. The company's estimates con-
cerning rates of increase are that s'(0) - 1000 and n'(O) - 0.01. Therefore,

I:(O): s(0)n'(0) + n(0)s'(0)

- 100,000' 0.01 + 1.2 ' 1000 : 2200

The company will need to install approximately 2200 new phone lines during
January of 1997.

Notice that the two terms arising from the Product Rule come from different
sources-old subscribers and new subscribers. One contribution to / is the num-
ber of existing subscribers (100,000) times the rate at which they order new lines
(about 0.01 per subscriber monthly). A second contribution is the average number
of lines per subscriber (1.2 at the beginning of the month) times the rate of in-
crease of subscribers (1000 monthly).

EXAMPLE 2 I
(a) If f (x) : xssx, find f'(*).
(b) Find the nth derivative, f"'(*).
5CIruTl0N
(a) By the Product Rule, we have

f'(x): *Gu.): .+k\+ ,.4G)ox ax dx

:xex+e''l-(x+l)e'

(b) Using the Product Rule a second time, we get

f"(*): *rn+l)e.l: (x+ D*k\+ r.fie+1)
: (x + l)e* + e* . 1 : (x + 2)e.

Further applications of the Product Rule give

f"'(*)-(x+3)e. ,f'o'(r)-(x+ 4)r.

In fact, each successive differentiation adds another term e", so

f,")(x)- (x + n)e'

EXAMPLE 3 r Differentiate the function f(r): 6 tl - t).

SOLUTlCIN I Using the Product Rule, we have

*

Figure 2 shows the graphs of the func-
tion / of Example 2 and its derivative.f'.
Notice that f '(x) is positive when / is

increasing and negative when / is

decreasing.

3

FIGURE 2 #

l-3t
2\ft
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SSg"trT[#F* ], If we first use the laws of exponents to rewrite f (t), then we can

proceed directly without using the Product Rule.

f (t) - 6 r'ft : tt/z f/z

f'(t) -- *-t/z 1,"'

which is equivalent to the answer given in Solution l.

Example 3 shows that it is sometimes easier to simplify a product of functions
than to use the Product Rule. In Example 2, however, the Product Rule is the only
possible method.

EXAMPLE q t It f(x) : Ji sU), where 9(4) : 2 and g'(4) : 3, tind f'(4).

SOLUTION Applying the Product Rule, we get

#

f'(*): *lEg(x)l : ,/i *lsl)l + s(x) firJil
:6s'G) + s(x).*x-rrz

:'f g'(x)+ #

2
3 + 2"2:6'5 ff

Therefore

f'(4): t/4 s'(4) + #: 2

N The Quotient Rule

Suppose that/and g are differentiable functions. If we make the prior assumption
that the quotient function f : f/S is differentiable, then it is not difficult to find a

formula for F' in terms of /' and g'.
Since F(x): fQ)lSG), we can write/(x): F(x)g(x) and apply the Product

Rule:

f'(x) : F(x)g'(x) + s(x)F'(x)

Solving this equation for F'(r), we get

ls?)l'

/ 7(x) \' s@)f'(x) - f(x)s'G)
\rG)/:-----tffi-

Although we derived this formula under the assumption that F is differentiable, it
can be proved without that assumption (see Exercise 42).
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In words, the Quotient Rule says that the derivative of a quotient is the denomi-
nator times the derivative of the numerator minus the numerator times the deriva-
tive of the denominator, all divided by the square of the denominator.

The Quotient Rule and the other differentiation formulas enable us to compute
the derivative of any rational function, as the next example illustrates.

We can use a graphing device to check
that the answer to Example 5 is plausible.

Figure 3 shows the graphs of the func-
tion of Example 5 and its derivative.
Notice that when ) grows rapidly (near

-2), _y' is large. And when -y grows
slowly, y' is near 0.

FIGURE 3

EXAMPLE5 T Lety
x2 + x 2:

-tr3+6

d -.0) , (x-+r 2)
ax

(*t +
Then y'

4-x

(r' + 6)'

2x3+6x2+lzx+6
(-r3 + 6)2 t

EXAMPTE 6 r Find an equation of the tangent line to the curve y : e'/(l + x')
at the point (l,e/2).

SOLUTION According to the Quotient Rule, we have

("'+ x zlfiU'+6)

dy

add(l + xt) + (e.) r' , (t + xt)ax ax

dx

(l + x')e'
(l + x')'

So the slope of the tangent line at (l,elT) is

(l + x')'

,l0yl
;1":, : o

3.5 This means that the tangent line at (1,e/2) is horizontal and its equation is
y : e/2.[See Figure 4. Notice that the function is increasing and crosses its
tangent line at (l,e/2).1

NOTE . Don't use the Quotient Rule every time you see a quotient. Sometimes
it's easier to rewrite a quotient first to put it in a form that is simpler for the pur-

*

The Quotient Rule If f and g are both differentiable, then

d d

*[#] eG\ + lftill - f(x) + [g(")]
dx dx

I g(')]'

-1.5

FIGURE 4
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ISpose of differentiation. For
function

instance, although it possible to differentiate the

using the Quotient Rule, it is
the function as

before differentiatins.

F(x) -
3x2 + zJ;

,r

much easier to perform the division first and write

f(r) -3x+Zx-ttz

Exe rcises

3. ,f(t) : x2e'

e.'
5..I: rx-

eG) - ,f, e"

e't
at 

-
)-- l*x

Iu'
.l-tul:. rr l+ Lt'

l. Find the derivative of 1' - (rt + l) (xr + 1) in two
ways: by using the Product Rule and by performing
the multiplication first. Show that your answers are

equivalent.

2. Find the derivative of the function

F(r) - 
x - 3xVx

Vx
in two ways: by using the Quoticnt Rule and by
simplifying first. Do your answers agree?

3-18 r Differentiate the function.

20. (a) The curve ) : x/(l + rt) is called a serpentine.
Find an equation of the tangent line to this curve at

the point (3,0.3).

E= (b) Illustrate part (a) by graphing the curve and the

tangent line on the same screen.

2l . (a) If /(r) - e '/*t. find J''(x).
E= (b) Check to see that your answer to part (a) is

reasonatrle by comparing the graphs of .f and J'' .

27. (a) If /(r) : x/(x' l), fincl.f'(x).
f= (b) Check to see that your answer to part (a) is

reasonable by comparing the graphs of .f and "f' .

23. (a) ff /(r) - (r l)e',, find,f'(r) and .f"(x).
n= (b) Check to see that your answers to part (a) are

reasonable by comparing the graphs of .f, f' , and.f".

24. (a) If /(x) : xlk= + 1), find .f''(x) and f"(x).
f= (b) Check to see that your answers to part (a) are

reasonable by comparing the graphs of f,f ', and.f".

25. Suppose that/(St - l, ,f'(5) - 6, 9(5) - -3, and

g'(5) : 2. Find the values of (a) ( f g)'(5), (b) (.f lil'6),
and (c) ( slf)'(5).

26. If/(3) - 4,9(3) - 2, f'(3)- -6, and g'(3) - 5. find
the following numbers.
(a) (/ + e)'(3) (b) (/g)'(3)

/ ,, \r
(c) (flil'G) (cr) (j-) rrl\.r-s/

27. If .f(r) -- e 'g(x), where g(0) - 2 and g'(0) - 5, find

l''(0).

28. If h(2) - l and /r'(2) - -3, find

d /r'r 'l \l*\;)1,:,

4.

6.

7. ft(x)

e. G(s)

10. g(x)

ll. -)' -

13. )n -

15. ,)' :

17. /(r)

_x*2
rl

: (rn + s + l) (st +

- (t + .,6)(,r - r')
,trt + 4x + 3

,{;

(r' Zr)e'

I

J+rr+l

.-*
C

J+-
J

8.

2)

NJ
II

19. (a) The curve.),: lll + rt) is called a witch of
Maria Agnesi. Find an equation of the tangent line
to this curve at the point (- t, i ).

(b) Illustrate part (a) by graphing the curve and the

tangent line on the same screen.
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30.

If/and g are the functions whose graphs are shown,

let a(,u) - .f (*)g(x) and u(x) : ,f(x) lsk).
(a) Find &'( I ). (b) Find u'(5).
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35. How many tangent lines to the curve ),' - x/(x + 1)

pass through the point (1,2)? At which points do these

tangent lines touch the curve?

36. Find the equations of the tangent lines to the curve

.)' : (x 1)/(r + l) that are parallel to the line
r 2y-2.

37. (a) Use the Product Rule twice to prove that rf f, g, and

h are differentiable, then

(fgh)' - f'sh + fs'h * fsh'
(b) Taking .f : g : lt in part (a), show that

d

; lf(')l ' - 3[ 1(x)10 /'(')

(c) use part (b) to differentiate ), : e'".

38. (a) If F(x) : ,f(x)g(x), where / and g have derivatives of
all orders. show that

F',: f,,g + Zf,g,* fg,,

(b) Find similar formulas for F"' and F(or.

(c) Guess a formula for F(").

39. Find expressions for the first five derivatives of

/(*) - rze'. Do you see a pattern in these expres-

sions? Guess a formula for,f t"'(*) and prove it using

mathematical induction.

40. (a) Use the definition of a derivative to prove the

Reciprocal Rule: If g is differentiable, then

d( r\ s'(x)
,tr\nc))--tr(")f'

(b) Use the Reciprocal Rule to differentiate the function
in Exercise 15.

41. Use the Reciprocal Rule to verify that the Power Rule is

valid for negative integers, that is,

d_(x ")
dx

for all positive integers n.

47. Use the Product Rule and the Reciprocal Rule to prove

the Quotient Rule.

Ifl is a differentiable function, fincl an expression for
the derivative of each of the following functions.

(a) .), 
: rt"f(.r) (b) .), 

: l9
J-

)x-
(c) \'-' l(r)

3l. [n this exercise we estimate the rate at which the total
personal income is rising in the Miami-Ft. Lauderdale

metropolitan area. In July, 1993, the popul;rtion of this
arrea was 3,354,000, and the population was increasing

at roughly ,15,000 people per year. The average annuarl

income was $21.107 per capita, and this avcrage was

increasing trt about $1900 per year (well above the
nartional average of about $660 yearly). Use the Product
Rule and these figures to estimate the rate at which
total personal income was rising in Miami-Ft. Lauder-

dale in July, 1993. E,xplain the meaning of each term in
the Product Rule.

32. A manufacturer produces bolts of a fabric with a fixed
width. The quantity c7 of this fabric (measured in yards)

that is sold is a function of the selling price p (in dollars
per yard), so we can write q : f( p). Then the total
revenue earned with selling price p is n( p) : pf ( p).
(a) What does it mean to say that f(20) : 10,000 and

f'(20) : -350'l
(b) Assuming the values in part (a)', find R'(20) and

interpret your answer.

On what interval is the function/(x) - r''e' inereasing?

On what interval is the function /(") : JZru' concave

downward?

33.

34,

Rates of Change in the Natural and Social Sciences

Recall from Section 2.7 that if y : /(;), then the derivative dy/dx can be inter-
preted as the rate of change of y with respect to x. In this section we examine some

of the applications of this idea to physics, chemistry, biology, economics, and other
sciences.
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mpe - average rate of change
m: f '(xr) - instantaneous rate

of change

FIGURE I

Let's recall from Section 2.6 the basic idea behind rates of chanse. If r chanses
from x1 to xz, then the change in x is

Ax- x2 x1

and the corresponding change in y is

A)' - f(xr) - f(x,)

The difference quotient

Ay f(xr)-1(xr)
Ax x2 x1

is the average rate of change ofy with respect to x over the interval [x1, x2] and
can be interpreted as the slope of the secant line PQ in Figure l. Its limit as
Ax -> 0 is the derivative/'(x1), which can therefore be interpreted as the instan-
taneous rate of change of y with respect tor or the slope of the tangent line at
P(xb f(xt)). Using Leibniz notation, we write the process in the form

dv .. Ayj: limdx tx-.o A,t

Whenever the function y : f(x) has a specific interpretation in one of the sci-
ences, its derivative will have a specific interpretation as a rate of change. (As we
discussed in Section 2.6,the units for dy/dx are the units fory divided by the units
for -r.) We now look at some of these interpretations in the natural and social
sciences.

I F'yr,.,
lf s : f(t) is the position function of a particle that is moving in a straight line,
then As/Ar represents the average velocity over a time period Ar, and u : ds/dt
represents the instantaneous velocity (the rate of change of displacement with re-
spect to time). This was discussed in Sections 2.6 and2.7,but now that we know
the differentiation formulas, we are able to solve velocity problems more easily.

EXAMPLE I I The position of a particle is given by the equation

.T - f(t) - t3 6t2 + 9t

where / is measured in seconds and s in
(a) Find the velocity at time r.

(b) What is the velocity after 2 s? After
(c) When is the particle at rest?

(d) When is the particle moving forward (that is, in the positive direction)?
(e) Draw a diagram to represent the motion of the particle.
(f) Find the total distance traveled by the particle during the first five seconds.
(g) Find the acceleration at time r and after 4 s.

E! ft) Graph the position, velocity, and acceleration functions for 0 < r < 5.
(i) When is the particle speeding up? When is it slowing down?

meters.

4s?

Q(*r,/(xz))

P(*,, /(x,))
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(a) The velocity function
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is the derivative of the position function.

s: f(t): t3 6tz + 9t

209

dsa(t):i:3,'-r2t+9

(b) The velocity after 2 s means the instantaneous velocity when / : 2, that is,

,el:41 :3Q)'- tz(z) + e: -3mlsdt |,:z

The velocity after 4 s is

a(4)-3(4)' r2(4) + 9- gmls

(c) The particle is at rest when u(t)- 0, that is,

3t2 l2t + 9 - 3(t' 4t + 3) - 3(t l) (r

and this is true when t - 1 or t - 3. Thus, the particle is at

after 3 s.

(d)Theparticlemovesinthepositivedirectionwhena(t)>

3t2 lLt + 9 : 3(t 1) (r 3)

a(4) : 6(4) 12: 12 mfs?

(h) Figure 3 shows the graphs of s, u, and a.

3)-o
restafterlsand

0, that is,

/:0
s:0

FIGURE 2

t:l 'r

s:4

This inequality is true when both factors are positive (t > 3) or when both
factors are negative (t < l). Thus, the particle moves in the positive direction in
the time intervals t { I and t > 3. ltmoves backward when | < t < 3.

(e) The motion of the particle is illustrated schematically in Figure 2.

(f) Because of what we learned in parts (d) and (e), we need to calculate the
distances traveled during the time intervals [0,1], [1,3], and 13,5] separately.

The distance traveled in the first second is

lrtrt-/(o)l:14-ol:+^
From / : 1 to t : 3 thedistance traveled is

lr(rl - /(r)l: lo - +l: + -
From t : 3 to t : 5 thedistance traveled is

lrtsl - /(3)l : lzo - ol: zo m

The total distance is 4 + 4 + 20 - 28 m.

(g) The acceleration is the derivative of the velocity function:

dzs daa(t)-----6t 12dtL dt
i.--
!.=-----

-12

FIGURE 3
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FIGURE 4

(i) The particle speeds up when the velocity is positive and increasing (u and a
are both positive) and also when the velocity is negative and decreasing (a and a
are both negative). In other words, the particle speeds up when the velocity and
acceleration have the same sign. (The particle is pushed in the same direction it
is moving.) From Figure 3 we see that this happens when I < t < 2 and when
r > 3. The particle slows down when u and a have opposite signs, that is, when
0 < I < I and when 2 < t < 3. Figure 4 summarizes the motion of the particle.

slows speeds slows
down up down

speeds
up ffi

EXAMPLE 2 r If a rod or piece of wire is homogeneous, then its linear density
is uniform and is defined as the mass per unit length (p : */l) and measured
in kilograms per meter. Suppose, however, that the rod is not homogeneous but
that its mass measured from its left end to a point x is m : f(x) as shown in
Fisure 5.

I tr-

"{l J2

- xl andx- xz is given
part of the rod is

FIGURE 5 This part of the rod has mass /(x).

The mass of the part of the rod that lies between ,r

by Lm : f(xr) - f(xr), so the average density of that

If we now let Ax + 0 (that is, x2 + xr), we are computing the
over a smaller and smaller interval. The linear density p at x1

these average densities as Ax -t 0; that is, the linear density is
change of mass with respect to length. Symbolically,

averagedensity: +:' a,x

A,M
P: lim

Ax--+0 AX

yez) 1(xr)
x2 x1

dm

average density
is the limit of
the rate of

dx

Thus, the linear density of the rod is the derivative of mass with respect to
length.

0

backward
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0.2

2t I

1.2
For instance, if m : f(*)- tE, where x is measured in meters and m rn

kilograffiS,thentheaveragedensityofthepartoftherodgivenby1<x<
is

Lm f (1.2) f (t) 'l 
t.z I : 0.48 ke/^Ax 1.2 I

while the density right at x - 1 is

ttml r I

p: ; l,- 
: ,G l,: 

: oso ke/*

EXAMPLE 3 r A current exists whenever electric charges move. Figure 6 shows

part of a wire and electrons moving through a shaded plane surface. If AQ is the

net charge that passes through this surface during a time period Ar, then the

average current during this time interval is defined as

average current -
LQ Q, Q'
Lt t2 t1

smaller and smaller time intervals
time /r:

dQ

dt

ffi

If we take the limit of this average current over

we get what is called the current I at a given

AOI: lim -=:
A r'-*o A f

Thus, the current is the rate at which charge flows through a surface. It is

measured in units of charge per unit time (often coulombs per second, called
amperes).

T

Velocity, density, and current are not the only rates ofchange that are important
in physics. Others include power (the rate at which work is done), the rate of heat

flow, temperature gradient (the rate of change of temperature with respect to posi-
tion), and the rate of decay of a radioactive substance in nuclear physics.

I cr,.-,r..y
EXAMPLE 4 r A chemical reaction results in the formation of one or more sub-

stances (called products) from one or more starting materials (called reactants).

For instance, the "equation"

2H2+Oz+ZHzO

indicates that two molecules of hydrogen and one molecule of oxygen form two
molecules of water. Let us consider the reaction

A+B---+C

where A and B are the reactants and C is the product. The concentration of a
reactant A is the number of moles (6.022 x 1023 molecules) per liter and is
denoted bV [A]. The concentration varies during a reaction, so [A], [B], and [C]
are all functions of time (t). The average rate of reaction of the product C over a
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time interval 11

A[c]
Ar

But chemists are more interested
is obtained by taking the limit of
interval Ar approaches 0:

tz t1

in the instantaneous rate of reaction, which
the average rate of reaction as the time

rate of reaction : lim A[C] 
- 

d[C]

Since the concentration or the produr, ,:;r"::, ,n" .1i",,"' proceeds, the
derivative dlcl/dt will be positive and so the rate of reaction of C is positive.
The concentrations of the reactants, however, decrease during the reaction, so,
to make the rates of reaction of A and B positive numbers, we put minus signs
in front of the derivatives dlA,]/dt and dlBl/dt. Since [A] and [B] each decrease
at the same rate that [C] increases, we have

rare of reacrion _ d[c] _ _ d[A] _ _ r/[B]
dt dr dr

More generally, it turns out that for a reaction of the form

aA + bB ----- cC + dD

we have

_ I d[A] 1 dtBl : I d[c] +l dtpl
adtbdtcdtddt

The rate of reaction can be determined by graphical methods (see Exercise 16).
In some cases we can use the rate of reaction to find explicit formulas for the
concentrations as functions of time (see Exercises 7.4).

EXAMPLE 5 r One of the quantities of interest in thermodynamics is compres-
sibility. If a given substance is kept at a constant temperature, then its volume
V depends on its pressure P. We can consider the rate of change of volume with
respect to pressure-namely, the derivative dV/dP. As P increases, V decreases,
so dV/dP < 0. The compressibility is defined by introducing a minus sign and
dividing this derivative by the volume V:

isothermal comPressibility : F : - + #
Thus, B measures how fast, per unit volume, the volume of a substance decreases
as the pressure on it increases at constant temperature.

For instance, the volume V (in cubic meters) of a sample of air at 25 oC was
found to be related to the pressure P (in kilopascals) by the equation

s.3V-
P
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The rate of change of V with respect to P when P - 50 kPa is

dv I r: 
I

l--l

dP lo:tu P' lo:tn

: - 5'3 
-- - o.oo2 lz m'lkva

2500

The compressibility at that pressure is

B: -+#l ,:,,: Y: o02 (*'/kPa)/m3

50

H Biology
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EXAMPLE 6 r Let " 
: f(t) be the number of individuals in an animal or plant

population at time r. The change in the population size between the times / : /r

and /: tz is An : f(tr) - 7Q), and so the average rate of growth during the

time period 11 ( / ( 11 is

L,n f(t,) - f(t)
average rate of growth : 

AJ 
: 

;

The instantaneous rate of growth is obtained from this average rate of growth
by letting the time period At approach 0:

Ln dn
growth rate : ]i:, t, 

: 
a,

Strictly speaking, this is not quite accurate because the actual graph of a popu-

lation function n : f (t) would be a step function that is discontinuous whenever

a birth or death occurs and, therefore, not differentiable. However, for a large

animal or plant population, we can replace the graph by a smooth approximating
curve as in Fisure 7.

FIGURE 7

A smooth curve approximating
a qrowth function
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FIGURE 8

Blood flow in an arterv

To be more specific, consider a population of bacteria in a homogeneous
nutrient medium. Suppose that by sampling the population at certain intervals it
is determined that the population doubles every hour. If the initial population is
ne and the time t is measured in hours, then

f(r):2f(0):2no
f(2):2f(r):22n0
f(3):2f(2):2tno

and, in general,

f(t) : 2'no

The population function is n : no2t.
In Section 3.1 we discussed derivatives of exponential functions and found

that

d

d. (2.) -; (0.69)2.

So the rate of growth of the bacteria population at time r is

For example, suppose that we start with an initial population of ns: 100 bac-
teria. Then the rate of growth after 4 hours is

dnl
;1,-^- loo(o'6e)24 : 1to4

This means that, after 4 hours, the bacteria population is growing at a rate of
about ll00 bacteria per hour. f
EXAMPLE 7 r When we consider the flow of blood through a blood vessel, such
as a vein or artery, we can take the shape of the blood vessel to be a cylindrical
tube with radius R and length / as illustrated in Fisure 8.

dnd
E: *fu02'): no(0.69)2'

+RT'
-r-_l|.

J

I

P
a : i* {n' r,)

viscosity of the blood and P is the pressure difference between
tube. If P and I are constant, then u is a function of r with

Because of friction at the walls of the tube, the velocity a of the blood is
greatest along the central axis of the tube and decreases as the distance r from
the axis increases until a becomes 0 at the wall. The relationship between er and
r is given by the law of laminar flow discovered by the French physician
Poiseuille in 1840. This states that

tr

where 4 is the
the ends of the
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The average rate
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and if we let Ar --+

with respect to r:

more detailed information, see W. Nichols and M. O'Rourke
Blood Flow in Arteries: Theoretic, Experimental, and
3d ed. (Philadelphia: Lea & Febiger, 1990).1

of change of the velocity as we move from r : rl outward to

*:#
0, we obtain the instantaneous rate of change of velocity

Lu du
velocity gradient - l:* A, 

: 
d,

Using Equation l, we obtain

du 
- 

P fi-zr\:-P'dr 4nl'- 2nl

For one of the smaller human arteries we can take 4 : 0.027, R : 0.008 cm,

I : 2 cm, and P : 4000 dynes/cm2, which gives

,: .i9- (o.oooo64 - r'?)
4(0.027)2'

- 1.85 x 104(6.4 x 1o-5 - r2)

At r : 0.002 cm the blood is flowing at a speed of

u(0.002) : 1.85 x 104(64 x 10-6 - 4 x t0-6)

: 1.ll cm/s

and the velocity gradient at that point is

aa | 4000(0.002)

= I : -14(cm/s)/cmdr l"-o.ooz 2(0'027)2

To get a feeling for what this statement means, let's change our units from
centimeters to micrometers (1 cm - 10,000 pm). Then the radius of the artery
is 80 pm. The velocity at the central axis is 11,850 pr.m/s, which decreases to
ll,ll0 p,m/s atadistance of r: 20 p'm. The fact thatduldr: -74(ptm/s)/p,m
means that, when r - 2O trr,m, the velocity is decreasing at a rate of about

74 p,m/s for each micrometer that we proceed away from the center. I

EXAMPLE 8 r Suppose C(x) is the total cost that a company incurs in producing

.r units of a certain commodity. The function C is called a cost function. If the

number of items produced is increased from xr to x2, the additional cost is

LC : C(xz) - C(x), and the average rate of change of the cost is

AC C(xr) - q(t') _ C(xr + Ax) - C(xr)

Economics

Ax xz x1 Ax
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The limit of this quantity as A-r -+ 0, that is, the instantaneous rate of change of
cost with respect to the number of items produced, is called the marginal cost
bv economists:

marginalcost:l11;#:#

[Since -r can usually take on only integer values, it may not make literal sense to
let Ax approach 0, but we can always replace C(-r) by a smooth approximating
function as in Example 6.1

Taking Ax : I and n large (so that Ar is small compared to n), we have

C'(n)-C(n+l)-C(n)

Thus, the marginal cost of producing z units is approximately equal to the cost
of producing one more unit [the (n + l)st unit].

It is often appropriate to represent a total cost function by a polynomial

C(x):a*bx+cx2+dx3

where a represents the overhead cost (rent, heat, maintenance) and the other
terms represent the cost of raw materials, labor, and so on. (The cost of raw
materials may be proportional to x, but labor costs might depend partly on
higher powers of x because of overtime costs and inefficiencies involved in
large-scale operations.)

For instance, suppose a company has estimated that the cost (in dollars) of
producing x items is

C(x) : 10,000 * 5r * 0.01.12

Then the marginal cost function is

C'(x) - 5 + 0'02x

The marginal cost at the production level of 500 items is

C'(500) : s + 0.02(s00) : $l5/item

This gives the rate at which costs are increasing with respect to the production
level when x : 500 and predicts the cost of the 50lst item.

The actual cost of producing the 501st item is

c(501) - c(500) : [10,000 + 5(s01) + 0.01(501)r]

[10,000 + s(s00) + 0.01(s00)'?]

- $15.01

Notice that C'(500) : C(501) - C(500).

Economists also study marginal demand, marginal revenue, and marginal
profit, which are the derivatives of the demand, revenue, and profit functions.
These will be considered in Chapter 4 after we have developed techniques for find-
ing the maximum and minimum values of functions.

ffi
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M other Sciences

Rates of change occur in all the sciences. A geologist is interested in knowing the

rate at which an intruded body of molten rock cools by conduction of heat into sur-

rounding rocks. An engineer wants to know the rate at which water flows into or

out of a reservoir. An urban geographer is interested in the rate of change of the

population density in a city as the distance from the city center increases. A mete-

orologist is concerned with the rate of change of atmospheric pressure with respect

to height. (See Exercise 15 in Section 7.5.)
In psychology, those interested in learning theory study the so-called learning

curve, which graphs the performance P(t) of someone learning a skill as a func-

tion of the training time /. Of particular interest is the rate at which performance

improves as time passes, that is, dP/dt.
In sociology, differential calculus is used in analyzing the spread of rumors (or

innovations or fads or fashions). Ifp(r) denotes the proportion of a population that
knows a rumor by time /, then the derivative dpfdt represents the rate of spread of
the rumor. (See Exercise 56in Section 3.5.)

Velocity, density, current, power, and temperature gradient in physics, rate of reac-

tion and compressibility in chemistry, rate of growth and blood velocity gradient in
biology, marginal cost and marginal profit in economics, rate of heat flow in geol-

ogy, rate of improvement of performance in psychology, rate of spread of a rumor
in sociology-these are all special cases of a single mathematical concept, the

derivative.
This is an illustration of the fact that part of the power of mathematics lies in its

abstractness. A single abstract mathematical concept (such as the derivative) can

have different interpretations in each of the sciences. When we develop the proper-

ties of the mathematical concept once and for all, we can then turn around and ap-

ply these results to all of the sciences. This is much more efficient than developing

properties of special concepts in each separate science. The French mathematician
Joseph Fourier (1768-1830) put it succinctly: "Mathematics compares the most di-
verse phenomena and discovers the secret analogies that unite them."

Exercises

l. A particle moves ace ording to a law of motion
,s - f(t) - tr l2t2 + 36t, t > 0, where r is measured

in seconcls and s in meters.
(a) Find the velocity at time /.

(b) What is the velocity after 3 s?

(c) When is the particle at rest?

(d) When is the particle moving torward?
(e) Find the total distance traveled during the first I s.

(f ) Draw a diagram like Figure 2 to illustrate the

motion of the particle.
(g) Find the acceleration at tirne / and after 3 s.

(h) Graph the position, velocity, and acceleration func-
tionsfor0<r<8.

(i) When is the particle speeding up? When is it slow-

ing down?

2. A particle moves along the tr-axis, its position at time /
given by x(r) - tl\ + t'), t > 0, where / is measured in
seconds and r in meters.
(a) Find the velocity at time /.

(b) When is the particle moving to the right? When is it
movins to the left?

ngTI

Summary
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(c) Find the total distance traveled during the first 4 s.

(d) Find the acceleration at time r. When is it 0?

(e) Graph the position, velocity, and acceleration func-
tionsfor0</<4.

(f) When is the particle speeding up? When is it slow-
ing down?

The position function of a particle is given by
.i-/3 4.5t2-7t,t>0.
(a) When does the particle reach a velocity of 5 m/s?
(b) When is the acceleration 0? What is the significance

of this value of r?

If a ball is thrown vertically upward with a velocity of
80 ft/s, then its height after / seconds is,s :80r - I6t2.
(a) What is the maximum height reached by the ball?
(b) What is the velocity of the ball when it is 96 ft

above the ground on its way up? On its way down?

(a) A company makes computer chips from square
wafers of silicon. It wants to keep the side length of
a wafer very close to 15 mm and it wants to know
how the area A(x) of a wafer changes when the side
length x changes. Find A'(15) and explain its mean-
ing in this situation.

(b) Show that the rate of change of the area of a square
with respect to its side length is half its perimeter.
Try to explain geometrically why this is true by
drawing a square whose side length x is increased
by an amount Ax. How can you approximate the
resulting change in area AA if Ax is small?

(a) Sodium chlorate crystals are easy to grow in the
shape of cubes by allowing a solution of water and
sodium chlorate to evaporate slowly. If y is the
volume of such a cube with side length x, calculate
dV/dx when r : 3 mm and explain its meaning.

(b) Show that the rate of change of the volume of a
cube with respect to its edge length is equal to half
the surface area of the cube. Explain geometrically
why this result is true by arguing by analogy with
Exercise 5(b).

(a) Find the average rate of change of the area of a
circle with respect to its radius r as r changes from
(i) 2to3 (ii) 2 to 2.5 (iii) 2 to 2.r

(b) Find the instantaneous rate of change when r : 2.
(c) Show that the rate of change of the area of a circle

with respect to its radius (at any r) is equal to the
circumference of the circle. Try to explain geo-
metrically why this is true by drawing a circle whose
radius is increased by an amount Ar. How can you
approximate the resulting change in area AA if Ar
is small?

A stone is dropped into a lake, creating a circular ripple
that travels outward at a speed of 60 cm/s. Find the rate
at which the area within the circle is increasing after
(a) I s, (b) 3 s, and (c) 5 s. What can you conclude?

A spherical balloon is being inflated. Find the rate of
increase of the surface area (S : 4nr2) with respect to
the radius r when r is (a) I ft, (b) 2 ft, and (c) 3 ft.
What conclusion can you make?

(a) The volume of a growing spherical cell is V : lrnrt,
where the radius r is measured in micrometers
(1 lf,m - 10-6 m). Find the average rate of change
of V with respect to r when r changes from
(i) 5 to 8 pm (ii) 5 to 6 pm (iii) 5 to 5.1 p.m

(b) Find the instantaneous rate of change of V with
respecttorwhenr:5pm.

(c) Show that the rate of change of the volume of a

sphere with respect to its radius is equal to its
surface area. Explain geometrically why this result
is true. Argue by analogy with Exercise 7(c).

The mass of the part of a metal rod that lies between its
left end and a point x meters to the right is 3xt kg. Find
the linear density (see Example 2) when x is (a) I m,
(b) 2 m, and (c) 3 m. Where is the density the highest?
The lowest?

If a tank holds 5000 gallons of water, which drains
from the bottom of the tank in 40 min. then Torricelli's
Law gives the volume V of water remaining in the tank
after r minutes as

Find the rate at which water is draining from the tank
after (a) 5 min, (b) l0 min, (c) 20 min, and (d) 40 min.
At what time is the water flowing out the fastest? The
slowest? Summ artze your findings.

The quantity of charge Q in coulombs (C) that has

passed through a point in a wire up to time r (mea-
sured in seconds) is given bV QU): /r 2t? + 6t + 2.

Find the current when (a) r - 0.5 s and (b) r - I s.

[See Example 3. The unit of current is an ampere
(l A - I C/s).1 At what time is the current lowest?

Newton's Law of Gravitation says that the magnitude F
of the force exerted bv a bodv of mass m on a bodv of
mass M ts

E_GmMr-t'2

where G is the gravitational constant and r is the dis-
tance between the bodies.
(a) If the bodies are moving, find dFldr and explain its

meaning. What does the minus sign indicate?
(b) Suppose it is known that Earth attracts an object

with a force that decreases at the rate of 2 N/km
when r : 20.000 km. How fast does this force
change when r - 10,000 km?

Boyle's Law states that when a sample of gas is com-
pressed at a constant temperature, the product of the

9.
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pressure and the volume remains constant: PV - C.

(a) Find the rate of change of volume r,^,'ith respect to
pressure.

(b) A sarnple of gas is in a container at low pressure

and is steadily compressecl at constant temperature
for l0 rninutes. Is the volume decreasing more

rapidly at the be-{inning or the end of the

10 minutes? Explain.
(c) Prove that the isothermal compressibility (see

Example 5) is given by B - l/P.

16. The data in the table concern the lactonization of
hydroxyvaleric acicl at 25 oC. They give the concentra-
tion C(r) of this acid in rnoles per liter after r minutes.

(a) Find the average rate of reaction for the following
time intervals:
(i) 2

(b) Plot the points from the table and draw a smooth
cllrve through them as an approximation to the
graph of the concentration function. Then draw
the tangent at I - 2 and use it to estirnate the

instantaneous rate of reaction when / : 2.

(c) Is the reaction speeding up or slowing down?

17. If, in Example 4. one molecule of the procluct C is
formed from one tnolecule of the reactant A ancl

one molecule of the reactant B, and the initial
concentrations of A ancl B have a common value

[A] - [B] -- c moleslL,then [C] - a]kilfukt + 1),

whereftisaconstant.
(a) Find the rate of reaction art time /.

(b) Show that if -r : [C], then

eIr

'h 
: k(o x)-

(c) What happens to the concentration as t ---+ n?

(d) What happens to the rate of reaction as / --+ co?

(e) What do the results of parts (c) and (d) mean in
practical terms?

18. Suppose that a bacteria population starts with 500 bac-

teria and triples ever)' hour.
(a) Wtrat is the poplllation after 3 hours'? After 4 hours?

After r hours?
(b) [Jse t]re result of (5) in Section 3.1 to estimate

the rate of increase of the bacteria population after
6 hours.

19. Reter to the law of laminar flow in E,xample 7.

Consider a bloocl vessel w'ith radius 0.01 cffi, length
3 cm., pressure clifference 3000 d)'neslcmr. and

viscosity T: 0.021 .

(a) Find the velocity of the blood along the centerline

SECTION 3.3 RATES OI iHA|\lGE IN Tl{T NATURAL Al-|D SOTIAL sCII|[|CIs 2t9

r - 0. at radius r - 0.005 cm. and at the wall
r:R-0.01 cffI.

(b) Find the velocity gradient at r : 0, r : 0.005,

and r - 0.01.
(c) Where is the velocitl' the greartest'] Where is the

velocity changing most?

20. The frequency of vibrations of a vibrating violin string
is eiven bv

1T-I_'2L
where L is the length of the string., f is its tension, and
p is its linear density. [See Chapter lt in D. E. Hall,
Mttsical Acous/i c-s, 2d ed. (Pacific Grove, CA: Brooks/
Cole, 1991).1

(a) Find the rate of chtrnge of the frequency with
respect to
(i) the length (when T and p are constant),
(ii) the tension (when L and p are constant), and

(iii) the linear density (when I and i. are constant).
(b) The pitch of a note (how high or low the note

sounds) is determined by the frequency / (The

higher the frequency, the higher the pitch.) Use the
signs of the derivatives in part (a) to determine what
happens to the pitch of a note
(i) when the effective length of a string is decreased

by placing er finger on the string so a shorter
portion of the string vibrates,

(ii) when the tension is increased by turning a

tuning peg.
(iii) when the linear density is increased b)' changing

to another string.

The cost, in dollars, of producing-r yards of a certain
fabric is

C(r) : 2000 + 3r + 0.01.rr + 0.0002x'

(a) Find the marginal cost function.
(b) Find C'(100) and explain its meaning. What cloes it

predict?
(c) Compare C'(100) with the cost of manufacturing the

l01st yard.

22. The cost function for a e ommodity is

c(x) : 84 + 0.16x 0.000612 + 0.000003;3

(a) Find and interpret C'(100).
(b) Compare C'(100) w'ith the cost of producing the

101st item.
(c) Graph the cost function and estimate the inflection

point.
(d) Calculate the value of x for which C has an inflec-

tion point. What is the significance of this value

of .r?

23. If p(x) is the total value of the production when there

are ir workers in a plant, then the nverege proclucrivif'l'

2t.

T
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of the work force at the plant is ?.6.

A(.r) - 
P('r)

-r

(a) find A'(x). Wh)' does the company want to hire
more workers if A'(x) > 0?

(b) Show that A'(;) > 0 if p'(x) is greater than the
average productivity.

24. If- R clenotes the reaction of the body to some stimulus
of strength "t" the sensitit,it),S is defined to he the rate
of change of the reaction with respect to x. A particular
exarnple is that when the brightness -r of a light source
is increased,. the eye reacts by clecreasing the area rt of
the pupil. The experimental formulat

In a fish farm, a population of fish is introduced into
a pond ancl harvested regularly. A model for the rate of
change of the fish population is given by the equation

(tP I P(r)\
d, 

:,',,\' - ; )P(t) Bp(t)

where r11 is the birth rate of the fish, P, is the maximurl
population that the pond can sustarin (called the c-n rry-
ing ccrpctt:itt), ancl F i* the percentage of the population
that is harvested.
(a) What value ctf dPldr corresponds to a stable

population?
(b) If the poncl can sustain 10,000 fish, the birth rate is

5Vo, and the harvesting rate is 1G/a, find the stable
population level.

(c) What happens if p is raised to 5To?

In the study of ecosystems , preda.tor-1trer models are
often used to study' the interaction between species.
Consider a population of tundra wolves. given by W(t),
and caribou, given by C(t), in northern Canacla. The
interaction has been modeled by the equations

dC
- ctC bCW

dt

dW
-cW * dCW

27.

NJ
IT

4fl + 24rL'aR- r+4.*-
has been used to model the dependence of R on r when
R is measured in square millimeters and -r is rneitsured
in appropriate units of brightness.
(a) Fincl the sensitivity.
(b) Illustrate part (a) by gretphing both R and S as

functions of x. Comment on the r,'alues of R and S- at

low levels of brightness. Is this what you woulcl
expect?

25. The gas law for an icleal gers at absolute ternpertrture f
(in kelvins), pressure P (in atmospheres), and volume V
(in liters) is PV : nRT, where n is the numtrer of moles
of the gas and R _- 0.0821 is the gas constant. Suppose
that. at L1 certain instant, P - 8.0 atm ancl is increasing
at a rate of 0.10 atnr/min and V - 10 L and is decreas-
ing at a rate of 0.15 L/min. Fincl the rate of change of
I with respect to time at that instant if n - l0 n-rol.

A review of the trigonometric functions
is given in Appendix C.

(a) What values of clCldt and r/fldr correspond to stable
populat ions?

(b) How woulcl the statement "The caribor-r go extinct"
be represented mathematically?

(c) Suppose that n:0.05, b - 0.f101, c -_ 0.05, and
rl : 0.0001. Find all population pairs (C,W ) that
leacl to stable populations. According to this model,
is it possible for the species to live in harmony or
will one or both species become extinct?

Before starting this section, you might need to review the trigonometric functions.
In particular, it is important to remember that when we talk about the function f
defined for all real numbers x by

/(-r) : sin x

it is understood that sin x means the sine of the angle whose radian measure is x.
A similar convention holds for the other trigonometric functions cos, tan, csc, sec,
and cot. Recall from Section 2.4 that all of the trisonometric functions are con-
tinuous at every number in their domains.

If we sketch the graph of the function"f(x) : sin-r and use the interpretation of
/'(x) as the slope of the tangent to the sine curve in order to sketch the graph of/'

dt

Derivatives of Trigonometric Functions



FIGURE I

We have used the addition formula for
sine. See Appendix C.
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(see Exercise 14 in Section 2.8), then it looks as if the graph of/' may be the same

as the cosine curve (see Figure l).

Let's try to confirm our guess that ifl(x) : sinx, then/'(r) : cosr. From the
definition of a derivative, we have

f'(x) - lim
It ---'O

f(x + h) f(x)
h

sin(x + h) sin x
- lim

h-O

- lim
/r --*0

h

sinxcosft + cosxsinft sinx

l-. /cos/r-l\ (sin/r\l:limfsin'\ , /+cosx\, il
tr : lim sin".liT *? + lim cosx l,l #

Two of these four limits are easy to evaluate. Since we regard x as a constant when
computing a limit as h ---> 0, we have

lim sinx : sin-r and lim cos-r : cos-r

The limit of (sin h)/h isnot so obviour. r" U""rnp,e 3 in Sectio n 2.2 wemade the
guess, on the basis of numerical and graphical evidence, that

sin 0
lim 

-- 
Io-o 0

We now use a geometric argument to prove Equation 2. Assume first that 0 lies

E

.f(r) : sin -r
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I

(a)

FIGURE 2

We multiply numerator and denominator
by cos fl * 1 in order to put the function
in a form in which we can use the limits
we know.

between 0 and n/2.
angle 0, and radius 1.

measure, we have arc
we see that

Figure 2(a) shows a sector of a circle with center O, central
BC is drawn perpendicular to OA. By the definition of radian
AB:: 0. Also, l BCI: lOn lsin0 - sing. From the diagram

lrcl< laal< arcAB

Therefore sin 0
sin 0_<1

0

Let the tangents at A and B intersect at E. You can see from Figure 2(b) that the
circumference of a circle is smaller than the length of a circumscribed polygon, so

arcAB < ltnl + IEB l. thus

0 - arc AB

- l,qol : lo,q I tan g

- tan?

Therefore. we have
(b)

sin 00<
cos 0

SO

We know that limo*o I

have

sin 0
cosO < 

- 
< I

0

- I and limo_*o cos 0 - l, so by the Squeeze Theorem, we

But the function (sin 0) l0
equal. Hence, we have

sin 0lim I
f/ --n0* 0

is an even function, so its

sin 0
lim 

-- 
I

0-(t 0

right and left limits must be

cosg+ll cost0 I
| - lirn

cos0 + I I o-o 9(cos0 + l)
sin 0 sin 0

- -limr/-o 0 cosO + I

sin 0

cos0 + I

so we have proved Equation 2.

We can deduce the value of the remaining limit in (l) as follows:

cosg 1 [cos9 I
lim _- lim | _.
d-o 0 r/-ol 0

-sin2g
-lim 

-

o-o 0(cos0 + l)
sin 0

- -lim 'lim
f/*o 0 fJ*o

:-, (rh) :
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E
coso Ilim__-0

o--+0 0

If we now put the limits (2) and (3) in (l), we get

f'(*): lim sinx ' lim 
cosft - I + lim cosx ' lim 

tit ft
h--->o h--->o h h---+o h--o h

- (sinx). 0 + (cosx). I - cosx

So we have proved the formula for the derivative of the sine function:

d

d-
(sin x) - cos x

EXAMPLE I r Differentiate y - xrsinx.

SOLUTISN Using the Product

4

Figure 3 shows the graphs of the func-
tion of Example I and its derivative.
Notice that y' : 0 whenever y has a

horizontal tangent.

5

FIGURE 3

Rule and Formula 4. we have

,d,.\,d,)tx- .1srnx)+sinx+("')dx clx

x2cosx + Zxsinx

dy_
dx

]re

Using the same methods as in the proof of Formula 4, one can prove (see Exer-
cise 16) that

d

d. (cos x) - - sin x

The tangent function can also be differentiated by using the definition of a de-

rivative, but it is easier to use the Quotient Rule together with Formulas 4 and 5:

d,. , d /sinr\
4, \tan *) : d* \ *., /

cos . * (sin x) sin x *(cos x)

E

cos.-r

cosx cosx sinx(-sinx)
cos 2x

cos 2x + sin2x

cos 2x

1

-: 

SeC2X
cos -x
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* (tan x) - sec'x

EXAMPLE 2 r Differentiate f (x) - 
sec '{ . For what values of x does theI + tanx

graph of 
"f 

have a hori zontal tangent?

SOLUTIOH The Quotient Rule gives

(1 + tanx) *(secx) secr ftU + tanx)

6

The derivatives of the remaining trigonometric functions, csc, sec, and cot, can

also be found easily using the Quotient Rule (see Exercises 13-15). We collect all
the differentiation formulas for trigonometric functions in the following table.

When you memorize this table it is

helpful to notice that the minus signs

go with the derivatives of the "cofunc-
tions," that is, cosine, cosecant, and

cotangent.

-J

FIGURE 4

The horizontal tangents in Example 2

f'(x) - (t + tanx)2

(1 + tan x) sec,r tan x secJ ' sec2x

(l + tanx)z

sec x [tan x + tan2x sec 
2x]

(l + tan x)2

secx(tanx - l)
(l + tanx)2

In simplifying the answer we have used the identity tan2x * I : sec2.r.

Since secx is never 0, we see that/'(x) : 0 when tanx: l, and this occurs
when x : nr I rf4, where n is an integer. (See Figure 4.) il

Trigonometric functions are often used in modeling real-world phenomena. In
particular, vibrations, waves, elastic motions, and other quantities that vary in a

periodic manner can be described using trigonometric functions. In the following
example we discuss an instance of simple harmonic motion.

Derivatives of Trigonometric Functions

d
, (sin x) - cos x

dx

d
, (csc -r)

ax

d
, (sec x)

ax

d
, (cot x)

ax

- -cscJcotx

- secJtanx

- -csczx

d
, (cos.r) :

LIX

d
, (tan x) -ax

-sinx

sec 
2x
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EXAMPTE 3 r An object at the end of a vertical spring is stretched 4 cm beyond
its rest position and released at time r : 0. (See Figure 5 and note that the down-
ward direction is positive.) Its position at time / is

s: f(t):4cos/
Find the velocity and acceleration at time t and use them to analyze the motion
of the object.

SOLUTION The velocity and acceleration are

dsddu: dt 
: 

A (/'cosr) : a7 kost) : -4sinr

dudd
a : dt 

: 
A e4 sin t1 : -4 A (sin r) : -4cost

The object oscillates from the lowest point (s : 4 cm) to the highest point
(s : -4 cm). The period of the oscillation is 2z', the period of cos/.

The speed is lal :4lsinrl, which is greatest when lsinrl : 1, that is, when
cos t : 0. So the object moves fastest as it passes through its equilibrium position
(s : 0). Its speed is 0 when sin r : 0, that is, at the high and low points.

The acceleration a : -4cos/ : 0 when s : 0. It has greatest magnitude at
the high and low points. See the graphs in Figure 6. :

sEcTtoN 3.4 DtRtVAIt'/ES 0t TRtG0r{0iltTRtC rUilCTt0N5 27,5

2cotx -.6 r"r"
x cscx
tan x

x

FIGURE 5

FIGURE 6

dv
l-12 I Find " .

dx

L y : sinx * cosx

3. .y : xzcosx

: cos-tr Ztanx

: e*sinx

r Look for a pattern

EXAMPLE 4 r Find the 27th derivative of cos x.

SOLUTISiI The first few derivatives of/(,r)_ cos.r are as follows:

f'(x): -sinx

f"(x)_ -cos-r

f "'(x) - sin x

f 'o'(*) - cos x

,f 
tt'(*) - -sin x

We see that the successive derivatives occur in a cycle of length 4 and, in partic-
ular,/(')(;) : cosr whenever n is a multiple of 4. Therefore

ttz+t(x) - cos.r

and, differentiating three more times, we have

Ttztt(x) - sin x

Exercises

re

2.y

4,y

5..y:
6. y-

7. y -



17. _lr,' 
: tan x, (nl4,l) 18. )' - 2 sin x, (nl6,l)

19. (a) Find an equation of the tangent line to the curve
y - -r cosr at the point (n, -n).

ffiH (b) Illustrate part (a) by graphing the curve and the

tangent line on the same screen.

20. (a) Find an equation of the tangent line to the curve

], - secr - 2 cosx at the point (n/3, l).
(b) Illustrate part (a) by graphing the curve and the

tangent line on the same screen.

2 f . (a) If /(x) : 2x * cot x, find f'(x).
ffiffi (b) 

:"T"',1ffil1ilJ;ilil):::';, ?il'J?': :.;
22. (a) If /(x) - e' cos x, find f '(x) and /"(x).

ffiffi (b) 
:::::fiffi'1ilff:,:TllHJ?,1"" 

(a) are

23. If g(s) - st cos s, find g' and g".

24. If /(x) : secx, find f"(n/4).

25. For what values of x does the graph of

/(x) - x + 2sinx have a horizontal tangent?

76. Find the points on the curve y - (cos x) / (2 + sin ;) at

which the tangent is horizontal.

27. Let/(x) : x - 2sinx, 0 S x a 2n. On what interval is

/ increasing?

28. 
H*Tl il*sin 

x, 0 < x a 2rr. on what interval is f

A mass on a spring vibrates horizontally on a smooth
level surface in simple harmonic motion. (See the
figure.) Its equation of motion is x(r) - 8 sin r, where r

is in seconds and x in centimeters.
(a) Find the velocity and acceleration at time r.

(b) Find the position, velocity, and acceleration of the

mass at time t - 2n13. In what direction is it
moving at that time? Is it speeding up or slowing
down?

An elastic band is hung on a hook and a mass is hung

on the lower end of the band. When the mass is pulled
downward and then released, it vibrates vertically in
simple harmonic motion. The equation of motion is

s - 2cos/ + 3sin t, t > 0, where s is measured in
centimeters and r in seconds. (We take the positive
direction to be downward.)
(a) Find the velocity and acceleration at time r.

(b) Graph the velocity and acceleration functions.
(c) When does the mass pass through the equilibrium

position for the first time?
(d) How far from its equilibrium position does the mass

travel?
(e) When is the speed the greatest? When is the mass

speedi ng up?

A ladder 10 ft long rests against a vertical wall. Let 0 be

the angle between the top of the ladder and the wall and

let x be the distance from the bottom of the ladder to

the wall. If the bottom of the ladder slides away from
the wall, how fast does x change with respect to 0 when
g - rr/3?

An object with weight lV is dragged along a horizontal
plane by a force acting along a rope attached to the
object. If the rope makes an angle 0 with the plane,

then the magnitude of the force is

r- PWt - psing + cos0

where pc is a constant called the coefficient af friction.
(a) Find the rate of change of F with respect to 0.

(b) When is this rate of change equal to 0?

(c) If W : 50 lb and p - 0.6, draw the graph of F as a

function of g and use it to locate the value of 0 for
which dF/d0 - 0. Is the value consistent with your

answer to part (b)?

226

8.y: I + cosr

x
9. y: .- sinx + cos,r

tanx I
lo. y :

SCC -T

ll. .y : e*(tan"r - J)

12. )': xsinxcosx

CHAPTER 3 DIITTREI{TIATIOI'I RUtE5

sin x 29.

EF ro.

13. Prove that A (rrr*) - -cscrcotx.dx

| 4. Prove that a (r*, 
") 

: sec ,r tan x.
dr

15. Prove that * (rot*) -- -cscnx.ax

16. Prove, using the definition of derivative, that if
/(*) - cosx, then f'(*)- -sinx.

| 7- | I r Find the equation of the tangent line to the given

curve at the specified point.

fl'Eg
IHro
,UH 31.

32.

trgTI

Equilibrium
position



33-34 I Find the given derivative by finding the first few
derivatives and observing the pattern that occurs.
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The figure shows a circular arc of length s and a chord
of length d, both subtended by a central angle 0. Find

lim
f/-(J+ d

A semicircle with diameter PQ sits on an isosceles
triangle PQR to form a region shaped like an ice cream
cone, as shown in the figure. If A(0) is the area of the
semicircle and B(0) is the area of the triangle, find

41 .

d"33. , ,),) (sin x)
ax

d3s
34. , ir (xsinx)

ax-'

35. Find constants A and B such that the function
) - A sin x + Bcosr satisfies the differential equation

)"' + .-}'' 2r- - sin x.

36. (a) Use the substitution g - 5x to evaluate

sln )r
lim _
r -(J -f

(b) Use part (a) and the definition of a derivative to
d

find _- (sin 5.r).
clx

37-39 r Use Formula 2 and trisonometric identities to
evaluate the limit.

tan 4x
17. lim 

-
.r- "0 -f

38. lim x cot x
,r -0

sin 0
39. lim 

--

d-*o 0 + tand

42.

A(0\
lim

o *o- B(0)

A(0\

40. (a) Evaluate lim x sin
t rY

Evaluate lim x sin
"r *t)

Illustrate parts (a)

), - xsin(Ux).

I

_r

I

J

and (b) by graphing

(b)

ng / --\ll \u/

See Section 1.2 for a review of
composite functions.

The Chain Rule

Suppose you were askecl to differentiate the function

F(.r) :r,?,+l

The differentiation formulas you learned in the previous sections of this chapter
do not enable you to calculate F'(x).

Observe that F is a composite function. If we let y : f(u) : ,16 and let
u : s@) : x' + 1,then wecanwritey : F(x) : fj|D,thar is, F : f o g. We
know how to differentiate both f and g, so it would be useful to have a rule
that tells us how to find the derivative of F : f . g in terms of the derivatives of /
and g.

It turns out that the derivative of the composite function/. g is the product of
the derivatives of/and g. This fact is one of the most important of the differentia-
tion rules and is called the Chain Rule. lt seems plausible if we interpret derivatives
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as rates of change. Regard dufdx as the rate of change of u with respect to x, dy/du

as the rate of change of y with respect to u, and dy/dx as the rate of change of y
with respect to x. If a changes twice as fast as x and y changes three times as fast

as u, then it seems reasonable that y changes six times as fast as x, and so we ex-
pect that

d"l,' du

du dx

Comments on the Proof of the Chain Rule Let L,u be the change in u corresponding

to a change of A"r in .r, that is,

Lu - s(x + Ax) g(x)

'l'hen the corresponding change in I' is

Ay : f(u + Aa) ffu)

It is tempting to write

dlt _
dx

cltt

dx

Ay
lim --

A.r -o AX

Au Lu
- lirn

Jr 'o Lu Ax

Av Lu
-lim -'limIr ,o Lu -tr'o AX

Al' Arr
- lim lim

-\rr 'o LU I r 'o AX

_dy du

du dx

tr

( Notc llutt lrr - 0 lts l.r
sittee r/ is r'olttirt[ttltts. )

The only flaw in this reasoning is that in (l) it might happen that Aa:0 (even

when Ax # 0) and, of course, we can't divide by 0. Nonetheless, this reasoning

does at least suggest that the Chain Rule is true. A more subtle argument can be

given to fix the flaw, but we will not present it here. I

The Chain Rule lf f and g arc both differentiable and F : J' " g is the

composite function defined by F(x) - f(g(x)), then F is differentiable and

F' is given by the product

F'(x) - f '( g(x)) s'(x)

In Leibniz notation, if )' - f(u) and u : g(x) are both differentiable
functions. then

,l), _ dy du

dx du dx



The Chain Rule can

E

or. if .r' : .f(u) and u -

E

we have tr'(x) - J'' ( g(x))n'G)

I

2,,G. + T

S#tt"lT$ffiF{ ; (using Equation 3): If we let

SECTION 3.5 Tl|I Tl|AIN RUtI

be written either in the prime notation

( l' ' s)' (x) - f '( s(x)) s'(x)

g(x), in Leibniz notation:

d)' 
- 

dy du

dx du dx

229

Equation 3 is easy to remember because if dyldu and dufdx were quotients, then we
could cancel du. Remember, however, that du has not been defined and duftl.r
should not be thought of as an actual quotient.

EXAMPLE I r Find F'(x) if F("r) : ,,Et + | .

SOLUTION | (using Equation 2): At the beginning of this section we expressed F
asF(x) : (J'"il(i: IGGD where/(u) :,,fi andgG): x, + l. Since

rtt r I l/1
.f llt)- .tt 2,/i and g'(x) - 2x

When using Formula 3 we should bear in mind that dyfdx refers to the derivative
of y when y is considered as a function of x (called the derivative of y with respect
to x), whereas dy/du refers to the derivative of y when considered as a function of
u (the derivative of y with respect to u). For instance, in Example l, _y can be con-
sidered as a function of x (y: .,,6: + t )and also as a function of u (y: !E)
Note that

r/t'du I
F'(-r) :-- - -12.r)du dx 2rl u

(2.r) - .i--ZJ.r'+l v'-rt+l

2r V]q-r
u: xt + I ancl l'- ,/ ,r, then

whereas +- J''(u)-du 2 \/r;

f' ( g(*)) g'(-t)

dt,
F'(x)

ax

J:
t/rt + I

t{orE ' In using the Chain Rule we work from the outside to the inside. For-
mula 2 says that we dffirentiate the outer function f [at the inner function
g(x)land then we multiply by the derivative of the inner function.

d
fdx ",-

olllcr
furtcl iorr

(s(x)) -
!-_---/-

eva luatcd
at irrtcr
t'u nct iorr

clc t'ivltt ir c cr lr l rult r:tl
tll'otttet' ltt ittttet'
l-unr'liolt l'rrrrt'liort

tlr't'irltlire
ol innr:r'
l'tt rtt:t ion
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EXAMPLE 2 r Differentiate (a) y : sin(x2) and (b) ) : sin2-r.

SOLUTION

(a) If y : sin(x2), then the outer function is the sine function and the inner

function is the squaring function, so the Chain Rule gives

dvd
---:-- : 

- 
sin (x') cos (xt) 2x

dxdx#'_-J\-=--
outcr craluttetl derir al ivc evllualcd derivitl ivc

functitttt at inncr ol oll(cl' at illllcr ol'inltcl'
lunctiott lunction function l'tlllction

: 2x cos(x2)

(b) Note that sin2x : (5in-r)2. Here the outer function is the squaring function

and the inner function is the sine function. So

dr- d+-+(sinr)t-2 (sinx) cosr
dx dx :-.-

inrrcr clcrivative c\itluated tlcriralive
tuncliott of outcr al inncr of inner

l'uncliotr lunctiott l'unctitttl

The answer can be left as 2sinxcosx or written as sin2x (by a trigonometric
identity known as the double-angle formula). il

In Example 2(a) we combined the Chain Rule with the rule for differentiating

the sine function. In general, if y : t1na, where u is a differentiable function of .r,

then, by the Chain Rule,

dv dv du du: : : 
- 

: cosl/ 
-dx du dx dx

Thus
d ,. , du

dr 
(sln ,, ) : cos ,, 

,tr

In a similar fashion, all of the formulas for differentiating trigonometric func-

tions can be combined with the Chain Rule.

Let's make explicit the special case of the Chain Rule where the outer function

/ is a power function. If y : lS(x))", then we can write y : f(u): zn where

u: g(x). By using the Chain Rule and then the Power Rule, we get

dy : dy d! : nu^-, *: ilstr)l^-,s,(x)dx du dx dx

El The Power Rule Combined with the Chain Rule If n is any real number

and u : g(x) is differentiable, then

.l

! gr,,) : tl,,,-t 
clu

dx \-- dx

rl
Alternatively, , tg(x)]"-olg(x))"-''g'(x)

dx
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Notice that the derivative in Example I could be calculated by taking , : I in
Rule (4).

EXAMPLE 3 r Differentiate y : (13 - 1)'00.

SOLUTfON Taking u: SQ) : xt - I and n : 100 in (4), we have

dY 
- 

d (r' - l)'oo: 100(x3 - D* 
d. ("' - t)dx dx ' dx'

: 100(-13 - l)ee '3x2

:3oox2(x3 - l)ee m

EXAMPLE 4 r Find/'(x) ifl(x) : +- i/x'* .r * l

sotuTfOt{ First rewrite/: f(x) : (x2 }.r + l)-'l'. Thus

f'(*): -!(r' +; + l) -4h !-(x2 + x + l)

: -ie' + r + l)-a/3(/x * 1) gX

EXAMPLE 5 r Find the derivative of the function

( t - z\'
^'):\r,;)

S0tUTl0N Combining the Power Rule, Chain Rule, and Quotient Rule, we get

g'('l):'(#)'#(#)
= s( , - z )' (zr + r). r - ?(r - z)'\zt + t J (2t + t)2

_ 45(t - 2)8

(2t + l)to *

EXAMPTE 6 r Differentiate y : (2x + l)t(r' - x * l)a.

SOtUTlOll In this example we must use the Product Rule before using the Chain
Rule:

dy.,rd,...\r.,all
fr : tz, + r)' ; (*' -, + l)4 + (*' -, + t)' ; (2x + t)5

: (2x + r)5. 4@3 - x + r)t *(x3 - x * l)

* (r' - x I r)a. 5(2x + t + (2x + r)
dx

: 4(2x + l)5(x3 - x + t)3(3x2 - l).+ 5(-r3 - x + t)4(2x + t)4' z
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The graphs of the functions y and y' in
Example 6 are shown in Figure l. Notice
that y' is large when y increases rapidly
and y' : 0 when )' has a horizontal
tangent. So our answer appears to be

reasonable.

Don't confuse Formula 5 (where x is the
exponent) with the Power Rule (where x
is the bose):

d_ (x',) : l?.r,'
dx

dvd
T: , (e''n*)-esrnr +(sinx) _rsin;rcosx
dx ax ax

By using common factors, we could write the answer as

+ -- 2(2x + 1)o(x3 - x + 1)'( l7x3 + 6xz 9x + 3)dx\

FIGURE I

EXAMPLE 7 r Differentiate y : e'in'.

SOLUTION Here the inner function is g(x) : sin x and the outer function is the

exponential function /(x) : e*. So, by the Chain Rule,

ffi

ffi

We can use the Chain Rule to differentiate an exponential function with any
base a ) 0. Recall from Section 1.6 that a : e'no. So

a':(et"o)':"(tna)x

and the Chain Rule gives

d_ (a,) -dx

:

)
__ ,tnu), + (ln a)x

dx

- a*lna

formulais a constant. So

rl

+ (etrn"r';
ax

,(lna\x , ln A

we have thebecaus e ln a

E
d
, (a-) : a''lna

dx

In particular, tf a_ 2, we get

dtr t* (2') : Z*ln}

In Section 3.1 we gave the estimate

d

* 
(2-) - (0.69)2.

-10

This is consistent with the exact formula (6) because ln? - 0.693147.



SECTION 3.5 THT Cl{AIl'| RULE 233

In Example 6 in Section 3.3 we considered a population of bacteria cells that
doubles every hour and saw that the population after t hours is n : ns2t, where no
is the initial population. Formula 6 enables us to find the rate of growth of the bac-
teria population:

dn
. : no2'ln2

clt

The reason for the name "Chain Rule" becomes clear when we make a longer
chain by adding another link. Suppose that y : f(u), u: S(x), and x : h(t),
where/ g, and h are differentiable functions. Then, to compute the derivative of y
with respect to /, we use the Chain Rule twice:

dy:
dt

dy dx _dy
dx dt du

du dx

dr dt

EXAMPLE 8 I If /(x) == sin(cos(tanr)), then

f '(x): cos(cos(tan r)) * cos(tan x)

cos(cos(tan r)) [- sin(tan n] + (tan x)
dx

- -cos(cos(tan x)) sin(tan r) secZx

Notice that the Chain Rule has been used twice.

Tangents to Parametric Curves

ffi

In Section 1.4 we discussed curves defined by parametric equations

x - f(t) y : g(t)

The Chain Rule helps us find tangent lines to such curves. Suppose/and g are dif-
ferentiable functions and we want to find the tangent line at a point on the curve
where y is also a differentiable function of x. Then the Chain Rule gives

dy dv dx
A: d-'A

lf dx/dt * O, we can solve for dy/dx:

dy

dy dt dxif , * 0
dtdx dx

a
Equation 7 (which you can remember by thinking of canceling the dr's) enables

us to find the slope dy/dx of the tangent to a parametric curve without having to
eliminate the parameter r. If we think of the curve as being traced out by a moving
particle, then dy/dt and dx/dt are the vertical and horizontal velocities of the par-

a
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ticle and Formula 7 says that the slope of the tangent is the ratio of these velocities.

We see from (7) that the curve has a horizontal tangent when dy/dt : 0 (provided

that dx/dt * O) and it has a vertical tangent when dx/dt: 0 (provided that
dyldt + o).

EXAMPLE 9 r Find an equation of the tangent line to the parametric curve

x:2sinZt y:2sint

at the point (/:, t). Where does this curve have horizontal or vertical tangents?

S0tUTlOtl At the point with parameter value t, the slope is

dY 
4esinr)dy _ d, _ dr' : 2cost cos t

dx dx d ,^ . ^, 2(cos2t)(2) 2cos2t
dt dt'

The point (Jl , t) corresponds to the parameter value t : rrf 6, so the slope of
the tangent at that point is

dyl - cos(zrl6) -JTtz:Jtdx l,:,ro Zcos(tt/3) 2(+) 2

An equation of the tangent line is therefore

,EJTIy-1:;(--Jz) or ,:-ir-t
Figure 2 shows the curve and its tangent line.

The tangent line is horizontal when dy/dx : 0, which occurs when cos r : 0
(and cos 2t * 0), that is, when t : nl2 or 3r/2. Thus, the curve has horizontal
tangents at the points (0,2) and (0, -2), which we could have guessed from
Figure 2.

The tangent is vertical when dxfdt : 4cos2t: 0 (and cost * 0), that is,

when / : r/4,3n/4,5n/4, or 7rf4. The corresponding four points on the curve

are(!2,tJr).If we look again at Figure 2, we see that our answer appears to
be reasonable. #

FIGURE 2

l. y: (xz + 4,r * 6)5

3. y : cos(tanx)

5. y:etF

2. y : tan3x

4. y: :FW
6- Y : sin(e')

9. y : cos(.r3)

I l. y : 5-ti'

f 3. Y: xe-'z

15. G(x) - (3x 2)'o(5x2 -
16. g(t) : (6t' + 5)'(r' - 7)r

17. .y - grcos'r

/ t, 6\'
le. F(y): \ffi/

10. y : cos3x

12. y:4sec5x

14.Y:e-s'cos3x

,r + l)'t

l-6 r Write the composite function in the form f(g(x)).
[Identify the inner function u : g(x) and the outer function
y : f(u).1Then find the derivative dyldx.

7-30 t Find the derivative of the function. 18. f(s) :

20. s(t) -

$:+t(s2+t)o
-Fr
\13-l

I
8. f\t) : (t, _ ,Zt _ 5f7. g(x) : Jx' - 7x



21 . f(z)

21. )' -

ilzr-l
.l

,r sln --
,{

t an 
2(.r r)

T,-{;+Vx
sin(tan .,,fr" r )

25.

27.

29,

3l-32 I Find an equation of the tangent line to the curve at

the given point.
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40. If / is the function whose graph is shown, let
h(x) - f(/(")) and s(x): l'(x2). Use the graph ofl'
to estimate the value of each derivative.
( a) h' (2) (b) s'(2)

41. Use the table to estimate the value of h'(0.5), where
h(r) - f (s(x)).

42. tf q(x) - f(;(x)), use the
of g'(1).

table to estimate the value

43. Let h be differentiable on [0, m) and define G by
G(.r) : t,t'/i ).
(a) Where is G differentiable?
(b) Find an expression for G'(x).

44. Suppose f is differentiable on R and a is a real number.
Let F(x) - ,f(x") and G(x) - [/frt]". Find expressions
for (a) F'(x) and (b) G'(x).

45. Suppose "f is differentiable on R. Let F(.r) : J'k')
and G(x) : er"'. Find expressions for (a) F'(x) and
(b) G'(.r).

46. lf g is a twice differentiable function and.f(,r) - -rgl(rr),
find .f" in terms of g, g' , and g".

47. Find the x-coordinates of all points on the cLrrve

)' - sin 2x 2 sin x at which the tangent line is
horizontal.

48. On what interval is the curve \r : c " concave
downward?

49. Show thnt the function.)'- Ae-' + Bxe 'satisfies the
differentiarl equfltion 1"' + 2),' + )' -_ 0.

50. For what values of r does the function )' : e''' satisfy
the equ&tion 1"' + 5)' 6y : 0?

"}'

)'

J'

22. l'(x) : ,n-3-
24. -)' - tan(x2) + tanzx

76. .y - sin(sin(sin x))
,-28.y-r/x+'tfT"tr

30. y - 23'r

8

tiu
II

31. J - v?+3r
(4,2) f Z. )' : -\ 

2e (1 ,lle)

33. (a) Irind an equation of the tangent line to the curve

]' : 2/(t + €-') at the point (0, l).
i= (b) Illustrate part (a) by graphing rhe curve and the

tangent line on the sarne screen.

34. (a) The curve I rll utz - ,' is called a bullet-nose
curve. Find an equation of the tangent line to this
curve at the point (1, l).

(b) Illustrate part (a) by graphing the curve and the
tangent line on the same screen.

35. (a) If ./(x) - th .r'fx, find,,f'(r).

E= (b) 
.:i::li;Jn'*Li:i1ffilff 

":':l]1J,10,,
36. (a) If /(;) - 2 cos r + sinzr, fincl f '(*) and .f "(x).!= (b) 

:.::::j;Jl"':::i""T[TffiHffii f'rl':" d f,,

37. Suppose that F(.r) - f(g(;)) and g(3) - 6,g'(3): 4,,

.f'(3) - 2, and J''n - 7. Find f'(3)'

38. Suppose that w - Lt o u and &(0) - I, u(0) : ?,

u'(0)_: 3, u'(2) : 4, u'(0): 5, and u'(2) : 6.

Find w'(0).

39. lf .f and g are the functions whose graphs are shown, let
u(x) - "f( s(x)), u(x) - s(/(")), and au(x) - s(s(x)). Find
each derivative', if it exists. If it does not exist, explain
why.
( a) u' (l) (c ) w'(l)(b) u'(l)

\ o 0. 1 il 0. l 0-j {} (i(

l(ti ll ( l+.s ls + n ) 7.5 )l

7( t ) 0.5 s j()() oI ().l( o.l (, lo oil

\ ().() ()) 1.0 l5 o

l{r) l--lti I.S o I+ r.l lt-+ -+



54.
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51.

52,

53.

55.

56.

57.
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Find the 50th derivative of 1' - cos 2x'

Fincl the 1000th derivative of f 6) - ;s-\.

The clisplacement of a particle on a vibrating string is
given tr1, the equation .r(r) -- 10 + ] sin(10rrr), where s is
measured in centimeters and r in seconds. Fincl the

velocity arnd acceleration clf the particle after / seconcls.

If the equation of motion of a particle is given by

r': A cos(r,.rr + 6), the particle is said to undergo

s int.ple harntonir: ntot ion.
(a) Find the velocity of the particle at time /.
(b) Wtren is the velocity 0? When is the acceleration 0?

A Cepheicl variable star is a star whose brightness

alternately increases and decreases. The most easily

visitlle such star is Delta Cephei, for which the interval
between times of metximum brightness is 5.4 clays. The

average brightness of this star is 4.0 and its brightness

changes by -+-0.-35. In view of these data, the brightness

clf Delta Cephei at tirne r. u,here / is Ineasured in days,

l-ras been modeled by the function

B(t): 4.0 + 0.35 sin(Tnt/5.4)

( a) Fincl the rate of charnge of the brightness after /
clays.

(b) Find. correct to two clecimal plerces, the rate of
increase after one clay.

Llnder certetin circumstattces a rumor spreads according

to ttre equation

I

ltltl- | + rte A'

where p(t) is the proportion of the population that
know's the rurnor at time I and n and ft are positive

constants. [n Section 7.6 we will see that this is a

reilsonable equation f or p(r).1
( a ) Find I irrt, pU l.
(b) Fincl the rate of spread of the rumor.
(c) Graph p for the case c - 10, k - 0.5 with r

rneaslrred in hours. LIse the graph to estimate how

long it will take for 80% of the popLrlation to hear

the rumor.

A ptrrticle mo\,'es along a straight line with displacement

s(r).' r'elocity u(r), and acceleration ct(t). Show that

a(t): u(.t)*
r/s

Explain the clifference between the meanings of the

derivatives dulclt ancl clulds.

Air is being pumped into a spherical weather balloon.
At any time /, the volume of the Lralloon is y(r) and its
raclius is r(r).
(a) What do the derivatives tlVldr and clVldt represent?

(b) E,xpress dVlclt in ternrs of dr/dt.

EI Sg. The f lash unit on a camera operates by storing charge

on a capacitor and releasing it suddenly when the flash
is set off. The following data describe the charge

remaining on the capacitor (measured in
microcoulombs, pC) at time I (measured in seconds).

I a
(x)

0l
0+

06

0,3

l0

l(x).(x)
ri Lri7

h7.0.1

5-t.lit(
'l-1. t).i

.l(r.7(r

Ycu r Itop rr Iltt io tt

79( )

E{X )

El0
r{ l0
s.i( )

fi-+( )

85( )

Fi(r( )

.r.r)lq.(xx

"5 ..10,\.( X X

7.l-10.( }( )(

t).().19.(X X

I l.S(r I .()( )(

I 7.( )()1.( )( )(

l.l.l()1.(xx
I | .+-ll.(x l(

(a) Use the methods of Section 1.7 to find an

exponential rnodel for the charge.

(b) The derivative Q'(r) represents the electric current
(measured in microanperes, /..0A) f lowing from the

capacitor to the flash bulb. Use part (a) to estimate
the current when r - 0.04 s. Compare with the

result of Example 2 in Section 2.1.

EE OO. The table gives the LJ.S. population from 1790 to 1860.

Egtl

(a) Use the methods of Section 1.7 to fit an exponential
function to the data. Graph the data points and the

exponential model. How good is the fit?
(t,) Estimate the rates of population growth in 1800 and

1850 b),averaging slopes of secant lines.
(c) Use the exponential model in part (a) to estimate

the rates of growth in 1800 and 1850. Compare

these estimates with the ones in part (b).

(d) Use the exponential model to predict the population

in 1870. Compare with the actual population of
38,558,000. Can you explain the discrepancy?

61. Find an equation of the tangent line to the curve with
parametric equations x : tsin f, .)' : f cos / at the point
(0, - zr).

EYtZ. Show that the curve with parametric equations
,{ : sin /, }' - sin(r + sin r) has two tangent lines

at the origin and find their equations. Illustrate by

graphing the curve and its tangents.

58.



wIT

63.

w
f,I

64.

@ 6s.

El 66.

A curve C is defined by the parametric equations
.tr : /t. \'- lt 3r.

(a) Show that C has two tangents at the point (3,0) and
find their equations.

(b) Find the points on C where the tangent is horizontal
or vertical.

(c) Illustrate parts (a) and (b) by graphing C and the
tangent lines.

The cycloid x - r(A sin 0), -)' : r(l cos 0) was

discussed in Example 6 in Section 1.4.

(a) Find an equation of the tangent to the cycloid at the
pointwhere e -n13.

(b) At what points is the tangent horizontal? Where is
' it vertical?

(c) Graph the cycloid and its tangent lines for the
case r - l.

Computer algebra systems have commands that difter-
entiate functions, but the form of the answer may not be

convenient and so further commands may be necessarv
to simplify the answer.
(a) Use a CAS to find the derivative in E,xample 5 and

compare with the answer in that example. Then use

the simplify command and compare again.
(b) Use a CAS to differentiate the function in Example

6. What happens if you use the simplify command?
What happens if you use the factor command?
Which forrn of the answer would be best for
locating horizontal tangents?

(a) [Jse a CAS to differentiate the function

LABORAToRY PROTECT BEZTER CURl|iT 2t7

(b) Find a formula for the derivative of y - cos"r cos nx
that is similar to the one in part (a).

Suppose y - /(x) is a curve that always lies above the
x-axis and never has a horizontal tangent, where / is
differentiable everywhere. For what value of ) is the
rate of change of y-t with respect to x eighty times the
rate of change of .)' with respect to x?

Use the Chain Rule to show that if 0 is measured in
degrees, then

dn
de 

(sin o) : 
lgo 

cos d

(This gives one reason for the convention that radian
measure is always used when dealing with trigonometric
functions in calculus: the differentiation formulas would
not be as sirnple if we used degree measure.)

(a) Write | ; | - ,/7 and use the Chain Rule to show
that

68.

59.

70.

d rr J

/x l'tl: f,i

(b) If l.(x) - lsinr l, find/'(") and sketch the graphs of
/ and /' . Where i s / not differentiable?

(c) If g(x) : sin l" l, find g'(x) and sketch the graphs of
g and g'. Where is g not differentiable?

71. If y : f(u) and r.r : g(x), where/and g arc twice differ-
entiable functions. show thatf(*) -

and to simplify the result.
(b) Where does the graph of /have trorizontal tangents?
(c) Graph.land f' on the same screen. Are the graphs

consistent with your answer to part (b)?

67. (a) lf n is a positive integer, prove that

d

;; 
(*ln"x cos nx) - n sin"-'x cos(rz + l)x

72. Assume that a snowball melts so that its volume
decreases at a rate proportional to its surf-ace area. If it
takes three hours for the snowball to decrease to half its
original volume, how much longer will it take for the
snowball to melt completely?

!'y _ n'r= (9"\'
dr: du) \ a" /

, dy dzu
- du d.'

x* "T+1
x-+tr+I

B6zier

The B6zier curves are used in computer-aided design and are named after a mathe-
matician working in the automotive industry. A cubic B6zier curve is determined by
folulr control points, h(xo,yi, Pt(xt,yr), Pz|z,y), and Pr(x:,)r), and is defined by the
parametric equations

x -7 xo(l t)t + 3xrr(1 * r)t + 3xst2(1 r) * x3r3

.y : )'o(1 r)= + 3yr t(l * t)' + 3y2t2(I t) * 1,3/3
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where 0 < t < 1. Notice that when t : 0 we have (x,y) - (xo,yo) and when I : I we

have (x,y) : (r3,y3), so the curve starts at Po and ends at 4.
l. Graph the B6zier curve with control points P0(4, 1), nQ8,48), P2(50,42), and

Pj(40,5). Then, on the same screen, graph the line segments Po4, PrPz, and P2\.
(Exercise 19 in Section 1.4 shows how to do this.) Notice that the middle control
points P1 and P2 don't lie on the curve; the curve starts at Po, heads toward P1 and

& without reaching them, and ends at P:.

2. From the graph in Problem 1 it appears that the tangent at Ps passes through P1 and

the tangent at P3 passes through &. Prove it.

3. Try to produce aB6,zier curve with a loop by changing the second control point in
Problem l.

4. Some laser printers use B6zier curves to represent letters and other symbols.
Experiment with control points until you find aB€zier curve that gives a
reasonable representation of the letter C.

5. More complicated shapes can be represented by piecing together two or more
B6zier curves. Suppose the first Bdzier curve has control points P6, P1, P2, P3 and
the second one has control points P3, Pa, P5, P6. If we want these two pieces to join
together smoothly, then the tangents at P3 should match and so the points Pr, Pr,

and Pn all have to lie on this common tangent line. Using this principle, find
control points for a pair of B6zier curves that represent the letter S.

y: P(x)

Where Should a Pilot Start Descent?

An approach path for an aircraft landing is shown in the figure and satisfies the
following conditions:

(i) The cruising altitude is lr when descent starts at a horizontal distance f from
touchdown at the origin.

(ii) The pilot must maintain a constant horizontal speed u throughout descent.

(iii) The absolute value of the vertical acceleration should not exceed a constant ft
(which is much less than the acceleration due to gravity).

l. Find a cubic polynomial P(x): ort * bx2 + cx * d that satisfies condition (i)
by imposing suitable conditions on P(.r) and P'(x) at the start of descent and at
touchdown.

2. Use conditions (ii) and (iii) to show that

6ha2

e, =k
3. Suppose that an airline decides not to allow vertical acceleration of a plane to

exceed ft : 860 mi/h2. lf the cruising altitude of a plane is 35,000 ft and the speed

is 300 mi/h, how far away from the airport should the pilot start descent?

E= 4. Graph the approach path if the conditions stated in Problem 3 are satisfied.
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I mplicit Differentiation

Most of the functions that we have met so far can be described by expressing one
variable explicitly in terms of another variable-for example,

y-tF+t or y:rsinx
or, in general, y : f(x). Some functions, however, are defined implicitly by a rela-
tion between x and y such as

tr x' + yt:25
or

A xt + yt :6xy

In some cases it is possible to solve such an equation for y as an explicit function
(or several functions) of x. For instance, if we solve Equation I for y, we get
y : tJz\_l_.so two functions determined by the implicit Equation I are

f(x): J25 - xz and SG): -J25 - x2. The graphs of /and g are the upper
and lower semicircles of the circle x' + y' : 25 (see Figure l).

FIGURE I (a) xt t y'-25 (b) f(x) - ,125 - x2 (c) g(.r) - -'125 - xz

It's not easy to solve Equation 2 for y explicitly as a function of r by hand. (A
computer algebra system has no trouble, but the expressions it obtains are very
complicated.) Nonetheless, (2) is the equation of a curve called the folium of
Descartes shown in Figure 2 andit implicitly defines y as several functions of .r.

The graphs of three such functions are shown in Figure 3. When we say that/is a

FIGU RE 2

The folium of Descartes

FIGURE 3

Graphs of three functions defined by the folium of Descartes

x'+ y'
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function defined implicitly by Equation 2, we mean that the equation

x3+[/(x)]3:6xf(x)

is true for all values of x in the domain of I,
Fortunately, it is not necessary to solve an equation for y in terms ofx in order

to find the derivative of y. Instead we can use the method of implicit differentia-
tion. This consists of differentiating both sides of the equation with respect to x
and then solving the resulting equation for y'. In the examples and exercises of this
section it is always assumed that the given equation determines y implicitly as

a differentiable function of x so that the method of implicit differentiation can

be applied.

EXAMPLE I T
(a) If x2 * y' : ZS, tina fi.
(b) Find the equation of the tangent to the circle.r2 * y' :25 at the point

(3,4).

soLuTtoil |

(a) Differentiate both sides of the equation x' + y' : 25'

d , a .. rl
, (x2 +)'t):+(25)

clx ax

+(*')+ +(v')-odx ax

Remembering that ) is a function of x and using the Chain Rule, we have

d z 1r dy

d- 
(Y-): 2Y 

dx

2x+ zr4:0-dxThus

Now we solve this equation for dyldx:

dxy

(b) At the point (3,4) we have x : 3 and y _ 4, so

dx4

An equation of the tangent to the circle at (3,4) is therefore

y - 4: -i(" - l) or 3x * 4y:25

soLuTtoN 2

(b) Solving the equation ,' + y': ]:f:gety: *J8=-?. The point (3,4)

lies on the upper semicircle y : JZS - x2 and so we consider the function

dy x:

3:dy
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Differentiating / using the Chain Rule, we have

f'(*) : i4s *')-"' ! (zs x')
dx \!'/

: *(zs x')-rtz1-2x)

24r

f(*): Jzs - f .

,ffi
33

f '(3) :
4

xxx

"ffi
and, as in Solution l, the equation of the tangent is 3x + 4y: 25.

I{OTE | . Example I illustrates that even when it is possible to solve an equation
explicitly for y in terms of .r, it may be easier to use implicit differentiation.

NOTE 2 . The expression dy/dx : -*/y gives the derivative in terms of both x
and y. It is correct no matter which function y is determined by the given equation.
For instance, for y : f(x) : ,/25 - x2 we have

whereas fory : g(x)

dy

dxvffi
: -J25 -T we have

dx y -J25 - x2 J25 - x,

EXAMPLE 2 T
(a) Find y' if x3 r yt : 6xy.
(b) Find the tangent to the folium of Descartes ,' + yt - 6xy at the point (3,3).
(c) At what points on the curve is the tangent line horizontal or vertical?

S0tuTtorl
(a) Differentiating both sides of .r3 I yt :6xy with respect to.r, regarding y as

a function of x, and using the Chain Rule on the y' term and the Product Rule
on the 6xy term, we get

or

We now solve for y':

3xz + 3y'y' :

x2 + y',yt :

m

6y

2y

+ 6xy'

+ Zry'

(Y' - 2')Y' :2Y - x'

, 2y-r'
Y - Yz-n

(b)Whenx:y:3,
).a-a2

Y':V - 24------: -r

and a glance at Figure 4 confirms that this is a reasonable value for the slopeFIGURE 4
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0

FIGURE 5

------f,---,-..- - "t 4

The Norwegian mathematician Niels

Abel proved in 1824 that no general

formula can be given for the roots of a
fifth-degree equation. Later the French

mathematician Evariste Galois proved

that it is impossible to find a general

formula for the roots of an nth-degree
equation (in terms of algebraic oPera-

tions on the coefficients) if n is any

integer larger than 4.

at (3,3). So an equation of the tangent to

y 3--l(x 3)

the folium at (3,3) is

or x +.)'-6

(c) The tangent line is horizontal if y' : 0. Using the expression for y' from
part (a), we see that y' : 0 when 2y - *' : 0. Substituting y : jx2 in the

equation of the curve, we get

x' + ()x')':6x()x'z)

which simplifies to x6:16x3. So either.r: 0 or x3 : l6.If x: l6t/3 :24/3,

then y : +(2'/') :2s/3. Thus, the tangent is horizontal at (0,0) and at (24/3,2s/21,

which is approximately (2.5198,3.1748). Looking at Figure 5, we see that our
answer is reasonable.

The tangent line is vertical when the denominator in the expression fot dyfdx

is 0. Another method is to observe that the equation of the curve is unchanged

when ,r and y are interchanged, so the curve is symmetric about the line y : x.

This means that the horizontal tangents at (0,0) and (24/3,2513) correspond to
vertical tangenrs at (0,0) and (2s/3,24l3). lSee Figure 5.) ffi

llOTE . There is a formula for the three roots of a cubic equation that is like the
quadratic formula but much more complicaled. If we use this formula (or a com-
puter algebra system) to solve the equation x' + y' : 6xy for y in terms of "t, we

get three functions determined by the equation:

.)' : "f(x) -
and

r
v :+L-fG) t l-t(

(These are the three functions whose graphs are shown in Figure 3.) You can see

that the method of implicit differentiation saves an enormous amount of work in
cases such as this. Moreover, implicit differentiation works just as easily for equa-

tions such as

ys + 3x2y2 + 5x4 :12

which are impossible to solve for y in terms of x.

EXAMPTE 3 r Find y' if sin(x + y) : y'cos-x.

S0LUTION Differentiating implicitly with respect to .r and remembering that y is
a function of x, we get

cos(x + )') ' (1 + ,\") - 2)')o'cos,T + .'!'t(-sin x)

)l

(Note that we have
and Chain Rule on

used the Chain Rule on the left side and the Product Rule

the'right side.) If we collect the terms that involve y', we get

+ y) + yz sin x - (2y cos x))' - cos(x + y) ' y'

y2sinx + cos(x + y)
So

cos(x

v
2y cos x cos(x + )')
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Figure 6, drawn with the implicit-plotting command of a computer algebra

system, shows part of the curve sin(x + y) : y' cosx. As a check on our cal-
culation, notice that )' : -1 when x : y:0 and it appears from the graph
that the slope is approximately -l at the origin. I

Two curves are called orthogonal if at each point of intersection their tangent
lines are perpendicular. In the next example we use implicit differentiation to show
that two families of curves are orthogonal trajectories of each other; that is, ev-

ery curve in one family is orthogonal to every curve in the other family. Orthogo-
nal families arise in several areas of physics. For example, the lines of force in an

electrostatic field are orthogonal to the lines of constant potential. In thermody-
namics, the isotherms (curves of equal temperature) are orthogonal to the flow
lines of heat. In aerodynamics, the streamlines (curves of direction of airf low) are

orthogonal trajectories of the velocity-equipotential curves.

EXAMPLE4 r Theequation

FIGURE 6

FIGURE 7

B

represents a family
ent hyperbolas. See

4

-{)' - c cf0

of hyperbolas. (Different values of the constant c give differ-
Figure 7.) The equation

-tr2 y'- k k+ o

represents another family of hyperbolas with asymptotes y : +x. Show that
every curve in the family (3) is orthogonal to every curve in the family (4); that
is, the families are orthogonal trajectories of each other.

SOLLT|ON Implicit differentiation of Equation 3 gives

dy )'
}L' 

-dxrE
dv

\: + .t' ----i- - 0"dx

dv2x 4'(tx:o

Implicit differentiation of Equation 4 gives

a dy: x

dx ))

The inverse trigonometric functions are

reviewed in Appendix C.

From (5) and (6) we see that at any point of intersection of curves from each

family, the slopes of the tangents are negative reciprocals of each other. There-
fore, the curves intersect at right angles. t

I Derivatives of Inverse Trigonometric Functions

We can use implicit differentiation to find the derivatives of the inverse trigono-
metric functions. Recall that

TT TT

.y - sin 'x means sin l' - .r and - ^ < y2"2
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Figure 8 shows the graph of

f (x) : tan-'x and its derivative

f'(x): l/(l + *t).Notice that/is
increasing and f'(x) is always positive.

The fact that tan-'J - tn/2 as,r ---+ -t-cc

is reflected in the fact that f'(*) -> 0 as

X --+ -fcc.

FIGURE 8

Differentiating siny - x implicitly

dvcosv r - I'dx dx cos y

of the arctangent function is

x. Differentiating this latter

with respect to -tr, we obtain

Idy

Now cos y

cosy-m: JT-7

Therefore
cos y Jt -T

dy

dx

d
, (sin - 'x) -ax

I

$:7

The formula for the derivative
way. If y - tan-r,r, then tany -
with respect to J, we have

derived in a similar
equation implicitly

^dvsec'\, ' : I'dx

d:t_ I

dx sec ty
l1

l+tan2y 1+x'

Differentiate (a) y : # and (b) /(x) - x tan -r ,Q .EXAMPLE 5 T

ssLuTto$l

(a) : -(sin-'x) -' *(sin-'x)
dY d ,. -r r-l_, - . (sin-,x)-,dx dx \

(sin-tx)'fi-:-F

(b)

t

-1.5
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Exercises

l-2 r
(a) Find )' by implicit diffcrentiation.
(b) Solve the equation explicitly for ], and differentiate to

get y' in terms of x.

(c) Check that your solutions to parts (a) and (b) are

consistent by suLrstituting the expression for y into your
solution tor part (a).

l. Jt + 3r +,tr.)'- 5 2. r,"f + r') :4

3-f 0 I Find dyfdr by implicit diff-erentiation.

3. Jt JJr + ]'3 : 8 4. -\''t + 3xt]'l + 5,t4 _- 12

5.r*+),4:16 6.VT+,v+tGf -6
7 . cos(,r -),') 

: ,{€"' 8. x sin l' + cos 2'y' : cos },'

9. -t-]r - cot(x_t') | 0. ,{ cos } + \, cos J : I

ll-16 I Find an equation of the tangent line to the curve at

the given point.

(b) Illustrate part (a) by graphing the curve and the
tangent line on a common screen. (If your graptring
clevice will graph implicitly defined curves, then use
that capability. If not, you can still graph this curve
by graphing its upper and lower halves separately.)

18. (a) The curve with equation -)'2 -_ -,r' + 3x2 is called the
Tschirnhausen cubic. Fincl an equation of the tan-
gent line to this curve at the point (1, -2).

(b) At what points does this curve have a horizontal
tangent?

(c) Illustrate parts (a) and (b) by graphing the curve
ancl the tansent lines on a common screen.

w
II

NJ
IT

1

-tr 
*

il.
16

1]x- \'-tz. ?++:1, (-1.4r,E) t*llipse)936

)
_)t-

o
1. (--1,?) (hyperbola)

14.-\tt+.\'lt:4
(-: v5, t)
(astroid)

16" 
"t-),t 

* (-l' + 1)t(4 )'t)
(0, - 2)
(conchoid of Nicomedes)

Fanciful shapes can be created by using the implicit
plotting capabilities of computer algebra systems.
(a) Graph the curve with equation

.)'( .)'t - 1) (.1' 2) : r(x 1) (r 2)

At how many points does this curve have horizontal
tangents? Estimate the x-coordinates of these
point s.

(b) Find equations of the tangent lines at the points
(0, 1) and (0, 2).

(c) Find the exact x-coordinates of the points in part (a).

(d) Create even more fanciful curves by modifying the
equation in part (a).

(a) The curve with equation

2I' + )'2 '1'-t 
: Ju 2x-1 + Jt

has been likenecl to a bouncing wagon. Use a

computer algebra system to graph this curve and

discover why.
(b) At how many points doe s this curve have horizontal

tangent lines? Find the x-coordinates of these
point s.

Find the points on the lemniscate in Exercise l5 where
the tangent is horizontal.

Show by implicit differentiation that the tangent to the
ellipse

at the point (x6, ys) is

@ le.

![E 20.

22.

13. .),2 
: Jt(2 ;)

(1,1)
( piriform )

15. 2(xt * .)'t)t : 25(x1 -
(3, 1)

(lernniscate)

21.

x' ,rrn
l't

--i--le' b'

)oo 
-!r

++
b'

xuJ
.)

a-
1
I

17. (a) The curve with equation y2 : 5,{a - rn
kampyle of Eudoxus. Find an equation
gent line to this curve at the point (1,2).

If xa + )u : 16, use the following steps to find y".
(a) Use implicit differentiation to find y'.
(b) Use the Quotient Rule to differentiate the expression

fbr 1,' from part (a). Express your answer in terms
of x and v onlv.

is called a
of the tan-

23.
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(c) Use the fact that r and v must satisfy the original
equation -u* + )'* - 16 to simplify your answer to

part (b) to the tollowing:
')

)":-48+
v

24. [f -r2 + 6x.t' + .]'r : 8, find .]"' by implicit
differentiation.

pressure to regions of low air pressure, what does the
orthogonal family represent?

25-30 I Find the derivatrve
possible.

25. y - sin '("t)
27, .r' - tan '(r')
29. H(x) : (1 + x2) arctan .{

function. Simplify where

/ . 

-l 

\ /

.\' - (srn 'x)-

/r(-r) : u,Tllr arcsin .r

I : tan -r(x ..,il + tt )

of the

26.

28.

30.

EI I l-32 r Find f'(x). Check that your answer is reasonable by

comparing the graphs of f and f ' .

3l. /(x) : e.' x2 arctan x

32. f(x) : xarcsin(l - rt)

3740 r Show that the given families
orthogonal trajectories of each other.
of curves on the same axes.

37, Jt + yt : r7,, ax + b_)' - 0

38. x' * y' - cJX,, xt * .)'' - b),

39. .)' - C,tl, Jt + 2j-' - k

40. ) - ax], x'+ 3y' - b

of curves are

Sketch both fam i I ies

33-34 I Show that the

33. 2x7 + -y2 
: 3, J

34. xt -)'t:5, 4,rr

given curves are orthogonal.

*y2

+ 9.l,1 : 72 41.

35. Contour lines on a map of a hilly region are curves that
join points with the same elevation. A ball rolling down
a hill follows a curve of steepest descento which is

orthogonal to the contour lines. Given the contour map

of a hill in the figure, sketch the paths of balls that
start at positions A and B.

TV weathermen often present maps showing pressure

fronts. Such maps display isobars-curves along which
the air pressure is constant. Consider the family of
isobars shown in the figure. Sketch several members of
the family of orthogonal trajectories of the isobars.
Given the fact that wind blows from regions of hish air

42.

Show, using implicit differentiation, that any tangent
line at a point P to a circle with center 0 is perpen-
dicular to the radius OP.

Show that the sum of the x- and _)'-intercepts of any

tangent line to the .uru* .u[ + *[ : tF is equal to c.'.

The equation xt - x-)'* )t : 3 represents a "rotated
ellipse," that is, an ellipse whose axes are not parallel
to the coordinate axes. Find the points at which this
ellipse crosses the x-axis arnd show that the tangent
lines at these points are parallel.

44. (a) Where does the normal line to the ellipse
rt x) + .)'t : 3 at the point (- 1, 1) intcrsect the

ellipse a second time?

45.

(b) Illustrate part (a) by graphing the ellipse and the
normal I ine.

Find all points on the curve xtln + rJ - 2 where the

slope of the tangent line is - l.
Find the equations of both the tangent lines to the
ellipse 12 + 41'2 - 36 that pass through the point
(12, 3).

(a) Suppose f ts a one-to-one diff'erentiable function ancl

its inverse functio n .f 
- ' is also differentiable. Use

implicit differentation to show that

( f ')'(r)
f '( f -'(t))

provided that the denominator is not 0.

(b) If /(4) - 5 and .f '(4) - 1, find ( f - 
')'(5).

46.

ngII

43.

36.

47.



48. (a) Show that f(*) - 2x + cosx is one-to-one.
(b) What is the value of ,f -'(l)?
(c) Use the formula from Exercise 47(a) to find

( f - ')'(l).

49. The Bessel function of order 0, y - /(x), satisfies the

differential equation x1"' * -)" * x.y - 0 for all values

of x and its value at 0 is /(0) - 1 .

(a) Find J'(0).
(b) Use implicit differentiation to find l"(0).

50. The figure shows a lamp located three units to the right
of the y-axis and a shadow created by the elliptical

Derivatives of Lo garithmic Functions
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region x? + 4yt < 5. If the point (-5,0) is on the edge

of the shadow, how far above the x-axis is the lamp
located?

find the derivatives of the logarith-
the natural logarithmic function

In this section we use implicit differentiation to
mic functions )r - log.,x and, in particular,
y- lnx.

Formula 5 in Section 3.5 says that

d

* 
(a") : 8"r ln (t

dl
, (log",t) - 

-
dx v- xlna

d1(ln -r) - -dx \ / 
x

tr

Proof Let y - log.,x. Then

a':x

Differentiating this equation implicitly with respect to x, using Formula 5 in Sec-
tion 3.5, we get

aj'(ln a)
dv_L- 

1

dx

dy
and so

Ifweputa:e
lne- I and we get

tion log"x - ln x:

E

dx a)'ln & xln a

in Formula l, then the factor ln a on the right side becomes
the formula for the derivative of the natural logarithmic func-

E

By comparing Formulas 1 and 2 we see one

logarithms (logarithms with base e) are used in
mula is simplest when a- e because lne- l.

of the main reasons that natural
calculus: The differentiation for-
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EXAMPLE I r Differentiatey- ln(x3 + 1).

$OtttTIOf{ To use the Chain Rule we let u : x3 + 1. Then y - ln u, SO

dy 
- 

dy du : J du (?,2\ _ 3*'
dx du dx u dx xt +l'"^' x3+l

In general, if we combine Formula 2 with the Chain Rule as in Example l,
we get

#

E
d ldu
, llnu) - -dx udx *[hs(,r)]:#

d
E1AMPLE z r Find ;i ln(sin.r).

S0tUTlOl{ Using (3), we have

d .. r d I

; In(stnx): 
sinx 7r (stnx): 

sin.x 
cos'r: cot'r r

ExAMptE 3 r Differentiate/(x) : Jl"r.
tOtUTl0N This time the logarithm is the inner function, so the Chain Rule gives

f'(r):i(tnx1-'r'ftUn:-+ :: "ffi il
EXAMPIE4 r Differentiatef(x): logro(2 * sinx).

$OtUIl0t{ Using Formula I with a : lO, we have

dtd
f'(*):; logls(2 + sinx): (M ;Q + sinx)

COS J

(2 + sin.r)lnl0 *

ExAMPIE5 r Find *h#
sotuTrolt I

d x+l I d x+l
ln-:-

dx 
rrr ffi +dx Ez

Jx 2

x + 1 x2
x-2-i.(x+t) x 5
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S0tUTl0l{ 2 If we first simplify the given function using the laws of logarithms,
then the differentiation becomes easier:

d x+l d

;r"ffi:;[rn(x + r) ]rn(x z)l

r(')
x+l 2\x 2/

Figure I shows the graph of the function

/ of Example 5 together with the graph
of its derivative. lt gives a visual check
on our calculation. Notice that f'(x)
is large negative when / is rapidly
decreasing.

FIGURE I

Figure 2 shows the graph of the func-
tion /(x) : ln I x I in Example 6 and its
derivative "f'(x) - l/x. Notice that when
x is small, the graph of y : ln I x I is it follows that
steep and so f'(*) is large (positive or
negative).

(This answer can be left as written, but if we used a common denominator we
would see that it gives the same answer as in Solution 1.) ;

EXAMPLE 5 I Find f'(*) it f(x): h lx l.

SOLUTI0N Since

[n* if: 
Itn(-x) if

fr
lx

L+(-l):+

x

xf (x)

f '(*) -

Thus,f'(*)- lfxfor allx + 0.

ifx

ifx

ffi

The result of Example 6 is worth remembering:

*rnlxl
I

x

E Logarithmic Differentiation

The calculation of derivatives of complicated functions involving products, quo-
tients, or powers can often be simplified by taking logarithms. The method used in
the following example is called logarithmic differentiation.

E
FIGURE 2
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lf x :0, we can show that/'(O) - 0
directly from the definition of a

derivative.

EXAMPLE 7 r Differentiate

*tta llrz + |Y: ax+zf
SOLUTION We take logarithms of both sides of the equation and use the Laws of
Logarithms to simplify:

lny : f ln.r + j tnlx' + l) - 5ln(3.r + 2)

Differentiating implicitly with respect to x gives

ldy:3.1 *l 2x _.. 3

y dx 4 x 2 xt+l - 3x+2

Solving for dy/dx, we get

g:,(z + -=i- - tt \dx "\4r x'*l 3x+2/
*trtiPal(3 x 15 \

-r-T-

(3x+2)'\4r x'+l 3x*21 a

Steps in Logarithmic Differentiation

l. Thke natural logarithms of both sides of an equation y : f (x) and use

the Laws of Logarithms to simplify.
2. Differentiate implicitly with respect to x.
3. Solve the resulting equation for y'.

It f(x) < 0 for some values of r, then ln /(.r) is not defined, but we can write
I y | : | /(r) | and use Equation 4. We illustrate this procedure by proving the gen-
eral version of the Power Rule, as promised in Section 3.1.

Power Rule lf n is any real number and f(x)

f '(x) _ nx'-l

: x", then

Proof Let y - 16n and use logarithmic differentiation:

Therefore

Hence

lnlyl : lnlxl": nlnlxl )c * o

y'__n
yx

y'- n! - nx : nxn-l
E

You should distinguish carefully between the Power Rule [(x")' : nx" '], where
the base is variable and the exponent is constant, and the rule for differentiating
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exponential functions [(,r')' : a'lnaf, where the base is constant and the exponent
is variable. In general, there are four cases for exponents and bases:

l. ! @\ : O (a and b are constants)dx'

z. alnil' : olf(ilu 'f'\*)dx -"

I a brnl : ast"(ln alg,(x)dx'
4. To find (d/dx)lf(x))s(", logarithmic differentiation can be used, as in the

next example.

EXAMPTE 8 r Differenriate -r' : x'i.
SOLUTION I Using logarithmic differentiation, we have

lny : ln ,6 : Jitn*

y'_ I ,--- f:.J
Y 

: 
26 rn"r -t- Vx '-

:,(#.+) :."(\#)
soLUTlOl{ 2 Another method is to write x6 : (et"')6:

Figure 3 illustrates Example_8 by show-

ing the graphs of .f(x) - xn' and its

derivative.

FIGURE 3

*(','r) 
: 

*(r'r'"')

,e,Gn, 4 Uilnx)
dx

:x"(T#) (as aLrovc)

ffi

tr The Numb er e as a Limit

We have shown that if f(*) : ln x, then f'(*) -
this fact to express the number e as a limit.

From the definition of a derivative as a limit"

f(r

r/x.

we

+x)
x

ln(l + x)

")'/-l 
(sincc ln is corrtinuous)

I

Thus,f'(l)- l. We now use

have

/(r)
f'(r) - lim

h-O

- lim
.r +Q

- lim
-r ---0

Because /'(1) - l,

h

ln(l + r) ln I
x

ln(l + x)tt"r - ln

we have

- lim
x*0

1

-lim-
x----nO X

fri* 1r +
l-r -0

ln
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FIGURE 4

If we put n - I/*
expression for e is

6

l. Explain why the natural logarithmic function )' - ln r is
used much more frequently in calculus than the other
logarithmic functions y - log,, r.

2-16 I Differentiate the function.

Therefore

E lim (l + x)'/* - e
x-*0

Formula 5 is illustrated by the graph of the function y - (l
and a table of values for small values of x. This illustrates the
seven decimal places,

e -: 2.7182818

+ x)t/* in Figure 4
fact thato correct to

\ (l + -r)'

0. I

0.01

0.001

0.000 r

0.0000 I

0.000001

0.0000001

0.00(xn00l

2.5

?..7

2.1

2.7

2.1

2.1

2.1

2.7

)37 4246
)4tt I 383

l 692393
| 8 l'1593
r n26824
It32tt047

rr{28 t 69

L828l8l

ln Formula 5. then n + cc as x ---> 0* and so an alternative

e: ls (' + +)'

Exercises

2. f(*) - ln(Z - x)

3. f (e) : ln(cos 0)

5. ,f(*) - log, (r' - q)

7. g(x): n?a*x
g. r(x) - ln 16-

tt. f(x) - Jitnx

f 3. j- - lnlxt - "tl
f 5. Y : ln(e -"r + xe-')

4. f (*) - cos(ln x)

6.f(x)-los,u( ,-)

8. h(x) - ln(x + {-'- l)

10. G(x) :,,8;

12. h(y) - ln( y3 siny)

14.G(u)-r"ffi
16. y: ln(x + ln;r)

l7-18 I Find y'and y".

17..y - loglgx

18. y: ln(secx + tanx)

| 9-20 r Differentiate / and find its domain.

19. f (x) : r'ln(l - xt) 20. f(x) - ln ln ln x

2l.If /(x) : '{-, find f'(e).' lnx'

EZZZ. Find an equation of the tangent line to the curve

.y : (ln x)/x at the points (1,0) and (e,lle). Illustrate
by graphing the curve and its tangent lines.

23. (a) On what interval is f (*) : ,tr ln x decreasing?
(b) On what interval is / concave upward?

ElZq. If/(x) - sinx + lnx, find f'(x). Check thar your
answer is reasonable by comparing the graphs of f
and f'.



25-34 I Use logarithmic differentiation to find the

derivative of the function.

25. .), - (3x - 7)4(8-12 - 1)'

(x + l)o(" 5)'
27' \ : (r - 3)B

29. ) - -t*

3l. ]o - *sin't

33. .)' - (ln x)'

Zb. -), : "r/s(x2 
* 8)ar''2+ '

35. Find )" if .l!, - ln(xt + )'t).

DtscovERY PROIECT l{yptRE0LtC tUtrlCIt0}'|S

Find )" if ff"'' - 1t.".

trind a formula for.f ""(") if /(x) - ln(x l).

de
Find ; (r* ln.r).

AX

Use the definition of derivative to prove that

ln(l * r)
lim -1.r--'0 X

/ , \,,
Show that lt:, \ 

t + ; ) - €' for any r > 0.

253

36.

37.

28. .)' : 38.

39.

40.

30.

32.

34.

.)' : I lr''r

y : (sin x)'

)' 
: *ln't

Hyperbolic Functions

Certain combinations of the exponential functions e'' and e:' arise so frequently in
mathematics and its applications that they deserve to be given special names. This
project explores the properties of functions called hyperbolic functions. The
hyperbolic sine, hyperbolic cosine, hyperbolic tangent, and hyperbolic secant
functions are defined by

e' - g-j
sinh r _

2

sinh x
tanh r :

cosh x

E'* g-x
cosh -{ :

2,

1

sech x -
cosh x

ngrl

wIt

The reason for the names of these functions is that they are related to the hyperbola in
much the same way that the trigonometric functions are related to the circle.

l. (a) Sketch, by hand, the graphs of the functions y : \e' and y : l" ' on the same

axes and use graphical addition to draw the graph. of cosh.
(b) Check the accuracy of your sketch in part (a) by using a graphing calculator

or computer to graph y : cosh-r. What are the domain and range of this
function?

2. The most famous application of hyperbolic functions is the use of hyperbolic cosine
to describe the shape of a hanging wire. It can be proved that if a heavy flexible
cable (such as a telephone or power line) is suspended between two points at the

same height, then it takes the shape of a curve with equation y : acosh(x/a) called
a catenary, (The Latin word catena means "chain.") Graph several members of the
family of functions y: acosh(xfa). How does the graph change as a varies?

3. Graph sinh and tanh. Judging from their graphs, which of the functions sinh, cosh,
and tanh are even? Which are odd? Use the definitions to prove vour assertions.

Prove the identity cosh?r - sinhzx - 1.

Graph the curve with parametric equations r : cosh l, I : sinh f. Can you identify
this curve?

4.

5.

ngIt

ngtl

6. Prove the identity sinh(x + y) - sinhrcoshy + coshxsinhy.
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7. The identities in Problems 4 and 6 are similar to well-known trigonometric
identities. Try to discover other hyperbolic identities by using known trigonometric
identities as your inspiration.

8. The differentiation formulas for the hyperbolic functions are analogous to those for
the trigonometric functions, but the signs are sometimes different.

(a) Show that 4 (rtnh x) - cosh x.
dx

(b) Discover formulas for the derivatives of y : cosh x and ),'

(a) Explain why sinh is a one*to-one function.
(b) Find a formula for the derivative of the inverse hyperbolic

), : sinh-rx. fHint: How did we find the derivative of ), :
(c) Show that sinh-'r : ln(x + r,Gt + I ).
(d) Use the result of part (c) to find the derivative of sinh*rx.

answer to part (b).

9.

-_ tanh,r.

sine function
sinrx?l

Compare with your

10. (a) Explain why tanh
(b) Find a formula for

y : tanh-tx.

is a one-to-one function.
the derivative of the inverse hyperbolic tangent function

/. \
+rnf '* " ).' \l - x/
(c) to find the derivative of tanh-tx. Compare with your

(c) Show that tanh*'-,f, :

(d) Use the result of part
answer to part (b).

I l. At what point on the curve y : cosh x does the tangent have slope l?

Linear Approximations and Differentials

In Section 2.9 we considered linear approximations to functions, based on the idea

that a tangent line lies very close to a graph near the point of tangency. Now that
we are equipped with the differentiation rules, we revisit this idea and use graphi-
cal methods to decide how good a linear approximation is. We also see how linear
approximations are applied in physics.

! Linear Approximarions

An equation of the tangent line to the curve t, : ,f(x) at (a, f (a)) is

)':f(tt) + f'(a)(x a')

So, as in

tr

Section 2.9, the trpproxirnation

is called the linear approximation or tangent line approximation of/at a, and

the function

(whose graph is the tangent line) is called the linearization of /at c. The linear
approximationf(x) : L(x) is a good approximation when x is near a (see Figure l).

E

l' : /(x)

(a, f (a))

FIGURE I
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EXAMPLE I r Find the lineanzation of the function f(x): J- + 3 at a: I

and use it to approximate the numbers 1M and J4n5

S#LUTI*ru The derivative of f(x) : (x + 3)'/t is

f '(x) - 3) -r1z - 2\E + 3

and so we have/(1) - 2 and f'(l)
see that the linearization is

Putting these values into Equation 2, we

The corresponding linear approximation (1) is

6+3:++ +44

In particular, we have:

.rtr98 :l + T : 1.995 and !q.05 : + f : 2.0t25 ffi

The linear approximation in Example I is illustrated in Figure 2. You can see

that, indeed, the tangent line approximation is a good approximation to the given
function when x is near l. Of course, a calculator could give us approximations for
JT% u.rd f.05, but the linear approximation gives an approximation over an

entire interval.
How good is the approximation that we obtained in Example 1? The next ex-

ample shows that by using a graphing calculator or computer we can determine an
interval throughout which a linear approximation provides a specified accuracy.

EXAMPLE 2 r For what values of x is the linear approximation

i(* +

I

- 4.

7x
I

I44

FIGURE 2

w'',a

/-\/X+5-;J-+4

accurate to within 0.5? What about accuracy to within 0.1?

$OtUTlOil Accuracy to within 0.5 means that the functions should differ by less

than 0.5:

t (x)

-4

Equivalently, we could write

This says that the linear approximation should lie between the curves obtained

by shifting the curve y : t/x * 3 upward and downward by an amount 0.5.
Figure 3 shows the tangent liney: (7 + x)/4 intersecting the upper curveFIGURE 3



256 CHAPTER 3 D TIRE1'|TIAIION RULES

FIGURE 4

lf dx # O, we can divide both sides of
Equation 3 by dr to obtain

dy

,h 
: f '(x)

We have seen similar equations before,
but now the left side can genuinely be

interpreted as a ratio of differentials.

y :'/x + 3 + 0.5 at P and Q. Zoomingin and using the cursor, we estimate
that the x-coordinate of P is about -2.66 and the x-coordinate of Q is about
8.66. Thus, we see from the graph that the approximation

x
+

4

is accurate to within 0.5 when -2.6 < x < 8.6. (We have rounded to be safe.)
Similarly, from Figure 4 we see that the approximation is accurate to within

0.1 when -l.l < x < 3.9. ffi

Linear approximations are often used in physics. In analyzing the consequences
of an equation, a physicist sometimes needs to simplify a function by replacing it
with its linear approximation. For instance, in deriving a formula for the period of
a pendulum, physics textbooks obtain the expressior ar: -gsinO for tangential
acceleration and then replace sin 0 by 0 with the remark that sin 0 is very close to 0
if 0 is not too large. [See, for example, Eugene Hecht, Physics (Pacific Grove, CA:
Brooks/Cole, 1994), p.4l3.l You can verify that the linearization of the function

f(*) : sin-r at a : 0 is L(x) : x and so the linear approximation at 0 is

slnt - -tr

(see Exercise 1l). So, in effect, the derivation of the formula for the period of a

pendulum uses the tangent line approximation for the sine function.
Another example occurs in the theory of optics, where light rays that arrive at

shallow angles relative to the optical axis are called paraxial rays. In paraxial (or

Gaussian) optics, both sin0 and cos0 are replaced by their linearizations. In other
words, the linear approximations

sinO:;0 and cos0: I

are used because 0 is close to 0. The results of calculations made with these ap-
proximations became the basic theoretical tool used to design lenses. [See Eugene
Hecht, Optics,2d ed. (Reading, MA: Addison-Wesley, 1987), p. 134.1

In Section 8.9 we will present several other applications of the idea of linear
approximations.

I D,rr"r"r,.,.,,

The ideas behind linear approximations are sometimes formulated in the terminol-
ogy and notation of differentials. If y : f(x), where/is a differentiable function,
then the differential dx is an independent variable; that is, dx can be given the
value of any real number. The differential dy is then defined in terms of dx by the
equation

E dy : f'(x)dx

So dy is a dependent variable; it depends on the values of x and dx. If d.r is given
a specific value and r is taken to be some specific number in the domain of/ then
the numerical value of dy is determined.

"6 
+T :7

4

-)': \'F: + O.t



y : /(x)

FIGURE 5
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The geometric meaning of differentials is shown in Figure 5. Let P(x, f(x)) and

QG + A,x,f(x + Ax)) be points on the graph of /and set dx: Lx. The corre-
sponding change in y is

Ay: f(x + A,x) - f(x)

The slope of the tangent line PR is the derivative f'(x). Thus, the directed distance
from S to R is/'(x) dx: dy. Therefore, dy represents the amount that the tangent
line rises or falls (the change in the linearization), whereas Ay represents the
amount that the curve y : f(x) rises or falls when .r changes by an amount d.r.

In the notation of differentials, the linear approximation (1) can be written as

f(a + dx):f(a) + dy

For instance, for the function f(*)- t/- + 3 in Example l, we have

dy : f'(x) dx -

If a - | and dx - Ax - 0.05, then

2\/x + 3

0.05dy: zJr + 3
- 0.0125

and ,/+.os - f(1.05) : f(r) + dy: z.orzs

just as we found in Example 1.

Our final example illustrates the use of differentials in estimating the errors
that occur because of approximate measurements.

EXAMPLE 3 r The radius of a sphere was measured and found to be 2l cm with
a possible error in measurement of at most 0.05 cm. What is the maximum error
in using this value of the radius to compute the volume of the sphere?

$OLUTfON If theradius of the sphere is r, then its volume is V: \zrr3.lf the
error in the measured value of r is denoted by dr : Ar, then the corresponding
error in the calculated value of V is A% which can be approximated by the
differential

dV : 4tr'dr

When r - 2l and dr : 0.05. this becomes

dv:4n(21)20.05 -277

The maximum error in the calculated volume is about 277 cm3

IIOTE . Although the possible error in Example 3 may appear to be rather large,

a better picture of the error is given by the relative error, which is computed by
dividing the error by the total volume:

dx

#

LV dV 4rrr'dr:-:- dr:3-
rv V tnr'
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l-4 r Find the linearization L(x\ of the function at a.

f./(") :;3, a:1
2. "/(x) - lnr, a - I

3. /(x) * r-", a - 0

4. "l(x) - i-,,f' (l : -8

E= 5. Find the ,linear approximation of the function

f (r) : \/ I 
= 

at a -_ i:nd use it to approximate the
numbers r,/0.9 and /0.99 . Illustrate by graphing,f and

the tangent line.

EE 6. Find the linear approximation of the function
g(x) - i/L jl at a T O_und use it to approximate the
numbers.,70.g5 and Vl.l.Illustrate by graphing g and

the tangent line.

fi! l:lO r Verify the given linear approximation at a : 0.

Then determine ttre values of x for which the linear
approximation is accurate to within 0.1

7. t/i + .r : 1 + jx
9. l/(t +Zx)a:1-8x

10. e'': I + ,[

CHAPTER 3 D IERENTIATIO|[l RULES

Thus, the relative error in the volume is about three times the relative error in
the radius. In Example 3 the relative error in the radius is approximately
dr/r : 0.05/21 - O.OO24 and it produces a relative error of about 0.007 in the vol-
ume. The errors could also be expressed as percentage errors of O.24Vo in the ra-
dius and 0.7Vo in the volume.

Exercises

I f . On page 413 of Eugene Hecht , Phl,sigs (Pacific Grove,
CA: Brooks/Cole, J994), in the course of deriving the
formula T - 2rr 

"/ 
11 n for the period of a pendulum of

length L. the author obtains the equatiorr er : -g sin 0

for the tangential acceleration of the bob of the pendu-
lum. He then says, "for small angles, the value of 0 in
radians is very nearly the value of sin 0; they differ by
less than TVo out to about 20o."
(a) Verify the linear approximation at 0 for the sine

function:

sinx: J

EE (b) Use a graphing devie e to determine the values of x
for which sin x and "r differ by less than 2To. Then
verify Hecht's statement by converting from radians
to degrees.

12. Let/be a function such that/(l) - 2 and whose deriva-

tive is known to be /'(x) : .F + I . [You are not given

a formula for/(x). Don't try to guess one-you won't
succeed.l
(a) Use a linear approximation to estimate the value

of /(l.l).
(b) Do you think the true value of/(l.l) is less than or

greater than your estirnate? Why?

Let y - cos,r.
(a) Find the differential d1,.

(b) Evaluate drr and A-v if r : nl6 and dx : 0.05.

Lery -,/i.
(a) Find the differential dy.
(b) Evaluate dJ and Ay if -r - I and dx - Ax : 1.

(c) Sketch a diagram like Figure 5 showing the line
segments with lengths dx, d-)', and A}'.

The edge of a cube was found to be 30 cm with a

possible error in measurement of 0.1 cm. Use differ-
entials to estimate the maximum possible error in
computing (a) the volume of the cube and (b) the

surface area of the cube.

The radius of a circular disk is given as 24 cm with a

maximum error in measurement of 0.2 cm.
(a) Use differentials to estimate the maximum error in

the calculated area of the disk.
(b) What is the relative error? What is the percentage

error?

Use differentials to estimate the amount of paint
needed to apply a coat of paint 0.05 cm thick to a

hemispherical dome with diameter 50 m.

When blood flows along a blood vessel, the flux F (the

volume of blood per unit time that flows past a given
point) is proportional to the fourth power of the radius

R of the blood vessel:

F-KR4

(This is known as Poiseuille's Law; we will show why it
is true in Section 6.6.) A partially clogged artery can be

expanded by an operation called angioplasty, in which a

balloon-tipped catheter is inf lated inside the artery in
order to widen it and restore the normal blood flow.

Show that the relative change in F is about four times
the relative change in rR. How will a 5To increase in the

radius affect the flow of blood?

15.

13.

14.

t7.

t8.

8. tanx: N 16.
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Taylor Polynomials

The tangent line approximation l(-r) is the best first-degree (linear) approximation to
/(x) nearr : a because/(x) and L(x) have the same rate ofchange (derivative) at a.
For a better approximation than a linear one, let's try a second-degree (quadratic)
approximation P(x). In other words, we approximate a curve by a parabola instead of
by a straight line. To make sure that the approximation is a good one, we stipulate the
following:

(i) P(a) : f(a) (P and / should have the same value at a.)

(ii) P'(a) : f'(a) (P and/should have the same rate of change at a.)

(iii) P"(a) : f"(a) (The slopes of P and/should change at the same rate.)

f . Find the quadratic approximation P(x) : A * Bx * Cx2 to the function
f(x) : cosr that satisfies conditions (i), (iD, and (iii) with a : 0. Graph P,f, and,
the linear approximation L(x) : 1 on a common screen. Comment on how well
the functions P and L approximate f

2. Determine the values of .r for which the quadratic approximation f (x) : P(x) in
Problem I is accurate to within 0.1. fHint: Graph y -- P(x), ] : cosr - 0.1, and
y : cos-r * 0.1 on a common screen.]

3, To approximate a functionf by a quadratic function P near a number a, it is best to
write P in the form

P(x) : A + B(x - a.) + C{x - a)'z

Show that the quadratic function that satisfies conditions (i), (ii), and (iii) is

P(x): f(a) + f'(a)(x - a) + 11"@)(x - a)2

4. Find the quadratic approximation to/(x) : J, + 3 near a: l. GraphJ the
quadratic approximation, and the linear approximation from Example 2 in
Section 3.8 on a common screen. What do you conclude?

5. Instead of being satisfied with a linear or quadratic approximation to /(.r) near
x: a, let's try to find better approximations with higher-degree polynomials.
We look for an zth-degree polynomial

T^(x) --c0 + cr(-r - a) + cz(x - a)2 * ca(x - a)3 + ... * cn(x - a)"

such that I and its first n derivatives have the same values al x : a as/and its
first n derivatives. By differentiating repeatedly and setting -r : a, show that these
conditions are satisfied if co : f@), r, : f'(a), c2: if"(a), and in general

f'o)(o),r: 
kr.

where ft! : l ' 2' 3' 4 ' ... . &. The resulting polvnomial

. t:pu _ a).

is called the nth-degree Taylor polynomial at f centered at a.

6. Find the eighth-degree Taylor polynomial centered at a : 0 for the function

f (*) : cos x. Graph / together with the Taylor polynomials fz , 74, 76, Ts in
the viewing rectangle [*5,5] by [-1.4,1.4] and comment on how well they
approximate /
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Chapter 3 Review
O CONCEPT CHECK O

L State each of the following differentiation rules both in
symbols and in words.

(a) The Power Rule

(b) The Constant Multiple Rule

(c) The Sum Rule

(d) The Difference Rule
(e) The Product Rule

(f) The Quotient Rule

(g) The Chain Rule

2. State the derivative of each function.
(a) tu:x" (b) Y:e"
(d) y:lnx (e) y-logox
(g) y:cosr (h) y:tanx

(j).y:secx (k).y:cotx
(l) .y:sin-rx (m) y: tan-rr

3. (a) How is the number e defined?
(b) Express e as a limit.
(c) Why is the natural exponential function y - e.' used

more often in calculus than the other exponential
functions .y - a'?

(d) Why is the natural logarithmic function .)' - ln x
used more often in calculus than the other losa-
rithmic functions .y - log.,x?

4. (a) E,xplain how implicit differentiation works.
(b) Explain how logarithmic differentiation works.

5. Write an expression for the linearization of f at a.

QUIZ a

(c) y
(f) y
(i) -v

^x

- sinx
: csc -tr

A TRUE.FALSE

lt ls

an
5. If/is

6. If .y:

Determine whether the statement is true or false. If
true, explain why. If it is false, explain why or give
example that disproves the statement.

f . If / and g are differentiable, then

d

; lf (x) + g(x)l : f'(x) + s'(*)

2. If .f and g are differentiable, then

d

; I f(*) g(x)) : f' (x) s' (x)

3. If ./ and g are differentiable, then

d

A I fk?Dl - f' (g(x))s' (x)

4. If .f is differentiable, then 4 ,nA : -!'V\dx Z ,/f (x)

differentiable, then * fU;) : {'(!dx ZJ.r

e2, then y' - 2e.

d
7. ;(10") - x10'-r

d
B. f (tn to) : ror

d..d
9. f 

(tantx) :; (sec:x)

ro. 4l*' + xl- lz* + tl
dx'

lf . If g(x) : xs, then 1riff:80.

s EXERCTSES s
l-26 I Calculate .y'.

l. -\' - (x + 2)8(x + 3)o
1r- I
rlx+ T

\/ x

3. y:

5. y:
Je-4.
sin(cos x)

e''
4. y- . , )" 1+ x'

6. y : sin-'(t*)
2..y:



7. .y - *u*t't"r

9. .y: tunn{ - "

8, ) - x'e''"

lo. v :

12. .)' :
14, ")' 

:
16. .)' :
18. xtany -.y I

20. .)' - €cos"x + cos(e'')

22. ) __ arctnn(arcsinJT)

CltAPTER 3 REVIEW

If / and g are the functions whose graphs are
P(x) : 

"f(*) 
g(x), Q(x) : f(*)/g(*), and C(x)

Find (a) P'(2) , (b) 0 ' (2) , and (c) C'(2).

36.

26r

shown, let

- ^f(s(x)).

ll,

t3.

15.

17.

19,

2t.

23.

24.

]-
J:

_)' 
:

r-y-'

-)' 
:

-)t -

-l!' 
:

xe)'

V(8 3x)

e "(c sin x cos x)

e'

+ 3-1'2 - * 4),

log 1o (x 2 x)

ln sin -r - * sinr-r

sin(ton n/i + .il )

:-y I

vT+t(z-")'
(; + 3)'

T-

25. .)' :

25. -y 
:

27. If .f(r) : llQx t)5. find /"(0).

28. Find .v." il'-rn + _,,'n 
: l.

29. If/(r) :2', find .f'""(*).

30. Find an equation of- the tangent to the curve
,/; + .,f - 3 at the point (4, 1).

31. (a) ll'/(x) : xV'3 - *. find.l''(x).
(b) Find equations of the tangent lines to the curve

.),- rV5 - x at the points (1,2) and (4,4).

E= (c) Illustrate part (b) by graphing the curve and tangent
lines.

E= (d) Check to see that your answer ro parr (a) is
reasonable by comparing the graphs of f and f' .

32. (a) If /(x) - 4x tanr, -nl? { x { nlL, find f'
and f".

n= (b) Check to see that your answers to part (a) are

reasonable by comparing the graphs of f, f', and f".
El ll. If /(,r) : xe''"', find,f'("). Graph/and f' on the same

screen and comment.

El Y. (a) Graph the function /(x) - r 2 sin x in the
viewing rectangle [0, 8] by [-2, 8].

(b) On which interval is the average rate of change
larger: [1,2] or [2,3]?

(c) At which value of x is the instantaneous rate of
change larger: x : 2 or x : 5?

(d) Check your visual estimates in part (c) by com-
puting .f'(*) and comparing the numerical values
of f '(2) and /'(5).

35. Suppose that h(*) : f(x)g(x) and F(x) - 119(x)), where

f(2) - 3, 9(2) - 5, g'(2) -- 4, f'(7) - -2, and

/'(5) - 11. Find (a) h'(2) and (b) F''(2).

47. At what point on the curve y - [ln(x + 4)]o is the
tangent horizontal?

48. (a) Find an equation of the tangent to the curve ] : e.'

that is parallel to the line x 4), - l.
(b) Find an equation of the tangent to the curve -t',' 

: e''
that passes through the origin.

49. Find the points on the ellipse xn + 2y' :1 where the
tangent line has slope I .

50. (a) On what interval is the function.f(x) - (ln r)/x
increasing?

(b) On what interval is./ concave upward?

5 | . An equation of motion of the form .r : Ae-.' cos(cor + 5)

represents damped oscillation of an object. Find the
velocity and acceleration of the object.

52. A particle moves on a vertical line so that its coordinate
attime ris y : t3 - l}t + 3. r > 0.

(a) Find the velocity and acceleration functions.
(b) When is the particle moving upward and when

moving downward?
(c) Find the distance that the particle travels in the

interval 0<r<3.

3744 I Find/'(r) in

37.f(*) : r'g(r)

3e. l(x) - [s(*)]'

41. f(x) - g(e')

43. l'(x) - ln le(x) |

term s of g' (x) .

3S. /(x) : g("t)

40. /(x) : g( g(r))

42.f(x):sa(rl

44. f (x) : g(ln x)

4546 I Find h',(x\ in rerms

4s./r(r) - f(x)s(x)
/(x) + g(x)

of /'(x) and g'(x).

46. h(x) - f (s(sin 4r))

is it

tirne
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(d) Graph the position, velocity, and acceleratton
functionsfor0 < r < 3.

(e) When is the particle speeding up? When is it
slowing down?

53. The mass of part of a wire is x(t + Ji) kilograms,
where x is measured in meters from one end of the wire.
Find the linear density of the wire when x :4 m.

54. The volume of a right circular cone is V - nr=hf 3,

where r is the radius of the base and /z is the height.
(a) Find the rate of change of the volume with respect

to the height if the radius is constant.
(b) Find the rate of change of the volume with respect

to the radius if the height is constant.

55. The cost, in dollars, of producing x units of a com-
modity is

C(x) : 920 + 2x 0.02xr + 0.00007x3

(a) Find the marginal cost function.
(b) Find C'(100) and explain its meaning.
(c) Compare C'(100) with the cost of producing the

101st item.
(d) For what value of x does C have an inflection point?

What is the significance of this value of x?

56. The function C(r) : K(e'ut - e r";, where a, b, and K
are positive constants and b > a., is used to model the

concentration at time / of a drug injected into the

bloodstream.
(a) Show that lim, -- C(t) - 0.

(b) Find C'(t), the rate at which the drug is cleared from
circulation.

(c) When is this rate equal to 0?

57. (a) Find the linearization of/(x) - {/l + 3* at a - 0.

State the corresponding linear approximation and

use it to give an approximate value for r7t.O: .

E= (b) Determine the values of x for which the linear
approximation given in part (a) is accurate to
within 0.1.

58. A window has the shape of a square surmounted by a
semicircle. The base of the window is measured as

having width 60 cm with a possible error in measure-
ment of 0.1 cm. Use differentials to estimate the
maximum error possible in computing the area of the

window.

59. Express the limit

cos 0 0.5
linr

t) -nt3 0 rr/3

as a derivative and thus evaluate it.

60. Find f '(*) if it is known that

I
, t .f Qx)): -t'

ax

6 | . Evaluate

62.

lim
-r --+0

Show that the length of the
to the astroid x't3 + y'/' -
axes is constant.

J'

portion of any tangent line
a2l3 cut off bv the coordinate



Figure I

Before you look at the solution of the following example, cover it up and first try to
solve the problem yourself. It might help to consult the principles of problem solv-
ing on page 87.

Exarnple For what values of c does the equation lnx - cJz have exactly one

solution?

Solution One of the most important principles of problem solving is to draw

a diagram, even if the problem as stated doesn't explicitly mention a geometric
situation. Our present problem can be reformulated geometrically as follows: For
what values of c does the curve 1l : ln x intersect the curve y : cx2 in exactly
one point?

Let's start by graphing ) : ln x and y : cx' for various values of c. We

know that, for c * 0, y : cx' is a parabola that opens upward if c > 0 and

downward if c < 0. Figure I shows the parabolas y : cxz for several positive
values of c. Most of them don't intersect ) : ln x at all and one intersects twice.
We have the feeling that there must be a value of c (somewhere between 0.1 and

0.3) for which the curves intersect exactly once, as in Figure 2.

To find that particular value of c, we let a be the -r-coordinate of the single

point of intersection. In other words, lna : ca', soa is the unique solution of
the given equation. We see from Figure 2 that the curves just touch, so they have

a common tangent line when x : a. That means the curves y : ln x and

! : cx2 have the same slope when x : a. Therefore

2ca

Solving the equations ln a : caz and Uo - \ca, we get

Figure 2

I

a

Ina- c&,-r' I 
- 

1

2cz
Thus,a- et/z and

For negative
parabolas y :

lna
FL2

a-

values of c we have the
cx2 with negative values

ln e'/t
2e

situation illustrated in
of c intersect v : lnx

Figure 3: All
exactly once.

3x2 rz

(;x?
?

Figure



And let's not forget about c - 0: The curve y - 0x2 : 0 is just the x-axis,
which intersects y - ln x exactly once.

Tosummarize,therequiredva1uesofCareC:|/(2e)andc<

l. The figure shows a circle with radius 1 inscribed in the parabola y - xt. Find the
center of the circle.

IDrohIr.nls

Figure for Problern 5
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V

\
0

y-x2

J

I 
pe,l 

I 
pe.l 

i

PPI - PPI:r

so'sin bx : r"eo'sin(bx + ne)

: tan 
*'(blo).

ngII

[! f. finOthepointwherethecurves]: x3 - 3x * 4andy: 3(x2 - x) aretangentto
each other, that is, have a common tangent line. Illustrate by sketching both curves
and the common taneent.

3. (a) Find the domain of the function f (*) _
(b) Find/'(.r).
(c) Check your work in parts (a) and (b) by graphing/and/' on the same screen.

4. If/is differentiable at a, where a ) 0, evaluate the following limit in terms of f'(a):

,. f(x) - f(a)

"'\ 
tr, - "tr

5, The figure shows a rotating wheel with radius 40 cm and a connecting rod AP with
length 1.2 m. The pin P slides back and forth along the x-axis as the wheel rotates
counterclockwise at a rate of 360 revolutions per minute.
(a) Find the angular velocity of the connecting rod, daldt, in radians per second,

when 0 : rf3.
(b) Express the distance x : lOPl in terms of 0.

(c) Find an expression for the velocity of the pin P in terms of 0.

6, Tangent lines tr and Z2 are drawn at two points P1 and P2 on the parabolay : ,z
and they intersect at a point P. Another tangent line T is drawn at a point between
P1 and P2; it intersects Tr at Qr and, T2 at Q2. Show that

7. Show that

d"
dt

where 12 : az + bz and, 0

,sinx _ I
8. Evaluate lim

x1n J - 7T

\aa
o

/
P(x,0) t
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Figure for Problem 9

Figure for Problem L4

9. Let T and N be the tangent and normal lines to the ellipse x2 19 + y'/q : I at any
point P on the ellipse in the first quadrant. Let.r7 and y1 be the r- and y-intercepts
of T and xy and yy be the intercepts of N. As P moves along the ellipse in the first
quadrant (but not o4 the axes), what values cvn x7, Jy, t,v, and y,y take on? First try
to guess the answers just by looking at the figure. Then use calculus to solve the
problem and see how good your intuition is.

10. If the ellipse of Problem 9 is replaced by a more general ellipse x2fa2 + y2/b2 : 1,

where a > b > O, what values can -r7y and y1,, take on? Express your answers in
terms of a, b, c, and e, where c' : a' - b2, and e : cfa is the eccentricity of the
ellipse. Interpret your results geometrically.

I f. Find the nth derivative of the function f(x) : x"/(t - x).

f 2. For which positive numbers a is it true that a'> I * "t for all "r?

13. (a) Use the identity for tan(x - y) (see Equation l4b in Appendix C) to show that if
two lines L1 and L2 intersect at an angle a, then

tllz - ftlttana: | + a,^,

where rn1 andm2 are the slopes of l1 and L2, respectively.
(b) The angle between the curves C1 and C2 at a point of intersection P is defined

to be the angle between the tangent lines to Cr and Cz at P (if these tangent
lines exist). Use part (a) to find, correct to the nearest degree, the angle
between each pair of curves at each point of intersection.
(i) y: x2andy:(*-2)' (ii).r'?- y2:3and,xt - 4x + y2 + 3:0

14. Let P(xr.yr) be a point on the parabola y2 : 4px with focus F(p,0). Let a be the

angle between the parabola and the line segment FP and let B be the angle between
the horizontal line y : y' and the parabola as in the figure. Prove that a : B.
(Thus, by a principle of geometrical optics, light from a source placed at F will be

reflected along a line parallel to the.r-axis. This explains why paraboloids, the
surfaces obtained by rotating parabolas about their axes, are used as the shape of
some automobile headlights and mirrors for telescopes.)

f 5. Suppose that we replace the parabolic mirror of Problem 14by a spherical mirror.
Although the mirror has no focus, we can show the existence of an approximate
focus. In the figuie, C is a semicircle with center O. A ray of light coming in
toward the mirror parallel to the axis along the line PQ will be reflected to the
point R on the axis so that LPQO : LOOR (the angle of incidence is equal to the

angle of reflection). What happens to the point R as P is taken closer and closer to

the axis?

16. Given an ellipse x2fa2 + y'lb':1, where a * b,find the equation of the set of
all points from which there are two tangents to the curve whose slopes are
(a) reciprocals and (b) negative reciprocals.

f7. Find the two points on the curve j : xa - 2x2 - x that have a common tangent

line.

18. Suppose that three points on the parabola ) : -r2 have the property that their
normal lines intersect at a common ooint. Show that the sum of their x-coordinates
is 0.

19. Alattice pointin the plane is apoint with integercoordinates. Suppose that circles
with radius r are drawn using all lattice points as centers. Find the smallest value of
r such that any line with slope ! intersects some of these circles.

P(xt, y,)

F(p,o)

Y' : 1Px

Figure for Problem l5
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entiation considered in this chapter. The

formation and location of rainbows is

explained in the projec't on page 282.

Exercise 34 on page 320 determines the

optimal angle fo, branching of blood

vessels in orcler to minimize the energy

expended hy the heart. The projec:t on

page 321 investigates the cost of manu-

factur"ing catls in rtrder to explain why the

smaller ones tend to he relatit,el! tall and

thin v,hereas the bigger ones are usually

almost square.
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$ We have already investigated some of the applications of

derivatives, but now that we know the differentiation rules

we are in a better position to pursue the applications of

differentiation in greater depth. We show how to analyze the

behavior of families of functions, how to solve related rates

problems (how to calculate rates that we can't measure from

those that we can), and how to find the maximum or mini-

mum value of a quantity. In particular, we will be able to

investigate the optimal shape of a can and to explain the

location of rainbows in the sky.

267
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Related Rates

According to the Principles of Problem

Solving discussed on page BZ the first
step is to understand the problem. This

includes reading the problem carefully,

identifying the given and the unknown,
and introducing suitable notation.

If we are pumping air into a balloon, both the volume and the radius of the balloon
are increasing and their rates of increase are related to each other. But it is much

easier to measure directly the rate of increase of the volume than the rate of in-
crease of the radius.

In a related rates problem the idea is to compute the rate of change of one quan-

tity in terms of the rate of change of another quantity (which may be more easily
measured). The procedure is to find an equation that relates the two quantities and

then use the Chain Rule to differentiate both sides with respect to time.

EXAMPTE I r Air is being pumped into a spherical balloon so that its volume
increases at a rate of 100 cm3/s. How fast is the radius of the balloon increasing
when the diameter is 50 cm?

SOLUTION We start by identifying two things:

the given information:

the rate of increase of the volume of air is 100 cm%

and the unknown:

the rate of increase of the radius when the diarneter is 50 cm

In order to express these quantities mathematically we introduce some

suggestive notation:

Let V be the volume of the balloon and let r be its radius.

The key thing to remember is that rates of change are derivatives. In this
problem, the volume and the radius are both functions of the time t. The rate

of increase of the volume with respect to time is the derivative dV/dt and the

rate of increase of the radius is dr/dt. We can therefore restate the given and the

unknown as follows:

dV+- loo cmft
dt

drUnknown: . when r :25 cm
dt

In order to connect dV/dt and dr/dt we first relate V and r by the formula for
the volume of a sphere:

Given:

The second stage of problem solving

is to think of a plan for connecting the
given and the unknown.

V -- Inr'
In order to use the given information, we differentiate each side of this equation

with respect to t. To differentiate the right side we need to use the Chain Rule:

-dr
4nrL _

dt
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Now we solve for the unknown quantity:

drIdV
A: 4nf dt

If we put r - 25 and dVldt - 100 in this equation, we obtain

The radius of the balloon is increasing at the rate of I lQsrr) cm/s.

EXAMPLE 2 r A ladder 10 ft long rests against a vertical wall. If the bottom of
the ladder slides away from the wall at a rate of I ft/s, how fast is the top of the
ladder sliding down the wall when the bottom of the ladder is 6 ft from the wall?

tOLUTlOll We first draw a diagram and label it as in Figure l. Let x meters be

the distance from the bottom of the ladder to the wall and y meters the distance
from the top of the ladder to the ground. Note that .r and y are both functions
of t (time).

We are given that dxldt : I ft/s and we are asked to find dyfdt when
x : 6 ft. (See Figure 2.) In this problem, the relationship between x and y is
given by the Pythagorean Theorem:

x2 + y'-100

Differentiating each side with respect to I using the Chain Rule, we have

drll
- 100-dt 4rr(25)' 25n

dx dy2x-+7vL:0dt 'dt

#:-ftrr ft/s

#
wall

FIGURE I

ground

dv' _(t
dt

dx-l
---ldt

and solving this equation for the desired rate, we obtain

dy xdx
dt ydt

When x : 6, the Pythagorean Theorem gives y : 8 and so, substituting these

values and dx/dt : l, we have
FIGURE 2

3

4 ffi

4

EXAMPLE 3 r A water tank has the shape of an inverted circular cone with base
radius 2 m and height 4 m. If water is being pumped into the tank at a rate of
2m3fmin, find the rate at which the water level is rising when the water is 3 m
deep.

SOLUTIOI{ We first sketch the cone and label it as in Figure 3. Let V, r, and h be
the volume of the water, the radius of the surface, and the height at time t, where
t is measured in minutes.

We are given that dv/dt : 2 m3fmin and we are asked to find dh/dt when h is
3 m. The quantities V and h are related by the equation

V - \rrr'hFIGURE 3
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Look back: What have we learned from
Examples l-3 that will help us solve
future problems?

Warning: A common error is to
substitute the given numerical informa-
tion (for quantities that vary with time)
too early. This should be done only
ofter the differentiation. (Step 7 follows
Step 6.) For instance, in Example 3 we
dealt with general values of /z until we
finafly substituted h : 3 at the last
stage. (lf we had put h : 3 earlier, we
would have gomen dvldt : 0, which is

clearly wrong.)

but it is very useful to express V as a function of h alone. In order to eliminate
we use the similar triangles in Figure 3 to write

12h
h4

and the expression for V becomes

,)
/-

Now we can differentiate

SO

Substitutingft-3mand

dh

,tt

I l/,\' n .
V - - n | - | h - - 

h-13 \2/ 12

each side with respect to f :

dV rr -dh_- _h-_
dt4dt

dh_ 4 dv
dt irh? dt

dVldt - 2 msfmrn, we have

4-8
- . ,^ ' )- 

= 
:: 0.28 m/minn(3)- 9zr ffi

STRATEGY It is useful to recall some of the problem-solving principles
from page 87 and adapt them to related rates in light of our experience in
Examples l-3:

l. Read the problem carefully.

2. Draw a diagram if possible.

3. Introduce notation. Assign symbols to all quantities that are functions of
time.

4. Express the given information and the required rate in terms of derivatives.

5. Write an equation that relates the various quantities of the problem. If neces-
sary, use the geometry of the situation to eliminate one of the variables by
substitution (as in Example 3).

6. Use the Chain Rule to differentiate both sides of the equation with respect
to t.

7. Substitute the given information into the resulting equation and solve for
the unknown rate.

The following examples are further illustrations of the strategy.

EXAMPTE 4 . Car A is traveling west at 50 mi/h and car B is traveling north at
60 mi/h. Both are headed for the intersection of the two roads. At what rate are
the cars approaching each other when car A is 0.3 mi and car B is 0.4 mi from
the intersection?

SOLUTION We draw Figure 4 where C is the intersection of the roads. At a given
time t, Iet x be the distance from car A to C, let y be the distance from car B to
C, and \et z be the distance between the cars, where .r, y, and z are measured in
miles.FIGURE 4
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We are given that dx/dt : -50 mi/h and dy/dt: -60 mi/h. (The derivatives
are negative because x and y are decreasing.) We are asked to find dz/dt. The
equation that relates x, y, and z is given by the Pythagorean Theorem:

z':x'+y'

Differentiating each side with respect to f, we have

^dz ^dx dyzz,:zx _+zy -dt ctl dt

dz t( dx ay\
a:; \.7-Y dt)

When x : 0.3 mi and y : 0.4 mi, the Pythagorean Theorem gives z : 0.5 mi,
SO

dz1
;: b; [0.3(-so) + 0.4(-60)]

- -78 mi/h

The cars are approachitrg eaqh other at a rate of 78 mi/h. ffi

EXAMPLE 5 r A man walks along a straightpath at a speed of 4 ft/s. A search-

light is located on the ground 20 ft from the path and is kept focused on the man.
At what rate is the searchlight rotating when the man is 15 ft from the point on

the path closest to the searchlight?

SOLUTIOil We draw Figure 5 and let .x be the distance from the point on the path

closest to the searchlight to the man. We let 0 be the angle between the beam of
the searchlight and the perpendicular to the path.

We are given that dx/dt : 4 ft/s and are asked to find d9/dt when -r : 15.

The equation that relates x and 0 can be written from Figure 5:

+: *no x- 20tan?

FIGURE 5

Differentiating each side with respect to t, we get

SO

When x :

dx.d0
dt:20sec=rA

d0 = , .,^ qt _ l ^^.dt - fr.or'o;- -r cos'o(+) - + cos2o

15, the length of the beam is 25, so cos0 - t and

de t(q\' r(#:;(;) :fr:orza

The searchlight is rotating at a rate of 0.128 rad/s. I
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If V is the volume of a cube with edge length x, find
dV/dt in terms of dxldt.

If A is the area of a circle with radius r, find dA/dt tn
terms of dr/dt.

3-6 r
(a) What quantities are given in the problem?
(b) What is the unknown?
(c) Draw a picture of the situation for any time r.
(d) Write an equation that relates the quantities.
(e) Finish solving the problem.

3. If a snowball melts so that its surface area decreases at
a rate of I cm2/min, find the rate at which the diameter
decreases when the diameter is l0 cm.

4. At noon, ship A is 150 km west of ship B. Ship A is
sailing east at 35 km/h and ship B is sailing north at
25 k mlh. How fast is the distance between the ships
changing at 4:00 p.rr,r.?

5. A plane flying horizontally at an altitude of I mi and
a speed of 500 mrlh passes directly over a radar station.
Find the rate at which the distance from the plane to the
station is increasins when it is 2 mi awav from the
station.

6. A street light is mounted at the top of a 1S-ft-tall pole.
A man 6 ft tall walks away from the pole with a speed
of 5 ft/s along a straight path. How fast is the tip of his
shadow moving when he is 40 ft from the pole?

7. Two cars start moving from the same point. One travels
south at 60 mi/h and the other travels west at 25 mi/h.
At what rate is the distance between the cars increasing
two hours later?

8. A spotlight on the ground shines on a wall 12 m away.
If a man 2 m tall walks from the spotlight toward the
building at a speed of 1.6 m/s, how fast is his shadow
on the building decreasing when he is 4 m from the
bui lding?

9. A man starts walking north at 1 ftls from a point P.
Five minutes later a woman starts walking south at
5 ft/s from a point 500 ft due east of P. At what rate are
the people moving apart 15 min after the woman starts
walking?

10. A baseball diamond is a square with side 90 ft. A batter
hits the ball and runs toward first base with a speed
of 24 fr/s.
(a) At what rate is his distance from second base

decreasing when he is halfway to first base?

CHAPTER 4 APPLICATIOI.IS OI DIIFIREl{TIAIION

Exercises

l.

2.

(b) At what rate is his distance from third base

increasine at the same moment?

The altitude of a triangle is inereasing at a rate of
1 cm/min while the area of the triangle is increasing
at a rate of 2 cmzfmin. At what rate is the base of the
triangle changing when the altitude is l0 cm and the
area is 100 cm2?

A boat is pulled into a dock by a rope attached to the
bow of the boat and passing through a pulley on the
dock that is I m higher than the bow of the boat. If the
rope is pulled in at a rate of I m/s,how fast is the boat
approaching the dock when it is 8 m from the dock?

Two carts, A and B, are connected by a rope 39 ft long
that passes over a pulley P. The point O is on the floor
12 ft directly beneath P and between the carts. Cart A
is being pulled away from Q at a speed of 2 ft/s. How
fast is cart B moving toward Q at the instant when cart
A is 5 ft from Q?

Water is leaking out of an inverted conical tank at a

rate of 10,000 cm3/min at the same time that water is
being pumped into the tank at a constant rate. The tank

il.

12.

13.

0

14.



has height 6 m and the diameter at the top is 4 m. If the

water level is rising at a rate of 20 cm/min when the
height of the water is 2 m. find the rate at which water
is being pumped into the tank.

A water trough is l0 m long and a cross-section has the

shape of an isosceles trapezoid that is 30 cm wide at the

bottom,80 cm wide at the top, and has height 50 cm.
If the trough is being filled with water at the rate of
0.2 m'tlmin, how fast is the water level rising when the
water is 30 cm deep?

22.
A swimming pool is 20 ft wide, 40 ft long, 3 ft deep

at the shallow end, and 9 ft deep at its deepest point. A
cross-section is shown in the figure. If the pool is being
filled at a rate of 0.8 ftTmin, how fast is the water level

rising when the depth at the deepest point is 5 ft?

23.

'. tl. tl. tl. tl

6 t2 16 6

Gravel is being dumped from a conveyor belt at a rate of
30 ftTmin and its coarseness is such that it forms a pile
in the shape of a cone whose base diameter and height
are always equal. How fast is the height of the pile
increasing when the pile is 10 ft high?

24.

25.
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increasing when the angle between the sides of fixed
length is 60"?

Boyle's Law states that when a sample of gas is com-
pressed at a constant temperature, the pressure P and
volume V satisfy the equation PV - C, where C is a

constant. Suppose that at a certain instant the volume
is 600 cm3, the pressure is 150 kPa, and the pressure is
increasing at a rate of 20 kPa/min. At what rate is the
volume decreasing at this instant?

When air expands adiabatically (without gaining or
losing heat), its pressure P and volume V are related by
tlre equation PVt'4 - C, where C is a constant. Suppose
that at a certain instant the volume is 400 cmr and the
pressure is 80 kPa and is decreasing at a rate of
10 kPa/min. At what rate is the volume incre asing at

this instant?

A television camera is positioned 4000 ft from the base

of a rocket launching pad. The angle of elevation of the
camera has to change at the correct rate in order to keep
the rocket in sight. Also, the mechanism for focusing
the camera has to take into account the increasing clis-
tance from the camera to the rising rocket. Let's assume
the rocket rises vertically and its speed is 600 ft/s when
it has risen 3000 ft.
(a) How fast is the distance from the television camera

to the rocket changing at that moment?
(b) If the television camera is always kept aimed at the

rocket, how fast is the camera's angle of elevation
changing at that same moment?

A lighthouse is on a small island 3 km away from
the nearest point P on a straight shoreline and its
light makes four revolutions per rninute. How fast is
the beam of light moving along the shoreline when it
is I km from P?

A plane flying with a constant speed of 300 km/h
passes over a ground radar station at an atltitude of I km
and climbs at angle of 30". At what rate is the distance
from the plane to the radar station increasing I min
later?

Two people start from the same point. One walks east

at 3 mi/h and the other walks northeast at 2 mi/h.How
fast is the distance between the people changing after
15 min?

A runner runs around a circular track of radius 100 m
at a constant speed of 7 m/s. The runner's friend is

standing at a distance 200 m from the center of the
track. How fast is the distance between the friends
changing when the distance between them is 200 m?

The minute hand on a watch is 8 mm long and the hour
hand is 4 mm long. How fast is the distance between the
tips of the hands changing at one o'clock?

21.

15.

16.

A-o
IJ
ft6

I

I

17.

18. A kite 100 ft above the ground moves horizontally at a

speed of 8 ft/s. At what rate is the angle between the
string and the horizontal decreasing when 200 ft of
string have been let out?

Two sides of a triangle are 4 m and 5 m in length
and the angle between them is increasing at a rate of
0.06 rad/s. Find the rate at which the area of the
triangle is increasing when the angle between the sides

of fixed length is nl3.

Two sides of a triangle have lengths 12 m and 15 m.
The angle between them is increasing at a rate of
2"lmrn How fast is the leneth of the third side

26.

27.19.

20. 28.
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Maximum and Minimum Values

Some of the most important applications of differential calculus are optimization
problems, in which we are required to find the optimal (best) way of doing some-
thing. Here are examples of such problems that we will solve in this chapter:

r What is the shape of a can that minimizes manufacturing costs?

I What is the maximum acceleration of a space shuttle? (This is an

important question to the astronauts who have to withstand the effects of
acceleration.)

r What is the radius of a contracted windpipe that expels air most rapidly
during a cough?

r At what angle should blood vessels branch so as to minimize the energy
expended by the heart in pumping blood?

These problems can be reduced to finding the maximum or minimum values of a

function. Let us first explain exactly what we mean by maximum and minimum
values.

Figure 1 shows the

lute minimum at a.

(u, f(u)) is the lowest

graph of a function / with absolute

Note that (d, f(d)) is the highest
point.

maximum at d arnd abso-
point on the graph and

FIGURE I

Minimum value f(a),
maximum value J(d)

In Figure l, if we consider only values of x near b [for instance, if we restrict
our attention to the interval (a,c)), then/(b) is the largest of those values of /(x)
and is called a local maximum value of f. Likewise, /(c) is called a local mini-
mum vqlue of/because/(c) < 

"f(x) 
for x near c [in the interval (b, d), tor instance].

The function/also has a local minimum at e.ln general, we have the following
definition.

[H ffir:ffrmfrtfimnn A function/has an absolute Inaximum (or global
maximum) at c if f(r)
The number f (c) is called the maximum value of / on D. Similarly, /.has
an absolute minimum at c if f (c)

/(r) is called the minimum \ralue of ,f on D. The maximum and minimum
values of 

"f 
are called the extreme values of /



FIGURE 2

Minimum value 0. no maximum

FIGURE 3

No minimum. no maximum
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El Def inition A function / has a

at c if /(c) > f (x) when x is near

in some open interval containing
if /(c) < /(*) when x is near c.

local maximum (or relative maximum)
c. [This means that f (c) > f (*) for all x
c.l Similarly, / has a local minimum at c

EXAMPLE I r The function/(-r) : cosr takes on its (local and absolute)

maximum value of 1 infinitely many times, since cos2nz' : 1 for any integer n

and -l < cosr < I for all x. Likewise, cos(2n + l)n : -l is its minimum
value, where n is any integer. *

EXAMPLE 2 t lf f(x) : x2,thenf(x) > ,f(0) because x'> O for all.r. Therefore,

/(0) : 0 is the absolute (and local) minimum value of /. This corresponds to the

fact that the origin is the lowest point on the parabola ! : x2 (see Figure 2).

However, there is no highest point on the parabola and so this function has no

maximum value. #

EXAMPLE 3 r From the graph of the function"f(x): xr, shown in Figure 3, we

see that this function has neither an absolute maximum value nor an absolute

minimum value. In fact, it has no local extreme values either. *

EXAMPLE 4 r The graph of the function

f(r):3x4 - l6x3 + l8x2 -l <x < 4

is shown in Figure 4. You can see that/(l) : 5 is a local maximum, whereas

the absolute maximum is/(-l) : 37. [This absolute maximum is not a local
maximum because it occurs at an endpoint.l Also,/(0) : 0 is a local minimum
and/(3) : -27 is both a local and an absolute minimum.

We have seen that some functions have extreme values, whereas others do not.

The following theorem gives conditions under which a function is guaranteed to

possess extreme values.

E The Extreme Yalue Theorem lf f is continuous on a

then f attains an absolute maximum value f (r) and an

value f (d) at some numbers c and d inLn,bl.

closed interval lo, bf,
absolute minimum

ffiFIGURE 4

(-l, 37) l6x3 +
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FIGURE 5

The Extreme Value Theorem is illustrated in Figure 5. Note that an extreme
value can be taken on more than once. Although the Extreme Value Theorem is
intuitively very plausible, it is difficult to prove and so we omit the proof.

Figures 6 and 7 show that a function need
hypothesis (continuity or closed interval) is
Theorem.

not possess extreme values if either
omitted from the Extreme Value

FIGURE 6
This function has minimum value

f(2) :0, but no maximum value.

FIGURE 7

This continuous function has no
maximum or minimum.

The function/whose graph is shown in Figure 6 is defined on the closed inter-
val [0,2] but has no maximum value. (Notice that the range oflis [0,3). The func-
tion takes on values arbitrarily close to 3, but never actually attains the value 3.)
This does not contradict the Extreme value Theorem because/is not continuous.
[Nonetheless, a discontinuous function could have maximum and minimum val-
ues. See Exercise l3(b).1

The function g shown in Figure 7 is continuous on the open interval (0,2) but
has neither a maximum nor a minimum value. [The range of g is (1, co). The func-
tion takes on arbitrarily large values.l This does not contradict the Extreme Value
Theorem because the interval (0,2) is not closed.

The Extreme Value Theorem says that a continuous function on a closed inter-
val has a maximum value and a minimum value, but it does not tell us how to find
these extreme values. We start by looking for local extreme values.

Figure 8 shows the graph of a function/with a local maximum at c and a local
minimum at d. It appears that at the maximum and minimum points the tangent
line is horizontal and therefore has slope 0. we know that the derivative is the
slope of the tangent line, so it appears thatf'(c) : 0 andf'(d) : O. The following
theorem says that this is always true for differentiable functions.

E Fermat's Theorem If f has a local maximum or minimurn At c, and if
f'(c) exists, then f'(r) - 0.

(.', /(c))

f (d))

FIGURE 8
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Our intuition suggests that Fermat's Theorem is true. A rigorous proof, using
the definition of a derivative, is given in Appendix E.

Although Fermat's Theorem is very useful, we have to guard against reading
too much into it. If f(x): x3, then/'\xl:3x2, so/'(0): 0. But/has no maxi-
mum or minimum at 0, as you can see from its graph in Figure 9. The fact that

,f'(0) : 0 simply means that the curve y : x' has a horizontal tangent at (0,0). In-
stead of having a maximum or minimum at (0,0), the curve crosses its horizontal
tangent there.

@ Thus whcn .l '(cl -- 0,.l cklesrr't rreccssarily havc a rnaxinrunr or t.uittirttuttt ut t.
(In other words, the converse of Fermat's Theorem is false in general.)

Fermat's Theorem is named after Pierre
Fermat (1601-1665), a French lawyer who
took up mathematics as a hobby.

Despite his amateur status, Fermat was

one of the two inventors of analytic
geometry (Descartes was the other).
His methods for finding tangents to
curves and maximum and minimum

values (before the invention of limits
and derivatives) made him a forerunner
of Newton in the creation of differential
calculus.

Figure ll shows a graph of the function

/ in Example 5. lt supports our answer

because there is a horizontal tangent
when r : 1.5 and a vertical tangent
when -r : 0.

4

_?

FIGURE II

FIGURE 9

If f(x) : ,r3, then /'(0) : 0 but / has

no minimum or maximum.

FIGURE IO

If /(r) : lrl, then /(0) :0 is a minimum
value, but f '(0) does not exist.

We should bear in mind that there may be an extreme value where/'(c) does not

exist. For instance, the function/(x): l.rlhas its (local and absolute) minimum
value at 0 (see Figure l0), but that value cannot be found by setting/'(x) : 0 be-

cause, as was shown in Example 5 in Section 2.8,f'(0) does not exist.
Fermat's Theorem does suggest that we should at least stcrt looking for extreme

values of /at the numbers c where f'(c):0 or where/'(c) does not exist. Such

numbers are given a special name.

E Oef inition A critical number of a function / is a number c in the

domain of f such that either f'(r)- 0 or f'(r) does not exist.

EXAMPLE 5 I Find the critical numbers of f (*) - .{'/t(4 r).

SSLUT€*N The Product Rule sives

3(1 r) 5x 12 8x
- )A
)"r -'-

[The same result could
Therefore,f'(x) - 0 if
when x - 0. Thus, the

be obtained by first writing/(x) - 4x3/t -r*/5.1

12 8x - 0, that is, x - 1, and f'(*) does not exist

critical numbers are * and 0. #
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We can estimate maximum and mini-
mum values very easily using a graphing
calculator or a computer with graphing
software. But, as Example 6 shows,
calculus is needed to find the exoct
values.

8

FIGURE I2

In terms of critical
(compare Definition 5

numbers, Fermat's Theorem can

with Theorem 4):

NJ'aa

be rephrased as follows

6 It f has a local extremum at c, then c is a critical number of f.

To find an absolute maximum or minimum of a continuous function on a closed
interval, we note that either it is a local extremum [in which case it occurs at a

critical number by (6)l or it occurs at an endpoint of the interval. Thus, the follow-
ing three-step procedure always works.

The Closed Interval Method To find the absolute maximum and minimum
values of a continuous function / on a closed interval [a , h),

l. Find the values of f at the critical numbers of f in (a,,b).

2. Find the values of f at the endpoints of the interval.

3. The largest of the values from Steps I and 2 is the absolute maximum
value; the smallest of these values is the absolute minimum value.

EXAMPLE 6 T
(a) Use a graphing device to estimate the absolute minimum and maximum
values of the function/(x) : x - 2sin"r,0 < x 4 2rr.
(b) Use calculus to find the exact minimum and maximum values.

SOLUTION

(a) Figure 12 shows a graph of/in the viewing rectangle l},2rrl by [-1,8]. By
moving the cursor close to the maximum point, we see that the y-coordinates do
not change very much in the vicinity of the maximum. The absolute maximum
value is about 6.97 and it occurs when x : 5.2. Similarly, by moving the cursor
close to the minimum point, we see that the absolute minimum value is about

-0.68 and it occurs when x - 1.0. It is possible to get more accurate estimates
by zooming in toward the maximum and minimum points, but instead let's use
calculus.

(b) The function/("r) 2sin.r is continuous on [0,22r]. Since

f'(x) : | - 2 cosx,we have/'(x) : 0 when cosr : j and this occurs when
x : rr/3 or 5n/3. The values of/at these critical points are

2n

f (nl3)
Full

2 sin 33

and f(sn/3) : + - z,in!: + + Ji -6.e6803e

The values of/at the endpoints are

/(0) : 0 and f(2n) :2r - 6.28

Comparing these four numbers and using the Closed Interval Method, we see

that the absolute minimum valueisf(nf3) : rr/3 - tE and the absolute maxi-
mum value isf(5r/3) : 5r/3 + Ji. The values from part (a) serve as a check
on our work. *

TT:
3



Figure l3 shows the graph of the food-

price index function / of Example 7"

This model is based on the data points

shown.

102

95

FIGURE I3

l. Explain the difference between an absolute minimum
and a local minimum.

7. Suppose / is a continuous function defined on a closed

interval la, b).
(a) What theorem guarantees the existence of an

absolute maximum value and an absolute minimum
value for /?

(b) What steps would you take to find those maximum

and minimum values?

3-4 I For each of the numbers 8, b, c, d, E, r, s, and /, state

whether the function whose graph is shown has an absolute

maximum or minimum, a local maximum or minimum, or
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EXAMPLE 7 r A model for the food-price index (the price of a representative

"basket" of foods) between 1984 and 1994 is given by the function

1(r):0.00009045ts + 0.00143814 - 0.06561t3 + 0.4598t2 - O.6Z'70t +99.33

where /is measured in years since midyear 1984, so 0 { r < 10, and 1(t) is

measured in 1987 dollars and scaled such that 1(3) : 100. Estimate the times

when food was cheapest and most expensive during the period 1984-1994.

SOLUTION We apply the Closed Interval Method to the continuous function 1 on

[0,10]. Its derivative is

I',(t): O.OO045225to + 0.005752r'- 0.t9683t' + 0.9196t - 0'6270

Since 1' exists for all t, the only critical numbers of 1 occur when 1'(t) : 0. We

use a root-finder on a computer algebra system (or a graphing device) to find

that |k\: 0 when t - -293186,0.8231,5.1309, or 11.0459, but only the

second and third roots lie in the interval [0,10]. The values of 1 at these critical

numbers are

/(0.8231) - 99'09 and 1(5.1309) : 100'67

The values of 1 at the endpoints of the interval are

I(0) : 99.33 1(10) : 96.36

Comparing these four numbers, we see that food was most expensive at

t :5.1309 (corresponding roughly to August, 1989) and cheapest at t : 10

(midyear 1994). I

EXefCiSeS 
6 s a 6 ' 4 a E d $ E s s s B * 5 o q @ d a +

5-5 r
mum

5.

Use the graph

and minimum
to state the absolute and local maxi-

values of the function.

neither a maximum nor a minimum.
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7-10 r Sketch the graph of a functionl'that is continuous
on [0,3] and has the given properties.

7. Absolute maximum at 0., absolute minirnum at 3, local
minimum at l, local maximum at 2

8. Absolute maximum at l. absolute minimum at 2

9. 2 is a critical number, but f has no local maximum or
minimum

f 0. Absolute minimum at 0, absolute maximum at2. local
maxima at 1 and 2, local minimum at 1.5

19.

20.

21.

22.

23.

24.

f (0)

f (0)

/(x)

f (x)

f (x)

/(')

<0<2r
<A<n/2

sin 0, -2rr
tan 0. - n/1

5
_r-

2 ,To

1-e 't, J

[*' if
lz x' if

>0

-l { x < 0

0<r<l

25-36 I Find the critical

25. J'(x) : 4x3 - 9r2

26. f(t): 13 + 6tz + 3t

27. s(r) : t4 + 4ti + 2t2

29.f(r):F+
31. r(r) : ro/t(* 4)t

33. f(0) - sin'(29)

35. /(x) - r ln x

numbers of the function.

l1x + 3

1

28. g(x) - lx + I 
I

30. 1Q; - -r 
{--

z' + z + I
!2. c(x) - {nt -;
34. g(e) - 0 + sind

35. ./(r) : ,re?'
ll. (a)

(b)

Sketch the graph of a function that has a local
maximum at 2 and is differentiable at 2.
Sketch the graph of a function that has a local
maximum at 2 and is continuous but not differ-
entiarble at 2.

Sketeh the graph of a function rhat has a local
maximum at 2 and is not continuous at 2.

Sketch the graph of a funcrion on [- 1,2] thar has

an absolute maxirnum but no local maximum.
Sketch the graph of a f-unction on [- 1,2] thar has a

local maximum but no absolute maximum.

Sketch the graph of a funcrion on [- l, 2] thar has
an absolute maxirnum but no absolute minimum.
Sketch the graph of a function on [- 1, 2] that is
discontinuous but has both an absolute maximum
and an absolute rninimum.

Sketch the graph of a funetion that has two local
maxirna, one local minimum, and no absolute
minimum.
Sketch the graph of a function that has three local
rninima, two local maxima, and seven critical
numbers.

3746 I Find the absolute maximum and absolute minimum
values of ,f on the given interval.

37. f(x) : ,rt - Zx + Z, [0,3]
38 /(x) : r' - l}x + l, [-3,5]
39. /(x) : 3x5 - 5xr 1, l-2,21
40. /(x) - 'q- J, [-1,2]
41. f (x) - xt + Z/.r, [],2]

42. f(il:;;, [1,2]

a3. f (x) - sin x + cos.{, 10, n/31

44. f(x) : x 2cosx, l-n,nl
a5. .f(x) : re-", [0'2]
46. ,f(x) - (ln x)/x, [],3]

f;f; +z-so r
(a) LJse a graph to estimate the absolute maximum and

minimum values of the function to two decimal places.
(b) Use calculus to find the exact maximum and minimum

values.

47. .f(x) : xt - 8x + l, -3 < x < 3

48. f(x) - e'':-*, -l { x < 0
a9.f(x) :x'/._ -'
50. l'(;) :(cosx)l(Z +sinx),0< x4Zn

51. Between 0"c and 30"c, the volume v (in cubic centi-
meters) of I kg of water at a temperature ?. is given

(c)

12. (a)

(b)

(a)

(b)

13.

t4. (a)

(b)

15-24 r Find the absolute and local maximurn and mini-
mum values ofl Begin by sketching its graph by hand. (Use
the graphs and transformations of Section I .2.)

15..f(x) - I + 2x, x 7-- -l
16."f(x)-l-12,0<x<l
17.f(x) -l-rt, -2<r<l
18./(r)-l/t,0(r(l
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approximately by the formula

v - 999.87 - 0.064267 + 0.008504372 0.000067973

Find the temperature at which water has its maximum
den sit y.

52. An object with weight VV is dragged along a horizontal
plane by a force acting along a rope attached to the
object. If the rope makes an angle 0 with the plane,

then the masnitude of the force isV 

F- PW
psind + cosO

where 1r, is a positive constant called the coefficient of
friction and where 0
rnized when tan 0 : lt.

53. The Hubble Space Telescope was deployed on April 24,
1990, by the space shuttle Discov,er),. A model for the
velocity of the shuttle during this mission, from liftoff
at t :0 s until the solid rocket boosters were jettisoned

at / - 126 s, is given by

a(r) - 0.001 302t3 - 0.0902912 + ?3.61t 3.083

(in feet per second). Using this model, estimate
the absolute maximum and minimum values of the
ar:celeration of the shuttle between liftoff and the
jettisoning of the boosters.

54. On May 7, 1992. the space shuttle Ende,avour was
launched on mission STS-19, the purpose of which
was to install a new perigee kick motor in an Intelsat
communications satellite. The following table gives the
velocity data for the shuttle between liftoff and the
jettisoning of the solid rocket boosters.
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(a) Use the mettrods of Section 1.7 to find the cubic
polynomial that best models the velocity of the
shuttle for the time interval r € [0, 125]. Then
graph this polynomial.

(b) Find a model for the acceleration of the shuttle and
use it to estimate the maximum and minimum
values of the acceleration during the first 125 s.

55. When a foreign object lodged in the trachea (windpip*)
forces a person to cor-rgh,, the diaphragm thrusts upward
causing an increase in pressure in the lungs. This is
accompanied by a contraction of the trachea, making a

narrower channel for the expelled air to flow through.
For a given amount of air to escape in a fixed time, it
must move faster through the narrower channel than the
wider one. The greater the velocity of the airstream, the
greater the force on the foreign object. X rays show that
the radius of the circular tracheal tube contracts to
about two-thirds of its normal radius during a cough.
According to a mathematical model of coughing, the
velocity u of the airstream is related to the radius r of
the trachea by the equation

u(r) - k(ro - r)r' *rn < r { 16

where ft is a constant and 16 is the normal radius of the
trachea. The restriction on r is due to the fact that the
tracheal wall stiffens under pressure and a contraction
greater than rr/2 is prevented (otherwise the person
would suffocate).
(a) Determine the value of r in the interval lrsl2, rp] at

which u has an absolute maximum. How does this
compare with experimental evidence?

(b) What is the absolute maximum value of u on the
interval?

(c) Sketch the graph of u on the interval [0, r,,].

56. A cubic function is a polynomial of degree 3; that is, it
has the form/(") - art + bx2 + cx + c/, where n + O.

(a) Show that a cubic function can have two, one' or no
critical number(s). Give examples and sketches to
illustrate the three possibilities.

(b) How many local extreme values can a cubic function
have?
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observer

Formation of the primary rainbow

The Calculus of Rainbows

Rainbows are created when raindrops scatter sunlight. They have fascinated mankind
since ancient times and have inspired attempts at scientific explanation since the time
of Aristotle. In this project we use the ideas of Descartes and Newton to explain the
shape, location, and colors of rainbows.

l. The figure shows a ray of sunlight entering a spherical raindrop at A. Some of the
light is reflected, but the line AB shows the path of the part that enters the drop.
Notice that the light is refracted toward the normal llne AO and in fact Snell's
Law says that sina : ftsinp, where a is the angle of incidence, B is the angle of
refraction, and k o t is the index of refraction for water. At B some of the light
passes through the drop and is refracted into the air, but the line.BC shows the part
that is reflected. (The angle of incidence equals the angle of reflection.) When the
ray reaches C, part of it is ref lected, but for the time being we are more interested
in the part that leaves the raindrop at C. (Notice that it is refracted away from the
normal line.) The angle of deviation D(a) is the amount of clockwise rotation that
the ray has undergone during this three-stage process. Thus

D(a):(a P)+(rr-2p)+(a P)--n+2a 4B

Show that the minimum value of the deviation is D(u) : t38o and occurs when
a x 59.4".

The significance of the minimum deviation is that when a x 59.4" we have

D'(a) - 0, so AD/Ac-:0. This means that many rays with a:59.4'become
deviated by approximately the same amount. It is the concentration of rays coming
from near the direction of minimum deviation that creates the brightness of the
primary rainbow. The figure shows that the angle of elevation from the observer up
to the highest point on the rainbow is 180" 138" : 42". (This angle is called the
rainbow angle.)

Problem 1 explains the location of the primary rainbow but how do we explain the
colors? Sunlight comprises a range of wavelengths, from the red range through
orange, yellow, green, blue, indigoo and violet. As Newton discovered in his prism
experiments of 1666, the index of refraction is different for each color. (The effect
is called dispersion.) For red light the refractive index is ls : 1.3318 whereas for
violet light it is 16 : 1.3435. By repeating the calculation of Problem I for these
values of ft, show that the rainbow angle is about 42.3" for the red bow and 40.6"
for the violet bow. So the rainbow really consists of seven individual bows
cofresponding to the seven colors.

2.

rays from Sun

rays from Sun
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3. Perhaps you have seen a fainter secondary rainbow above the primary bow. That

results from the part of a ray that enters a raindrop and is refracted at A, reflected
twice (at B and C), and refracted as it leaves the drop at D (see the figure)' This
time the deviation angle D(a) is the total amount of counterclockwise rotation that

the ray undergoes in this four-stage process. Show that

D{a):2a-6B+2r
and D(a) has a minimum value when

cosa:

B

to
observer

from
Sun

i

\

\ ---.F
B\

a/A

Formation of the secondary rainbow Taking k - f, show that
angle for the secondary

the minimum deviation
rainbow is about 51", as

is about 129" and so the rainbow
shown in the figure.

4. Show that the colors
those in the primary

in the secondary rainbow appear in the opposite order from
rainbow.

/

Derivatives and the Shapes of Curves

In Section 2.10 we discussed how the signs of the first and second derivatives/'(x)
andf"(x) influence the shape of the graph ofl Here we revisitthose facts, giving

an indication of why they are true and using them, together with the differentation
formulas of Chapter 3, to explain the shapes of graphs.

We start with a fact. known as the Mean Value Theorem, that will be useful not

only for present purposes but also for explaining why some of the other basic re-

sults of calculus are true.

The Mean Yalue Theorem If f is a differentiable function on the interval

lo,b), then there exists a number c between d and b such that

tr f,k)- f(b) - f(a)
0a

or, equivalently,

Z f(b) f (a) : f'(c) (b a)
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We can see that this theorem is reasonable by
ures 1 and 2 show the points A(a, f (o)) and B(b,
entiable functions.

interpreting it geometrically. Fig-

f (b)) on the graphs of two differ-

FIGURE I

The slope of the secant line AB is

FIGURE 7

The Mean Value Theorem was first
formulated by Joseph-Louis Lagrange

(1736-1813), born in ltaly of a French

father and an ltalian mother. He was a

child prodigy and became a professor in
Turin at the tender age of 19. Lagrange

made great contributions to number
theory, theory of functions, theory of
equations, and analytical and celestial
mechanics. In particular, he applied cal-

culus to the analysis of the stability of
the solar system. At the invitation of
Frederick the Great, he succeeded
Euler at the Berlin Academy and, when
Frederick died, Lagrange accepted King

Louis XVI's invitation to Paris, where
he was given apartments in the Louvre.
He was a kind and quiet man, though,
living only for science.

f(b) - f(a)tTtes: 
b_"

which is the same expression as on the right side of Equation l. Since /'(c) is
the slope of the tangent line at the point (r, f(r)), the Mean Value Theorem, in the
form given by Equation l, says that there is at least one point P(c, f(c)) on the
graph where the slope of the tangent line is the same as the slope of the secant line
AB.ln other words, there is a point P where the tangent line is parallel to the se-
cant line A,B. It seems clear that there is one such point P in Figure I and two such
points P1 and Pz in Figure 2. Because our intuition tells us that the Mean Value
Theorem is true, we take it as the starting point for the development of the main
facts of calculus. (When calculus is developed from first principles, however, the
Mean Value Theorem is proved as a consequence of the axioms that define the real
number system.)

EXAMPTE I r If an object moves in a straight line with position function
s : f(t), then the average velocity between t: a and t : bis

f(b) - f(a)
b-a

and the velocity at t : c is/'(c). Thus, the Mean Value Theorem tells us that at
some time / : c between a and b the instantaneous velocity /'(c) is equal to that
average velocity. For instance, if a car traveled 180 km in 2 h, then the speed-
ometer must have read 90 km/h at least once. *

The main significance of the Mean Value Theorem is that it enables us to obtain
information about a function from information about its derivative. Our immediate
use of this principle is to prove the basic facts concerning increasing and decreas-
ing functions. (See Exercises 43 and 44 for another use.)

P (r, /(r,) )

1\
(a, /(a))

B(h,f(bD
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F Increasing and Decreasing FunctionsE

In Section 1.1 we defined increasing functions and decreasing functions and in
Section 2.10 we observed from graphs that a function with a positive derivative is
increasins. We now deduce this fact from the Mean Value Theorem.

Increasing/Decreasing Test

(a) If/'(x)
(b) If f '(x)

then / is increasing on that interval.

then / is decreasing on that interval.

285

Let's abbreviate the name of this test to
the l/D Test.

Proof
(a) Let x1 and xz be any
given that f '(x)
Value Theorem there is

E

Now /'(c) > 0 by assumption and x2 - rr ) 0 because xt 1 xz. Thus, the right
side of Equation 3 is positive, and so

7e) y(xr)

This shows that 
"f 

is increasing.
Part (b) is proved similarly.

fft t) < ,f(tt)

EXAMPLE 2 I Find where the function f(*): 3xo 4x3 l7xt + 5 is
increasing and where it is decreasing.

S#N"ffTfiffiF{ f'(*)- l2x3 - l2x2 - 24x : lLx(x 2)(x + l)

To use the I/D Test we have to know where/'(x) > 0 and wherelf'("r) < 0. This
depends on the signs of the three factors of f'(x), namely, l2x, x - 2, and x * l.
We divide the real line into intervals whose endpoints are the critical numbers

-1,0, and 2andarrange our work in a chart. A plus sign indicates that the
given expression is positive, and a minus sign indicates that it is negative. The
last column of the chart gives the conclusion based on the I/D Test. For
instance,/'(-r) < 0 for 0 ( x ( 2, so/is decreasing on (0,2). (It would also
be true to say that/is decreasing on the closed interval [0,2].)

#

two numbers in the interval with x r

know that 
"f 

is differentiable on [xr,"rz]. So, by the Mean
a number c between Jr &nd xr such that

tr

Interva I l2.r \2 \'+l I (.r ) I

-r < -l
-l {.r < 0

t)<"v(2
-r)2

+
+ +

+
+
+

+

+

clccrerasirtg or-t l- r. -- l)
incrcitsirrg on (- 1.0)
dccrcitsirts ort (0.2)

increusing on (2. v'\

FIGURE 3 The graph of f shown in Figure 3 confirms the information in the chart.
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(a) Local rnaximum

(b) Local minimum

(c) No maximum or mintmum

(cl) No maximum or mlnrmum

FIGURE 4

Recall from Section 4.2 that if /has a local maximum or mintmum at c, then c

must be a critical number of/(by Fermat's Theorem), but not every critical num-
ber gives rise to a maximum or a minimum. We therefore need a test that will tell
us whether or not/has a local maximum or minimum at a critical number.

You can see from Figure 3 that/(0) : 5 is a local maximum value of/because

/increases on (- 1,0) and decreases on (0, 2). Or, in terms of derivatives,-f '(x) > 0

for -l 1x 10 and/'(x) < 0 for 0 ( x ( 2. In other words, the sign of f'(x)
changes from positive to negative at 0. This observation is the basis of the follow-
ins test.

The First Derivative Test Suppose that c is a critical number of a continu-
ous function /

(a) If f ' changes from positive to negative at c, then / has a local maxi-
Inum at C.

(b) If f ' changes from negative to positive at c, then / has a local minimum
at c.

(c) If f ' does not change sign at c, (that is,_f is positive on both sides of c
or negative on both sides), thenl.has no local maximum or minimum
at c.

The First Derivative Test is a consequence of the I/D Test. In part (a), for in-
stance, since the sign of/'(x) changes from positive to negative at c, f is increasing

to the left of c and decreasing to the right of c. It follows that/has a local maxi-
mum at c.

It is easy to remember the First Derivative Test by visualizing diagrams such as

those in Fisure 4.

EXAMPLE 3 r Find the local minimum and maximum values of the function f in
Example 2.

SOLUTI0N From the chart in the solution to Example 2 we see that/'(x) changes

from negative to positive at -1, so/(-l) :0 is a local minimum value by the

First Derivative Test. Similarly, /' changes from negative to positive at 2, so

f(2) : -27 is also a local minimum value. As previously noted, /(0) : 5 is a
local maximum value because/'(x) changes from positive to negative at 0. ffi

I[ Concavity

f'lx) <o

A function (or its graph)
is an increasing function
decreasing on /.

is called concave upward on an interval I if J''
on /. It is called concave downward on 1 if f is

Let us recall the definition of concavity from Section 2.10.



FIGURE 5
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Notice in Figure 5 that the slopes of the tangent lines increase from left to right
on the interval (a,b), so/' is increasing and/is concave upward (abbreviated CU)
on (a,b). [It can be proved that this is equivalent to saying that the graph of/lies
above all of its tangent lines on (a,b).1 Similarly, the slopes of the tangent lines
decrease from left to right on (b,c), so/' is decreasing and/is concave downward
(CD) on (b, c).

A point where a curve changes its direction of concavity is called an inflection
point. The curve in Figure 5 changes from concave upward to concave downward
at P and from concave downward to concave upward at p, so both P and Q are
inflection points.

Because f" : (f')', we know thatif f"(x) is positive, thenf is an increasing
function and so / is concave upward. Similarly, if f"(x) is negative, then /' is
decreasing and / is concave downward. Thus, we have the following test for
concavity.

Concavity Test

(a) If f"(x) > 0 for all x
(b) lf f"(x) < 0 for all x

rn I, then the graph of 
"f 

is concave upward on /.

in 1, then the graph of / is concave downward on 1.

In view of the Concavity Test, there is a point of inflection at any point where
the second derivative changes sign. A consequence ofthe Concavity Test is the fol-
lowing test for maximum and minimum values.

For instance, part (a) is true because f"(x)
ward near c. This means that the graph of f lies above its
and so"f has a local minimum at c. (See Figure 6).

and so / is concave up-
horizontal tangent at cFIGURE 6

f "(c) > 0, concave upward

,f '(c) - o I rt't

The Second Derivative Test

(a) If f'(c) : 0 and f"(c)
(b) It f'(c) : 0 and f"(r)

Suppo se f " is continuous near c.



288 CHAPTER 4 APPLICAIIONS OI D TTRTIITIATIOI{

EXAMPLE 4 r Discuss the curve y : x4 - 4-r3 with respect to concavity, points
of inflection, and local maxima and minima. Use this information to sketch the
curve.

tOLUTtoN If f(x) : xo - 4x3, rhen

f '(*) - 4x3 - lLxz _: 4x2(x 3)

f " (x) : lLx? 24x - llx(x 2)

To find the critical numbers we set /'(x) - 0 and obtain .r - 0 and x - 3. To

use the Second Derivative Test we evaluate f " at these critical numbers:

f"(0) :0 f"(3) : 36

Since/'(3) :0andf"(3) > O,/(:) -- -27 is alocal minimum. Since/"(0): g,

the Second Derivative Test gives no information about the critical number 0. But
since /'(x) ( 0 for .r ( 0 and also for 0 ( x I 3, the First Derivative Test tells
us that/does not have a local maximum or minimum at 0. [In fact, the expres-

sion for/'(x) shows that/decreases to the left of 3 and increases to the right
of 3.1

Since /"(x) : 0 when x : 0 or 2, we divide the real line into intervals with
these numbers as endpoints and complete the following chart.

lntcr'\'ll I / (rr I \l

( '.())
(0. I)
1l I

FIGURE 7

Use the differentiation rules to check
these calculations.

f"(*):ffi
does not exist when -r : 0 or x - 6, the

The point (0,0) is an inflection point since the curve changes from concave

upward to concave downward there. Also (2, -16) is an inflection point since

the curve changes from concave downward to concave upward there.

Using the local minimum, the intervals of concavity, and the inflection
points, we sketch the curve in Figure 7. t

]IOTE . The Second Derivative Test is inconclusive when /"(c) : 0. In other
words, at such a point there might be a maximum, there might be a minimum, or
there might be neither (as in Example 4). This test also fails when/"(c) does not

exist. In such cases the First Derivative Test must be used. In fact, even when both
tests apply, the First Derivative Test is often the easier one to use.

EXAMPLE 5 r Sketch the graph of the function/(r) -- x'/'(6 - ")t/t.
SOLUTTON Calculation of the first two derivatives gives

f'(x):ffi
Since f'(*) - 0 when x - 4 and f'(x)
critical numbers are 0,4, and 6.



Try reproducing the graph in Figure 8

with a graphing calculator or compurer.
Some machines produce the complete
graph, some produce only the portion
to the right of the y-axis, and some
produce only the portion between x : 0

and x : 6. For an explanation and cure,
see Example 7 in Section 1.3. An equiva-
lent expression that gives the correct
graph is

y:(x2)r/-3. ,9- 
*rl 

o- *lr/.
lo - -rl
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To find the local extreme values we use the First Derivative Test. Since/,
changes from negative to positive at 0,/(0) :0 is a local minimum. Since/,
changes from positive to negative at4,f(4):2s/3 is a local maximum. The sign
of/' does not change at 6, so there is no minimum or maximum there. (The
Second Derivative Test could be used at 4 but not at 0 or 6 since/" does not
exist there.)

Looking at the expression for/"(x) and noting that xa/3 > 0 for all x, we have

f"(x) < 0 for x ( 0 and for 0 < x 1 6 and f"(r) > 0 for x ) 6. So / is concave
downward on (-oo,0) and (0,6) and concave upward on (6,m), and the only
inflection point is (6,0). The graph is sketched in Figure 8. Note thar the curve
has vertical tangents at (0,0) and (6,0) because I f'(*)l --> oo as.r -+ 0 and
asx-+6.

FIGURE 8

EXAMPLE 6 I Use the first and second derivatives otf(x): e1/', together with
asymptotes, to sketch its graph.

*l

SSt{JTlSff Notice that the domain
asymptotes by computing the left
know that t - lfx --- *, so

of f is {x I x # 0}, so we check for verrical
and right limits as x --+ 0. As r --+ 0+, we

lim et/* - lim e' - cc
x-0+ t ---+x

and this shows that x - 0 is a vertical asymptote. As x --+ 0-, we have
t - l/x --+ -oo, So

lim et/* -- lim et -
,r--+0- / ---)-cc

As x -+ too, we have lfx --> 0 and so

lim e1/'\ - eo : I
X --+-.t- 9C

Intcrva I t' .l''(-r) I

"r<0
0<\<4
-t(-r<6
_\' -:- 6

+
+ +

+
+

-r

+
+
+

I-r
clecrcasin_9 or-r ( - z. 0)

increasins olt (0. -l)

clccrcasing t-rn (4. 6 )

dc-crc-asing orr (6. -)

(4,2t')

-)' 
: rzrt(6

This shows that y : 1 is a horizontal asymptote.
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Now let's compute the derivative. The Chain Rule gives

f'(*): - tx'

Since erl' ) 0 and x' > Ofor all -r # 0, wehave/'(x) ( 0 for all x # 0. Thus'

/is decreasing on (-m,0) and on (0,o). There is no critical number, so the

function has no maximum or minimum. The second derivative is

xzell'(-l/*,) ttt*(Zx) et/*(Zx+1)
x4

v
t

'$

Since erl" ) 0andro > 0, wehave/"(x) > 0when x> -ik + 0) and

f"(x) < 0 whenx < -|. So the curve is concave downward on (-'o, -|) and

"on"uu" 
upward o" (-f,0) and on (0,m). The inflection point is (- j,e-'?).

To sketch the graph of/we first draw the horizontal asymptote y : I (as a

dashed line), together with the parts of the curve near the asymptotes in a

preliminary sketch [Figure 9(a)]. These parts reflect the information concerning

limits and the fact that/is decreasing on both (-*'0) and (0'oo)' Notice that we

have indicated that/(x) --+ 0 as -r --+ 0- even though/(0) does not exist' In
Figure 9(b) we finish the sketch by incorporating the information concerning

concavity and the inflection point. In Figure 9(c) we check our work with a
graphing device.

i

j

i
j

I
!

-----*- {^-,-,-------.-*-*-_t" 3

I

I

I v-e'l'
lr
I

\
\

x4

0

(c) Computer confi rmation

*----5

\t-l
J

ol r

(a) Prelirninary sketch

FIGURE 9

80000

0

FIGURE IO

0l

(b) Finished sketch

il
EXAMPLE 7

50 bees at

r A population of honeybees raised in an apiary started with
time t - 0 and was modeled by the function

P(t) -
75,200

I + 1503e -0 ,5e32r

where r is the time in weeks, 0

which the bee population was growing fastest.

more accurate estimate.

SOLUIION The population grows fastest when the population curve y : P(r) has

25 the steepest tangent line. From the graph of P in Figure 10, we estimate that the

steepest tangent occurs when t - 12, so the bee population was growing most

rapidly after about 12 weeks.

a graph to estimate the time at

Then use derivatives to give a

Inflection
point
-:-:--_ =-\l



12000

0

FIGURE ll
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For a better estimate we calculate the derivative P'(r), which is the rate of
increase of the bee population:

P' (t) -
67,0 46,785 .92 e - 

o''5e32r

( 1 + l5o3e -o se32r12

We graph P' in Figure 11 and observe that P' has its maximum value when
t - 72.3.

To get a still better estimate we note that/' has its maximum value when
/' changes from increasing to decreasing. This happens when/changes from
concave upward to concave downward, so we ask a cAS to compute the second
derivative:

P" (t) : I19555093I44e -| 1864r 39712153e o 5c)r2r

(l + 1503e-t)'5e'12r13 (1 + 1503e tt'-se32r;2

We could plot this function to see where it changes from positive to negative,
but instead let's have the CAS solve the equation P"(t) : 0. It gives the answer
t - 12.3318. r

Our final example is concerned with families of functions. This means that the
functions in the family are related to each other by a formula that contains one or
more arbitrary constants. Each value of the constant gives rise to a member of the
family and the idea is to see how the graph of the function changes as the constant
chanses.

EXAMPLE 8 r Investigate the family of functions given by/(x) : cx * sinx.
What features do the members of this family have in common? How do they
differ?

SOLUTI0N The derivative is/'(x) : c + cosx. If c ) l,then/'(x) > 0 for all
x (since cosr > -l), so/is always increasing. If c : l, then/'(x) : 0 when
"r is an odd multiple of a but/just has horizontal tangents there and is still
an increasing function. Similarly, if c < -1, then/is always decreasing. If
-1 ( c ( 1, then the equation c * cosr:0 has infinitely many solutions
lx : 2nn * cos-'(-c)] and/has infinitely many minima and maxima.

The second derivative is/"(x) : -sinx, which is negative when 0 1x 1r
and, in general, when 2nr ( r ( (2n + l)nwhere n is any integer. Thus, all
members of the family are concave downward on (0, z'), (2n3rr),. . . and concave
upward on (a2n), (3a 4n),. . . . This is illustrated by several members of the
family in Figure 12.

c - 1.5

c'- I

c' - 0.5

c'- 0

I

c - -0.5
c - -l

25

',, \"-t.^\
i, \

'\,"''-, =*
'1, 5

tl -.

f,.

IFIGURE I2



292 CHAPTER 4 APPLITATIOI{S OF DIFFEREt{TIATIO}{

EXefCiSeS . . r . . . . I I t I . ' ' I t ' ' I I '

6.l. Use the graph of ,f to estimate the values of c that

satisfy the conclusion of the Mean Value Theorem for

the interval [0' 8].

The graph of the first derivative /' of a function.l is

shown.
(a) On what intervals is / increasing? Explain.
(b) At what values of x does./have a local maximum or

minimum? Explain.
(c) On what intervals is / concave upward or concave

downward? Explain.
(d) What are the x-coordinates of the inflection points

of f ? Whv?

7-12 t
(a) Find the intervals on which./ is increasing or

decreasing.
(b) Find the local maximum and minimum values of .f,
(c) Find the intervals of concavity and the inflection

points.

7. /(") - .ru + l92x * 11

9. ) : ,{g''

If.y:(lnx)/\/;

8.,f(x) - ?sinx + sin2x

10. -), 
: x2e'

12. y : rln.r

| 3-20 I
(a) Find the intervals on which / is increasing or

decreasing.
(b) Find the local maximum and minimum values of .f,
(c) Find the intervals of concavity and the inflection

points.
(d) Use the information from parts (a), (tr), and (c) to

sketch the graph of / Check your work with a graph-

ing device.

13./(x) :l-3x+5x2 r'
f a. ./(x) : ro - 6'"2

15. "f(x) 
: (*t l)u

16. /(x) : ,{ '',,G + 1

17. ./(x) - ,r t/r(x + 3)r't:

f 8../(x) : 2x + cotr' 0 < x ( n

19. /(x) _ 2cosr * sinzx

20. ./(x) - ln(l + xt)

2. From the given graph of g, state

(a) the largest open intervals on

upward,
(b) the largest open intervals on

downward, and

(c) the coordinates of the points

which g is concave

which g is concave

of inflection.

3. (a) How do you determine where a function
increasing or decreasing?

(b) How do you determine where a curve is
upward or concave downward?

(c) How do you locate inflection points?

(a) State the First Derivative Test.

(b) State the Second Derivative Test. Under

cumstances is it inconclusive? What do

it fails?

5. The graph of the second derivative f " of a function / is

shown. State the x-coordinates of the inflection points

of f Give reasons for your answers.

is

c oncave

what cir-
you do if

4.

)' : f '(r)



2l-76 t
(at) Find the vertical and horizontal asymptotes.
(b) Find the intervals of increase or decrease.
(c) Find the local maxirnum and minimum values.
(cl) Find the intervals of concavitv and the inflection

points.
(e) Use the intormation from parts (a)-(d) to sketch

graph of,f
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analyze the special case where p - 0.So we study the
function

f(*) : e-'tl(2o7)

(a) Find the asymptote, maximum value, and inflection
points of"f

(b) What role does a play in the shape of the curve?
fE (c) Illustrate by graphing four members of this farnily

on the same screen.

Gf,E l3-34 r Estimate the intervals of concavity to one decimal
place by using a computer algebra system to compute and
graph ./'1

r'r-1or+5

the

I + ,r'
21 . /-( r)--- r \"r I - .r'

23.f(x1 -n'f 11-_r
24.f(x):rtanx, -nlz {x{ T/2

25. ./(x) : e r'"r r+1)

76.f(r) :ln(tan2x)

EJ zt-zs r
(a) Use a graph of f to give a rough estimate of

va.ls of concavity and ttre coordinates of the
inflection.

(b) [Jse a graph of f " to give better estimates.

27. J'G) : 3r5 - 40;r + 30x2

28..f(x):zcosr + sin2x, 0 < r < 2n

33. /(x) -

t4. f(x) -

nr'!t + 4

(x+l)3(x2+5)
(rt + l) (r2 + 4)

35. Find a cubic function ,f (x) : ax3 + bxz + cr + d that
has a local maximum value of 3 at -2 and a local
minimum value of 0 at l.

36. For what values of the numbers a and b does the
function

J(x) - Qxe""

have the maximum value f(?) -- 1?

37-40 I Assume that all of the functions are twice
differentiable.

37 . If f and g are concave upward on 1, show that f + q is
concave upward on /.

38. It f is positive and concave upward on 1. show that the
function g(x) : [,f(*)]t is concave upward on /.

39. It f and g are positive increasing concave upward
functions on /, show that the product function f g is
concave upward on 1.

40. Suppose "/ and g are both concave upward on (-*, *).
under what condition on l-will the composite function
h(*) - f (g(x)) be concave upward?

41. Show that tanx ) x for 0 { x < nlz. lHint.' Show that

/(x) - tan x - x is increasing on (0, n/2).1

42. (a) Show that e' 7 1 + x for x ) 0.
(b) Deduce that e' 7 I + r + lrt for.r
(c) Use mathematical induction to prove that for x > 0

and any positive integer n,

e" 2I + x + { + + {2! nl

43. Suppose that/(O) : -3 and f'(*) < 5 for all values
of x. The inequality gives a restriction on the rate of
growth of f,, which then imposes a restrie tion on the

the inter-
points of

EI zs-lo r
(a) Use a graph of .f to estimate the maximum and

minimum values. Then find the exact values.
(b) Estirnate the value of x at rn'hich / increases most

rapidly. Then find the exact value.

r+l
29. f (x) :

t,'F + I
30. /(x) - x2e-'

EE ll. For the periocl from 1980 to 19g4, rhe percenrage of
households in the Ijnited States with at least one VCR
has been modeled bv the function

v(il: 75 
,\'/ I + 74e 0rrr

where the time / is measured in years since midyear
1980, so 0 € / < 14. use a graph to estirnate the time
art which the number of vCRs was increasing most
rapidly. Then use derivatives to give a more accurate
e stimate.

32. The family of bell-shaped curves

I
u'7 

o 
'Ei 

n*(,-N)tl2n))

occurs in probability and statistics, where it is called
the normal densitt, function. The constant p, is called
the memz and the positive constant o rs called the
stunclctrd devicttion. For simplicity, let's scale the
function so as to remove the factor r/(o ,/2" ) and let's
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44,

45.
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possible values of l. Use the Mean Value Theorem to

determine how large /(4) can possibllr bs.

Suppose that 1 <,f'(t) < 4 for all x in [2,5]. Show that

3</(S1 -[(2) <t2.

Tw,o runners start a race at the same time and finish in
a tie. Prove that at some time during the race they have

the same velocity. lHin r.' Consider f (t1 - gU) h(t)

where g and /z are the position functions of the two

runners.]

45. At 2:00 p.M. a car's speedometer reacls 30 rni/tr. At
2:10 p.M. it reads 50 mi/h. Show that at some time

lf you have not already read Section 1.3,

you should do so now. In particular, it
explains how to avoid some of the pit-

falls of using graphing devices by choosing

appropriate viewing rectangles.

between 2:00 and 2:10 the acceleration is exactly
120 m ilh' .

47. Show that a cubic function (a third-degree polynornial)
always has exactly one point of inflection. If its graph

has three ,{-intercepts xr, J?, and x3, show that the

x-c-oordinate of the irrflection point is (x1 * x2 + x:)13.

EE Ag. For what values of c does the polynomial
P(x) - rt + crt * xt have two inflection points? One

inflection point? None? Illustrate by graphing P for
several values of c. How does the graph change as c

decreases?

% Graphing with Calculus ond Calculators

When we graph with technology, the theme is the interactionbetween calculus and

graphing devices. We start with a graph produced by a graphing calculator or com-

puter and then we refine it. We use calculus to make sure that we reveal all the

important aspects of the curve.

EXAMPLE I r Graph the polynomialf(x):2x6 + 3x5 + 3x3 - 2x2. Use the

graphs of f' andf" to estimate all maximum and minimum points and intervals

of concavity.

sOt*{JTiOti If we specify a domain but not a range, many graphing devices will
deduce a suitable range from the values computed. Figure I shows the plot from

one such device if we specify that -5 { x { 5. Although this viewing rectangle

is useful for showing that the asymptotic behavior (or end behavior) is the same

as for y :2x6, it is obviously hiding some finer detail. So we change to the

viewing rectangle l-3,2) by [-50, 100] shown in Figure 2.

FIGURE I FIGURE 2

From this graph it appears that there is an absolute minimum value of about

- 15.33 when x - _ 1.62 (by using the cursor) and/is decreasing on (-*, -l'62)
and increasing on (-1.62,m). Also there appears to be a horizontal tangent at

the origin and inflection points when x : 0 and when x is somewhere between

-2 and -1.
Now let's try to confirm these impressions using calculus. We differentiate

and set

4l .000

-t' 
: /-(,r I

-1000

.)' 
: 

"f(x)

-50

f'(x) : l2x5 + l5xo + 9x2 4x f"(x): 6oxa + 6ox' + 18x 4



FIGURE 5

-5

FIGURE 6

-10
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When we graph f in Figure 3 we see that f '(x) changes from negative to positive
when x = -1.62; this confirms (by the First Derivative Test) the minimum
value that we found earlier. But, perhaps to our surprise, we also notice that
/'(-r) changes from positive to negative when x : 0 and from negative to positive
when x - 0.35. This means that/has a local maximum at 0 and a local mini-
mum when .r : 0.35, but these were hidden in Figure 2. Indeed, if we now zoom
in toward the origin in Figure 4, we see what we missed before: a local maximum
value of 0 whenx : 0 and a local minimum value of about -0.1 whenx : 0.35.

FIGURE 3 FIGURE 4

What about concavity and inflection points? From Figures 2 and 4 there
appear to be inflection points when x is a little to the left of - I and when x is
a little to the right of 0. But it is difficult to determine inflection points from
the graph offi, so we graph the second derivativef" in Figure 5. We see thatf"
changes from positive to negative when x - -1.23 and from negative to posi-
tive when x - 0.19. So, correct to two decimal places,/is concave upward on
(-*, -1.23) and (0.19,oc) and concave downward on (-1.23,0.19). The
inflection points are (-1.23, -10.18) and (0.19, -0.05).

We have discovered that no single graph reveals all the important features of
this polynomial. But Figures 2 and4, when taken together, do provide an
accurate picture. il;
EXAMPIE 2 r Draw the graph of the function

x2+ix+3
J\x): -,

in a viewing rectangle that contains all the important features of the function.
Estimate the maximum and minimum values and the intervals of concavity.
Then use calculus to find these quantities exactly.

SOLUTIOII Figure 6, produced by a computer with automatic scaling, is a
disaster. Some graphing calculators use [-10,10] by [-10,10] as the default
viewing rectangle, so let's try it. We get the graph shown in Figure 7; it's a
major improvement.

The y-axis appears to be a vertical asymptote and indeed it is because

,. -tr2 + J-r + 3
Ittn-: jt
.r ---'0 x'

Figure 7 also allows us to estimate the x-intercepts: about -0.5 and -6.5. The
exact values are obtained by using the quadratic formula to solve the equation
xt + ix + 3 : o; we get x : (-7 ! rF)/2.

I: f'(,r) J - -f(r)

1' - /"(X )

-30

3 x l0r8

y : /(x)

FIGURE 7
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FIGURE 8

To get a better look at horizontal asymptotes we change to the viewing rect-

angle [-20, 20]by [-5, l0] in Figure 8. It appears that y : I is the horizontal
asymptote and this is easily confirmed:

:'v.t:#r:l* (' . +. +) :'
To estimate the minimum value we zoom in to the viewing rectangle [-3' 0]

by [-a,2] in Figure 9. The cursor indicates that the absolute minimum value is

about -3.1 when x - -0.9 and we see that the function decreases on

(--, -0.9) and (0,m) and increases on (-0.9,0). The exact values are obtained

by differentiating:

f '(x) -
Jx + 6

-? x-

This shows thatf'(x) ) 0 when -l < x < 0 and/'(x) < 0 whenx < -$ and

when x > 0. The exact minimum value it/(- 9) : -# = -3.08.
Figure 9 also shows that an inflection point occurs somewhere between

x: -l andx: -2.We could estimate it much more accurately using the graph

of the second derivative, but in this case it is just as easy to find exact values.

Since

f"(x):+.+:r":n- x' x x'

we see that f"(x) ) 0 when x > -? (x + 0). So/is concave upward on (- ]'O)
and (0,m) and concave downward on (-*, -|). The inflection point is

ei,-#).
The analysis using the first two derivatives shows that Figures 7 and 8 display

all the major aspects of the curve. X

EXAMPLE 3 I Graph the function /(t) :
xt(x + 1)'

76
-1 1:r- x-

r'.- f't ut

l

-4

FIGURE 9

FIGURE IO

SoLUTlot{ Drawing on our experience with a rational function in Example 2,

let's start by graphing/in the viewing rectangle [-10,10] by [-10,10]. From

Figure l0 we have the feeling that we are going to have to zoom in to see some

finer detail and also to zoom out to see the larger picture. But, as a guide to
l0 int"llig"nt zooming, let's first take a close look at the expression for/(.r).

Because of the factors (x - 2)t and ("r - 4)4 in the denominator we expect

x: 2 and x: 4 to be the vertical asymptotes. Indeed

xt(x + 1)' x'(x + l)'

To find the horizontal asymptotes we divide numerator and denominator by x':

+(1 + +)'

lim
r -2

: co and lim
-r'-+4

r2(x + l)',
(x 2)'(* 4)o

so the x-axis is the horizontal

+).

)' : .f(r)

asymptote.

--+ 0 aS f --+ +oo



FIGURE II

- 100

-_0.05

FIGURE I2

The family of functions

J G) : sin(x * sin cx)

where c is a constant, occurs in appli-
cations to frequency modulation (FM)
synthesis. A sine wave is modulated
by . wave with a different frequency
(sin c-r). The case where c : 2 is
studied in Example 4. Exercise l5
explores another special case.
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It is also very useful to consider the behavior of the graph near the
x-intercepts. Since-r2 is positive,/(.r) does not change sign at 0 and so its graph
doesn't cross the -r-axis at 0. But, because of the factor (-r + 1)3, the graph does
cross the x-axis at -1 and has a horizontal tangent there. putting all this infor-
mation together, but without using derivatives, we see that the curve has to look
something like the one in Figure 11.

Now that we know what to look for, we zoom in (several times) to produce
the graphs in Figures 12 and 13 and zoom out (several times) to get Figure 14.

FIGURE I3

-10

FIGURE 14

We can read from these graphs that the absolute minimum is about -0.02
and occurs when -r : -2O. There is also a local maximum : 0.00002 when
x - -0.3 and a local minimum - 211 when x:2.5. These graphs also show
two inflection points near -5 and -1 and two between -l and 0. To estimate
the inflection points closely we would need to graphf", but to compute/,,by
hand is an unreasonable chore. If you have a computer algebra system, then it is
easy (see Exercise l3).

We have seen that, for this particular function, three graphs (Figures 12, 13,
and 14) are necessary to convey all the useful information. The only way to
display all these features of the function on a single graph is to draw it by hand.
Despite the exaggerations and distortions, Figure 1l does manage to summarize
the essential nature of the function C

EXAMFLE 4 r Graph the function f(*) : sin(x * sin2_r). For 0 < x ( a-, locare
all maximum and minimum values, intervals of increase and decrease, and
inflection points correct to one decimal place.

5$l-u?t$ru We first note that/is periodic with period 2n. Also,/is odd and

| /(") | < I for all -r. So the choice of a viewing rectangle is not a problem for
this function: we start with [0,2] by l-1.1,1.1] (see Figure l5). It appears rhat
there are three local maximum values and two local minimum values in that
window.

-1.1

-l

0.05

Y 
: 

"f(r)

0.0001

-t' 
: 

"f(r)

-0.0001

) - f("r)

FIGURE I5
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-l.z

TIGURE I6

1.2

-r.2

FIGURE I7

-Zr

FIGURE I8

To confirm this and locate them more accurately, we calculate that

f'(x) : cos(r * sin2x)' (l + zcos2x)

jr and graph both/and/' in Figure 16. Using zoom-in and the First Derivative

Test, we find the following values to one decimal place.

Intervals of increase: (0, 0.6), (1.0, I .6), (2.1,2.5)

Intervals of decrease: (0.6, 1.0), (1.6,2.1), (2 -5,rr)
Local maximum values: /(0.6) : L, f(1.6) : l, f(2.5) : 1

Local minimum values: f(l.0) : 0.94, f(2.1) : 0-94

The second derivative ts

f"(*)- -(1 + 2 cos Zx)n sin(x + sin 2x) 4sin 2xcos(x + sin2x)

TT

Graphing both / and f " tn Figure 17, we obtain the following approximate

values:

Concave upward on: (0.8, 1.3), (1.8,2.3)

Concave downward on: (0,0.8), (1.3, 1.8), (2.3,n)

Inflection points: (0,0), (0.8, 0.975),(1.3,0.9'7), (1.8' 0.97)'
(2.3,0.e7s)

Having checked that Figure 15 does indeed represent/accurately for

0 < .x < 7r, we can state that the extended graph in Figure 18 represents/
2n accurately for -2n < x 4 2n. f

EXAMPLE 5 r How does the graph of/(x) : 1/(x' * 2x t c) vary as c varies?

SOLUTTON The graphs in Figures 19 and2o (the special cases c : 2 and

c : -2) show two very different-looking curves.

I
:r'^-.

_r" J- 1,.\ - J

I

I

4

FIGURE 19 FIGURE 20

c=2 c:-2

Before drawing any more graphs, let's see what members of this family have

in common. Since

lim+:0.--i; x' + 2x + c

for any value of c, they all have the x-axis as a horizontal asymptote. A vertical

asymptote will occur when x' + 2x + c :0. Solving this quadratic equation,

we get x : -l ! Jl - c. When c ) 1, there is no vertical asymptote (as in

):.f '(x)

I

:

i

,f,,
i

-t.2
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the graph has a single vertical asymptote x : - I

11..:lirnx' +2x+l .,--r (x+l)t

299

Figure 19). When c - I

because

lim
-{--l

c: -l
FIGURE 2I

The family of functions
1

"ft"r l 
: -1;-^_t- -t- /.x -r ('

When c

-r - -1 $ - , (as in Figure 20).
Now we compute the derivative:

2x + 2

(*'+ 2x + c)'

This shows that/'(-r):0 when x: -l (if c * 1),f'(x) ) 0 when x <--1,
andf'(x) ( 0 whenx > -1. For c ) I this means that/increases on (-co,-1)
and decreases on (-l,m). For c ) l, there is an absolute maximum value

f(*1): l/(, * l). For c 1l,f(-l): UG - l) is a local maximum vatue and
the intervals of increase and decrease are interrupted at the vertical asymptotes.

Figure 2l is a "slide show" displaying five members of the family, all graphed
in the viewing rectangle [-5,4] by l-2,21.

As predicted, c : 1 is the value at which a transition takes place from two
vertical asymptotes to one, and then to none. As c increases from l, we see

that the maximum point becomes lower; this is explained by the fact that
1/ (c * 1) -. O as c -) co. As c decreases from l, the vertical asymptotes
become more widely separated because the distance between them is 2.rn=;,
which becomes large as c -+ -@. Again, the maximum point approaches the
x-axis because l/(c - l) - 0 as c -> -m.

There is clearly no inflection point when c < l. For c ) I we calculate that

f" (x) -
2(3x?+6x + 4 c)

(*t + 2x + c)'

and deduce that inflection points occur when t t ./:t. - D /3. So the
inflection points become more spread out as c increases and this seems plausible
from the last two parts of Figure 21. I

In Section 1.4 we used graphing devices to graph parametric curves and in Sec-
tion 3.5 we found tangents to parametric curves. But, as our final example shows,
we are now in a position to use calculus to ensure that a parameter interval or a

viewing rectangle will reveal all the important aspects of a curve.
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-20

FIGURE 27

-r20

FIGURE 23

EXAMPLE 6 r Graph the curve with parametric equations

x(t):t2 + t + | y(t):3t4 -8t3 - l8t2 +25

in a viewing rectangle that displays the important features of the curve. Find the

coordinates of the interesting points on the curve.

SoLUTIOH Figure22 shows the graph of this curve in the viewing rectangle [0,4]
by [-20,60]. Zooming in toward the point P where the curve intersects itself,
we estimate that the coordinates of P are (1.50,22.25). We estimate the highest

point on the loop has coordinates (1,25), the lowest point (1, 18), and the left-
most point (0.75,21.1). To be sure that we have discovered all the interesting

I aspects of the curve, however, we need to use calculus. From Equation 7 in
Section 3.5, we have

dy 
- 

dyldt _ l2t3 - 24t2 - 36t

dx dxldt 2t + |

The vertical tangent occurs when dxfdt : 2t + I : 0, that is, t : - j. So the

exact coordinates of the leftmost point of the loop are x(- l) : 0'75 and

)(-+) :21.6875. Also,

dl:L : l)1(12 - 2t - 3\ : l2t(t + l) (r - 3)
dt

and so horizontal tangents occur when t : 0, -l,and 3. The top of the loop

corresponds to / : -l and, indeed, its coordinates are -r(-l) : 1 and

o< y(-l) : 18. Similarly, the coordinates of the bottom of the loop are exactly

what we estimated: x(0) : I and y(0) : 25. But what about the parameter value

t : 3? The corresponding point on the curve has coordinates x(3) : 13 and

)(3) : -110. Figure 23 shows the graph of the curve in the viewing rectangle

[0,25] by [-120,80]. This shows that the point (13, -110) is the lowest point on

the curve. We can now be confident that there are no hidden maximum or mini-
mum polnts.

EXgfCiSeS . . . . . r . . t t | . ' ' I | ' I

#

l-6 I Procluce graphs of .f that reveal all the important
aspects of the curve. In particular, you should use graphs

of .f' and J'" to estimate the intervals of increase and

decrease,, extreme values, intervals of concavity, and

in f lection points.

l. "/(t) : 4xa - 7x7 + 4x + 6

2. f(x): 8x't + 45xo + 80x3 + 9012 + 200x

3.,f(x) :ilffi

a. /(r) :
xu+x'-2x'+2r{ r -,-1.{ 

3 2x2

rr +,r 2

5. /(r) - x2 sin.tr. -7
6. l'(r.) - sin.r + {sin 3x

7-8 r Produce graphs of /that reveal all the important
aspects of the curve. Estimate the intervals of increase and

decrease, extreme values, intervals of concavity, and

inflection points, and use calculus to find these quantities

exactly.

z. /(x) - 8,r:1 - 3x2 - 10 8.,f(x) _ r"q - *n

9-10 t Produce a graph of /that shows all the important
aspects of the curve. Estimate the local maximum and

minimum values and then use calculus to find these values

exactly. Use a graph of f" to estimate the inflection points.

9. /(") - €."-"' |0. /(x) : e""''

I l-12 I Sketch the graph by hand using asymptotes and

intercepts, but not derivatives. Then use your sketch as a



guide to producing graphs (with a graphing device) that
display the major features of the curve. Use these graphs to
estimate the maximum and minimum values.

I l. /(x) - 12. .f(x) :
l0,r(.r I )o

x*(x I )

m 13. If / is the function considerecl in E,xarnple 3, use a
computer algebra system to calculate ./' and then graph
it to confirrn that all the maximum and minimum
values are as given in the example. Calculate ;f" and use

it to estimate the intervals of concavity and inflection
points 

"

EE 14. If l'is the function of E,xercise 12. find.f' andlf" and use

their graphs to estimate the intervals of increase and
decrease and the concavity of .i

15. In Example 4 we considered a rnember of the family
of functions./(r) - sin(.r + sin c;"r) that occur in FM
synthesis. Herc wc investigate the function with c - 3.

Start by graphing./'in the viewing rectangle [0, rr] by

[-1 .2,1.2]. How many local maximum points clo you
see? The graph has more than are visible to the naked
e),e. To discover the hidden maximum and minimum
points you will need to examine the graph of J'' very
carefull1,. In fact, it helps to look at the graph of./" nt
the same time. Find all the maximum ancl minimum
values and inflection points. Then graph ./ in the view-
ing rectangle l-2n,2n) bV [ -1.2, 1.2] and comment
on symmetry.

16. Use a graph to estimate the coordinates of the leftmost
point on the curve,{ : t4 * t2, y : t + ln /. Then use

calculus to find the exact coordinates.

l7-18 n Graph the curve in a viewing rectangle that
displays all the important aspects of the curve. At what
points does the curve have vertical or horizontal tangents?

17, x : t4 ?t'', 2t2, -\, - /-r t

f 8. -{ : 14 + 1tj 8/t,, \, - 2t2 t
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19. Investigate the family of curves given by the parametric
equations ,r : t3 r:/, _1' 

: t?.In particular, determine
the values of c for which there is a loop and find the
point where the curve intersects itself. What happens to
the loop as c increases? Find the coorclinates of the left-
most and rightmost points of the loop.

20. The family of functions/(r) * C(e-"' e "'), where a,
b, and C are positive numbers and b 7 a, has been used
to model the concentration of a drug injected into the
blood at time t - 0. Graph several members of this
family. What do they have in common? For fixed values
of C and a, discover graphically what happens as &

increases. Then use calculus to prove what you have
discove recl.

2 l-?5 I Descrilre how the graph of f varies as c varies.
Graph several members of the family to illustrate the trends
that you discover. In particular, you should investigate how
maximum and minimum points ancl inflection points move
when c changes. You should also identify any transitional
values of c at which the basic shape of the curve changes.

2l. f(.r) t * ,'t-r'

22. f(x) : ln(xt + c)

23. l'("r) - 6'r 
''l \l

74. f(x) :

25. /(x) *
(1 -*t)t+cxn
4,')

J -f CX-

26. Investigate the family of curves given by the equation

/(x) - ru + ,rrt + x. Start by determining the transi-
tional value of c at which the number of inflection
points changes. Then graph several members of the
farnily to see what shapes are possible. There is another
transitional value of c: at which the number of critical
numbers changes. Try to discover it graphically. Then
prove what you have discovered.

F(x) - 
lt *.

xl
when x - 1, we need to know how F behaves near I . In
to know the value of the limit

lnx
lim
,r-1 X I

lndeterminate Forms and L'Hospital's Rule

Suppose we are trying to analyze the behavior of the function

Although F is not defined
particular, we would like

u
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But we can't apply Law 5 of limits (the limit of a quotient is the quotient of the

limits) to (l) because the limit of the denominator is 0. In fact, although the limit
in (l) exists, its value is not obvious because both numerator and denominator ap-
proach 0 and f; is not defined.

In general, if we have a limit of the form

f(x\
:\ ,@

where both/(x) -t 0 and g(x) -+ 0 as x ---> ct, then this limit may or may not exist
and is called an indeterminate form of type $. We met some limits of this type
in Chapter 2. For rational functions, we can cancel common factors:

xzxlim lim
-r ----ol Xt 1 x --'t

x(x 1) xl:lim --x-r X + | 2

We used a geometric argument to show that

sin xlim-:l
r'0 X

But these methods do not work for limits such as (1), so in this section we intro-
duce a systematic method, known as I'Hospital's Rule, for the evaluation of inde-
terminate forms.

Another situation in which a limit is not obvious occurs when we look for a

horizontal asymptote of F and need to evaluate the limit

lnx
lim
x---+tc X 1

It is not obvious how to evaluate this limit because both numerator and denomi-
nator become large as .tr --> co. There is a struggle between numerator and denom-
inator. If the numerator wins, the limit will be oo; if the denominator wins, the

answer will be 0. Or there may be some compromise, in which case the answer
may be some finite positive number.

In general, if we have a limit of the form

'' f(x)
i'I n(')

where both f(x) - m (or -co) and g(x) --.> m (or -o), then the limit may or may
not exist and is called an indeterminate form of type -/-. We saw in Section
2.5 that this type of limit can be evaluated for certain functions, including rational
functions, by dividing numerator and denominator by the highest power of x that
occurs. For instance,

a

x2 Ilim - : lim
.r+u 2xt + I .r-*

11- ^x' l-0 1:-:
I 2+0 2

) -t-2r)

x-

This method does not work for limits such as (2), but I'Hospital's Rule also applies
to this type of indeterminate form.



L Hospital's Rule is named after a

French nobleman, the Marquis

de l'Hospital (1661-1704), but was dis-
covered by a Swiss mathematician, John
Bernoulli (1667-1748). See Exercise 49
for the example that the Marquis used

to illustrate his rule.

FIGURE I

Figure I suggests visually why I'Hospital's
Rule might be true. The first graph
shows two differentiable functions / and

g, each of which approaches 0 as r ----> a.

lf we were to zoom in toward the point
(a,0), the graphs would start to look
almost linear. But if the functions were
actually linear, as in the second graph,
then their ratio would be

mt(r - al _ ,n,

m2(x - a) nt:

which is the ratio of their derivatives.
This suggests that

/(x) "f 
'(r)

lirtt 

- 

: lim
.r+(/ g(x) .r+(r g'(x)
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L'Hospital's Rule Suppose,f and g are differentiable and g'(x) + 0 near a
(except possibly at a). Suppose that

|,t* f(x) - 0 and lim s(x) - 0

or that lim f(x) - *6s and lim g(x) : *6P

(In orher words, we have an indererminare ;i ::r-; ", 
*/*.) rhen

/ (x) f '(x)
linrrT: lim;-., g(x) ^-n g'(x)

if the limit on the right side exists (or is oo or -co).

NOTE | . lJHospital's Rule says that the limit of a quotient of functions is equal
to the limit of the quotient of their derivatives, provided that the given conditions
are satisfied. It is especially important to verify the conditions regarding the limits
of/and g before using I'Hospital's Rule.

I{OTE 2 . LiHospital's Rule is also valid for one-sided limits and for limits at in-
finity or negative infinity; that is, "" ---> a" can be replaced by any of the following
svmbols: x - a-. x + a .x + @. x + -@.

iloTE 3 . For the special case in which /(a) : S@) : O, f' and g' are continu-
ous, and g'(a) + 0, it is easy to see why I'Hospital's Rule is true. In fact, using the
alternative form of the definition of a derivative. we have

f (x) f (a)
rrrrr
J-+{r J A

s(x) s(a)rrilr
"tr --+a X A

f(x) - f(a)
xaf(x)f(a)

- linr - linr;:; s(x) - s(a) ;; s(x) s(a)
xa

1. /(t)
- lllll _

x -+(r g(x)

The general version of I'Hospital's Rule is more difficult; its proof can be found
in more advanced books.

lnx
EXAMPLE l r Find lim .

,-tX-l

SOLUTlOll Since

limlnx-lnl-0
-r-+l

and lim (x 1) - 0
x-l

!: mJx

)r: tTIz\X - a)
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The graph of the function of Example 2

is shown in Figure 2. We have noticed
previously that exponential functions
grow far more rapidly than power
functions, so the result of Example 2 is
not unexpected. See also Exercise 45.

20

GURE 2

The graph of the function of Example 3

is shown in Figure 3. We have dis-
cussed previously the slow growth of
logarithms, so it is not surprising that
this ratio approaches 0 as x -+ m. See

also Exercise 46.

we can apply I'Hospital's Rule:

e*lim ": lim
.r -)cc X- J --+rc

lnx
EXAMPLE 3 r Calculate lim

x-)cE \/ X

$StUTl$N Since ln x -> oo and S --

lnxlim 3rJ--)cc \/ x

d
, (ln x)dx l/x
d :1T 

I
,(x l)

ax

I
-:1x

e* e*_-lim_-r
2x -r--+s 2

oo as x -+ *, I'Hospital's Rule applies:

1

x
- lim | _)n

x_-E 1X 
-tJ

lnx
lim 

-- 

lim
x-*l X I x---+l

_ lim
x---+l I

EXAMPLE 2 r Calculate tim 4.
x-* X'

SOIUTI0N We have lim,-- e' : a and lim,-- x2 : a, so l'Hospital's Rule gives

et e*
lim 

-: 
lim 

-x-- X' "-- 2X

Since e' --+ m and 2x ---> a as .r -+ oo, the limit on the right side is also indeter-
minate, but a second application of I'Hospital's Rule gives

T

l00

FI

Notice that the limit on the right side is now indeterminate of type f;. But instead
of applying I'Hospital's Rule a second time as we did in Example 2, we simplify
the expression and see that a second application is unnecessary:

I

lnx x 3lim 3r-lim | -y1 -lim T- 0
x----+x \/ X .r---+rc J f x----+T \/ X

2

t

FIGURE 3
-t

10.000
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EXAMPLE 4 I Find lim tanx-- r. 
(See Exercise l8 in Section 2.2.)

,r -0 X-

SOLUTION Noting that both tan x x '--> 0 and xt - 0 as x --+ 0, we use

I'Hospital's Rule:

305

The graph in Figure 4 gives visual con-

firmation of the result of Example 4.

lf we were to zoom in too far, how-
ever, we would get an inaccurate graph

because tan x is close to -r when r is

smaf l. See Exercise lB(d) in Section 2.7.

tanJ xlim -
x--+0 J'

Since the limit on the right side is still
I'Hospital's Rule again:

sec 
2x 

1

- lim;; 3xz

indeterminate of type 3, *. apply

I'Hospital's Rule, we would get

COS Jlim -co
x-,n - Sln -f

tilt-l -\ - -{\t 
- 

-

l'- I- _r'

Again both numerator and denominator approach 0, so a third application of
I'Hospital's Rule is necessary. Putting together all three steps, we get

sec 
2x | 2 sec 

2x tan xlim a - lim
.r-o 3Xt r-o 6X

tanx x sectx | zseczxtanxlim " :lim--lim
;:; x' .r-.0 3x2 ;:; 6x

FIGURE 4
4 seczxtanzx + Zsecax 2 1

:l:*:_:_

.r-o 6 6 3 *

EXAMPLE 5

$*n"urr0N If

sln -rI Find lim
-{----,n I - cosx

we blindly attempted to use

sin xlim _-
x=+n I - cos"r@

This is wrong! Although the numerator sin x --+ 0 as x ---> it , notice that the
denominator (l - cosx) does not approach 0, so I'Hospital's Rule cannot be
applied here.

The required limit is, in fact, easy to find because the function is continuous
and the denominator is nonzero at z:

sin x sin zr 0lim -----0";- l-cosr 1-cos?r l-(-l) ffi

Example 5 shows what can go wrong if you use I'Hospital's Rule without think-
ing. Other limits can be found using I'Hospital's Rule but are more easily found by
other methods. (See Examples 3 and 5 in Section 2.3, Example 5 in Section 2.5,
and the discussion at the beginning of this section.) So when evaluating any limit,
you should consider other methods before using I'Hospital's Rule.

I rr,o.t".-,r,.t. Froo,,.t"

If lim,-" f(x):0 and lim,-,g(x): oo (or -oo), then it is not clear what the
value of lim,-o f G)S@), if any, will be. There is a struggle between / and g. lf f
wins, the answer will be 0; if g wins, the answer will be oo (or -m). Or there may
be a compromise where the answer is a finite nonzero number. This kind of limit
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FIGURE 5

fg:*

CHAPTER 4 APPLICATIO}II OF DITFTREilTIATIOil

is called an indeterminate form of type 0

productfg as a quotient:
m. We can deal with it by writing the

or fg- 
g

Uf

This converts the given limit into an indeterminate form of type $ or */* so that
we can use I'Hospital's Rule.

EXAMPTE 6 r Evaluate lim,-e* xlnx. Use the knowledge of this limit, together
with information from derivatives, to sketch the curve y: xlnx.

SOtUTlOtl The given limit is indeterminate because, as.r -+ 0+, the first
factor (x) approaches 0 while the second factor (lnx) approaches -o. Writing
x : l/(l/x),we have lfx -, a as x -+ 0*, so I'Hospital's Rule gives

I

lnx x
lim xlnx: lim 

-- 
limx_o+ x_o+ I x_o+ +xx2

- lim (-.r) - 0
-f,--0t

If/(x) - x ln x, then

f'(x) - ln x lnx+l

so/'(.r) :0 when ln x: -1, which means that x: e-t.In fact, f'(x) > 0 when
x ) e-t andf'(x) ( 0 when x 1 e-', so/is increasing on (l/e, *'S and decreasing
on(0,1/e). Thus, by the First Derivative Test,f(l/e): -l/e is a local (and abso-
lute) minimum. Also, f"(x) - l/x> 0, so/is concave upward on (0, m). We use

this information, together with the crucial knowledge that lim"-6* /("r) : 0, to
sketch the curve in Figure 5. ffi,

l,nq"t".-,nar" D,rr"."n".,

If lim"-" f(x) : o and lim,-" g(x) : oo, then the limit

lim [/("r) - sk)l

is called an indeterminate form of type @ - @. Again there is a contest be-
tween/and 9. Will the answer 6s oo (/wins) or will it be -m (g wins) or will they
compromise on a finite number? To find out, we try to convert the difference into
a quotient (for instance, by using a common denominator or rationalization, or fac-
toring out a common factor) so that we have an indeterminate form of type $ or
a/a.

1

+
x

EXAMPLET I Compute lim
a __-(rr/2)-

SOLUTiSF{ First notice that sec -r

(sec x tan x).

+ oo and tan x -+ oo as x + (n/2) , so the limit

y-rlnx
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is indeterminate. Here we use a common denominator:

lim (sec-r-ran.x) : lim ( t 
- 

sinx)
x-(r/2)- x-(r/2)" \ COS J COS -r /

lim l-sin'r- lim -cgs"t-0
a+(n/2)- cos I x-(n/2)- - sln .I

Note that the use of I'Hospital's Rule is justified because I - sin r -+ 0 and

cos.r --+ 0 as .r -+ (rr/2)-. il

I,rro"".r-,n"." Fo*.r"

Several indeterminate forms arise from the limit

lim [/("r)]d'

l. lim /k) : 0 and 
fim 9(x) : 0 type 0o

t. ltg .f(x) : - and tim g(x) : O type ooo

t. lT f@) : 1 and lim 9(x) : -'-m type l-

Each of these three cases can be treated either by taking the natural logarithm:

let y : ["f(x)]'''), then lny : 9(x)ln/(.r)

or by writing the function as an exponential:

lf@)lnu) : te(x)tnr(x)

(Recall that both of these methods were used in differentiating such functions.) In
either method we are led to the indeterminate product g(x)lnf(x), which is of type
Q.oc.

EXAMPLE8 r Calculate,1T_ (l + sin4r)""1'.

SOLUTIOil First notice that as, __> 0', we have I * sin4"r __+ I and cot,r _+ @,

so the siven limit is indeterminate. Let

y - (l + sin 4x)'u''

lny - ln[(l + sin 4x)cot"r] - cot x ln(l + sin 4x)Then

so I'Hospital's Rule gives

lim lnv : lim
ln(l + sin 4x)

x -0* x---0+ tan x

4 cos 4x

1 + sin4x
-lim , -4

-r --'0+ SgC -X
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The graph of the function 1; 
: ,r'',

x ) 0, is shown in Figure 6. Notice that
although 00 is not defined, the values

of the function approach I as x --- 0*.
This confirms the result of Example 9.

2

-l

FIGURE 6

So far we have computed the limit of lny, but what we want is the limit of y. To
find this we use the fact that y : 

"tnr'
lim (1 + sin4r)"o'': lim Y: lim etnY : e4
r€0- r-0+ " r-0- I

EXAMPLE 9 I Find 
"l_*. 

r'.

SOLUTIOiI Notice that this limit is indeterminate since 0' : 0 for any.r ) 0 but
x0 : 1 for any x * O. We could proceed as in Example 8 or by writing the
function as an exponential:

x':(e,"'),:rxtnx

In Example 6 we used I'Hospital's Rule to show that

lim xln"r : 0
-+0+

Therefore lim x* - lim ,xtnx - eo: I
x--*0+ x-0+ I

Exercises

l-30 r Find the limit. Use I'Hospital's Rule where appro-
priate. If there is a more elementary method, use it. If
I'Hospital's Rule doesn't apply, explain why.

x-2l. lim .
-r-2 Xt - 4

e'-l
3. lim .

x.-0 Sln -f

tan .r
5. lim 

-

x -o x + sinx

e'
7. lim;

x -:L X-

xol
2. lim ,

r'*l X' I

sin ntx
4. lim .

x*0 Sln nJ

tan x
6. lim 

-
x--trr X

6r - 2"r
8. lim 

-

.r-0 X

23. 
1r* 

(*u'/' - "r)

2s. lim *sin't
x*0+

27. lim (l - Zx)tt'
x*0

29. lim (-lnx)'
-r*0*

lr l \
liml_ _f
x*r \lnx x l/
lim (sin x)'un'

x*0+ /

rim (, + g)"
.r+:( \ x /

lim (e* * x)t/'

24.

26.

28.

30.

10.9.
e'-l-xlim ,

x-0 X-

lnlnxlim -x -x V,f

ran - t (2*)
tlfi] 

-

x-o 3x

lim 16 tn "x*0-

lim e*"ln x

I - cos.rlim 
"x-0 X-

ln(l + e')
lllTl 

-

x+x 5x

sin x
lim _
x-o e*

lim xex
.r+-:c

lim sec 7x cos 3x
y 

-(r/2\-

lT (t rr) cot x

lim (csc x cot x)
x---0

Elll-32 I Use a graph to estimate the value of the limit.
Then use l'Hospital's Rule to find the exact value.

31. lg ; [ln(x + 5) lnx] 32. 
,90 

(tanx)tanzx

[! luc I Illustrate I'Hospital's Rule by graphing both

f (x)lg(x) and f'(*)lg'(x) near x : 0 to see that these ratios
have the same limit as.r --+ 0. Also. calculate the exact
value of the limit.

33. /(x) - e' - l, g(x) - rr + 4x

34. f (x) : 2x sin x, g(x) - sec x I

35-38 I Use I'Hospital's Rule to help find the asymptotes
of f.Then use them, together with information from /'
and f ", to sketch the graph of f. Check your work with a

graphing device.

35. /(x) - vs x 36. f (x) : e'/x

37. f (x) - (ln x)lx 38. /(x) : xe-"

ll.

13.

15.

17.

19.

21.

lim x'e-*'

6(+ .,.')

12.

14.

16.

18.

20.

22.
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(a) Graph the function.
(b) Use I'Hospital's Rule to explain the behavior as x -+ 0.
(c) Estimate the minimum value and intervals of concavity.

Then use calculus to find the exact values.

39. /(x) - x? ln x 40. .f(x) - "*' 
''

ffi qr:4? m

(a) Graph the function.
(b) E,xplain the shape of the graph by computing the limit as

x ---) 0" or as J ---+ oc.

(c) Estimate the maximum and minimum values and then
use calculus to find the exact values.

(d) Use a graph of f" to estimate the x-coordinates of the
inflection points.

al .f(*) : x'/" 42.f(x)-(sinr)"n*

EY ql. Investigate the family of curves given by /(*) : vs-c.\,
where c is a real number. Start by computing the limits
as -r ---+ -fpc. Identify any transitional values of c where
the basic shape changes. What happens to the maximum
or minimum points and inflection points as c changes?
Illustrate by graphing several members of the family.

E/ qq. Investigate the family of curves given by/(x) - r"e-',
where n is a positive integer. What features do these

curves have in common? How do they,' differ from
one another? In particular, what happens to the maxi-
mum and minimum points and inflection points as n
increases? Illustrate by graphing several members of
the family.

45. Prove that

e--

lg*: cc

for any integer rz. This shows that the exponential func-
tion approaches infinity faster than any power of x.

46. Prove that

lnxlim__0
-{ -rc 

Ylt

shows that the logarithmic
slowly than any power of x.

oney is invested at an inter-
es a year, the value of the

i \"'+-l
nl

If we let n -> co, we refer to the continuous contpound-
ing of interest. Use I'Hospital's Rule to show that if
interest is compounded continuously, then the amount
after n years is

SECTIOI{ 4.5 I|\IDTTTRI'IINATE FOR1'|5 AI'ID L'HOSPIIAL'S RULE 309

48. If an object with mass rz is dropped from rest, one

model for its speed u after / seconds, taking air
resistance into account. is

mau-?,' ,-rtin1

where g is the acceleration due to gravity and c is a
positive constant. (In Chapter 7 we will be able to

deduce this equation from the assumption that the air
resistance is proportional to the speed of the object.)
(a) Calculate liffr1 -* u. What is the meaning of this

limit?
(b) For fixed r, use I'Hgspital's Rule to calculate

lim,., --,'t). What can you conclude about the speed

of a very heavy falling object?

The first appearance in print of I'Hospital's Rule was in
the book Anall,se cles Infiniment Petits published by the
Marquis de l'Hospital in 1696. This was the first calcu-
lus textbook ever published and the example that the

Marquis used in that book to illustrate his rule was to
find the limit of the function

Jz.r, - .r - a:lrt.
l- ,-J;r

as r approaches c, where a ) 0. (At that time it was

common to write aa Lnstead of a2.) Solve this problem.

50. The figure shows a sector of a circle with central angle

0. Let A(0) be the area of the segment between the

chord PR and the arc PR. Let B(0) be the area of the

triangle PQR. Find lim0-0+ A(0)lB(0).

P

A(0)

o0R
If f is continuous, use l'Hospital's Rule to show that

lim
It - u()

f(x + h) - f(x h) : f '(x)

Explain the meaning of this equation with the aid of a

diag rarn.

ESsz.Ler

(a)
(b)

(c)

49.

5t.

2h
for any number p > 0. This
function approaches ca more

47. If an initial amount A,, of rn
est rate i compounded n tim
investment after I years is

tA_nuU
/(r) : {l''l' ir x # o

t I if x : 0

Show that / is continuous at 0.

Investigate graphically whether/ is differentiable at

0 by zooming in several times toward the point
(0, l) on the graph of /
Show that./ is not differentiable at 0. How can you

reconcile this fact with the appearance of the graphs

in part (b)?A : Aoe"
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The Origins of UHospital's Rule

IJHospital's Rule was first published in 1696 in the Marquis de l'Hospital's calculus
textbook Analyse des Infiniment Petits, but the rule was discovered in 1694 by the
Swiss mathematician John Bernoulli. The explanation is that these two mathematicians
had entered into a curious business arrangement whereby the Marquis de I'Hospital
bought the rights to Bernoulli's mathematical discoveries. The details, including a
translation of I'Hospital's letter to Bernoulli proposing the arrangement, can be found
in the book by Eves [1].

Write a report on the historical and mathematical origins of I'Hospital's Rule. Start
by providing brief biographical details of both men (the dictionary edited by Gillispie
[2] is a good source) and outline the business deal between them. Then give I'Hospital's
statement of his rule, which is found in Struik's sourcebook [4] and more briefly in the
book of Katz [3]. Notice that I'Hospital and Bernoulli formulated the rule geometrically
and gave the answer in terms of differentials. Compare their statement with the version
of I'Hospital's Rule given in Section 4.5 and show that the two statements are essen-
tially the same.

f . Howard Eves, /n Mathematical Circles (Volume 2: Quadrants III and IV)
(Boston: Prindle, Weber and Schmidt, 1969), pp. 2A-22.

2. C. C. Gillispie, ed., Dictionary of Scientific Biography (New York: Scribner's,
1974). See the article on Johann Bernoulli by E. A. Fellmann and J. O.
Fleckenstein in Volume II and the article on the Marquis de I'Hospital by
Abraham Robinson in Volume VIII.

3. Victor Katz, A History of Mathematics: An Introduction (New York: Harper-
Collins, 1993), p.484.

4. D. J. Struik, ed., A Sourcebook in Mathematics, 1200-1800 (Princeton, NJ:
Princeton University Press, 1969), pp. 315-316.

Optimization Problems

The methods we have learned in this chapter for finding extreme values have
practical applications in many areas of life. A businessperson wants to minimize
costs and maximize profits. Fermat's Principle in optics states that light follows
the path that takes the least time. In this section and the next we solve such prob-
lems as maximizing areas, volumes, and profits and minimizing distances, times,
and costs.

In solving such practical problems the greatest challenge is often to convert the

word problem into a mathematical optimization problem by setting up the function
that is to be maximized or minimized. Let's recall the problem-solving principles
discussed on page 87 and adapt them to this situation:

STEPS IN SOLVING OPTIMIZATION PROBLEMS

l. Understand the Problem The first step is to read the problem carefully
until it is clearly understood. Ask yourself: What is the unknown? What are the
given quantities? What are the given conditions?
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Understand the problem

Analogy: Try special cases

Draw diagrams
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2" Draw a Diagram In most problems it is useful to draw a diagram and

identify the given and required quantities on the diagram.

3, Introduce Notation Assign a symbol to the quantity that is to be

maximized or minimized (let us call it Q for now.) Also select symbols
(a,b,c,...,x,y) for other unknown quantities and label the diagram with these

symbols. It may help to use initials as suggestive symbols-for example, A for
area, h for height, t for time.

4. Express Q in terms of some of the other symbols from Step 3.

5. If Q has been expressed as a function of more than one variable in
Step 4, use the given information to find relationships (in the form of equations)

among these variables. Then use these equations to eliminate all but one of the

variables in the expression for 0. Thus, Q will be expressed as a function of one

variable x, say, Q : fk). Write the domain of this function.

6. Use the methods of Sections 4.2 and 4.3 to find the qbsolute maximum or
minimum value ofl In particular, if the domain of/is aclosed interval, then

the Closed Interval Method in Section 4.2 can be used.

EXAMPTE I r A farmer has 2400 ft of fencing and wants to fence off a rect-
angular field that borders a straight river. He needs no fence along the river.
What are the dimensions of the field that has the largest area?

SOLUTloll In order to get a feeling for what is happening in this problem let's

experiment with some special cases. Figure 1 (not to scale) shows three possible

ways of laying out the 2400 ft of fencing. We see that when we try shallow,
wide fields or deep, narrow fields, we get relatively small areas. It seems

plausible that there is some intermediate configuration that produces the largest

area,

Figure 2 illustrates the general case. We wish to maximize the area A of the

rectangle. Let x and y be the depth and width of the rectangle (in feet). Then we

express A in terms of x and y:

A:xy

We want to express A as a function of just one variable, so we eliminate ) by

expressing it in terms of r. To do this we use the given information that the total
length of the fencing is 2400 ft. Thus

FIGURE I

I Introduce notation

100 ' 2200 - 220.A00 ftz tuea - 700 ' 1000 - 700,000 ft2 Area - 1000 ' 400 - 400,000 ftz

FIGURE 2 2x + Y:2400
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From this equation we have 1l - 2400 2x,

A : x(2400 2x) -
Notethatx>0andx
to maximize is

To find the critical numbers, we

which gives

2400x 2x?

that we wish

A(x) - 2400x Zxz 0

The derivative is A'(x) - 2400 4x, so to find the critical numbers we solve
the equation

24OO - 4x:0

which gives.r : 600. The maximum value of A must occur either at this critical
number or at an endpoint of the interval. SinceA(0) : 0,A(600) :720,000,
and ,4(1200) : 0, the Closed Interval Method gives the maximum value as

4(600) : 720,000.
[Alternatively, we could have observed that A"(-r) : -4 < 0 for all x, so A is

always concave downward and the local maximum at -r : 600 must be an abso-
lute maximum.l

Thus, the rectangular field should be 600 ft deep and 1200 ft wide. *
EXAMPTE 2 r A can is to be made to hold I L of oil. Find the dimensions that
will minimize the cost of the metal to manufacture the can.

SOLUTION Draw the diagram as in Figure 3 where r is the radius and h the height
(both in centimeters). In order to minimize the cost of the metal, we minimize
the total surface area of the cylinder (top, bottom, and sides), which is

A:2rr2t2rrrh

To eliminate ft we use the fact that the volume is given as I L, which we take
to be 1000 cm3. Thus

rrth : lo00

which gives h: lO0O/ (nr2). Substitution of this into the expression forA gives

A:2nr2 * ,nr( 'oo?\: znr, + 2ooo

\Tr- / r

Therefore, the function that we want to minimize is

A(r): ?rrr' + 2000 
r

r

differentiate:

2000 4(nr3 - 500)
?r- r-

A'(rl - 4rrr

Then A'(r) : 0 when rr3 : 500, so the only critical number is r : XSOO|.
Since the domain of A is (0, oo), we cannot use the argument of Example I

concerning endpoints. But we can observe that A'(r) < 0 for , < fso\fi und
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A'(r) > 0 for r > i/500/rr, so A is decreasing for all r to the left of the critical
number and increasingfor all r to the right. Thus, r : :EW; must give rise to
an absolute minimum.

[Alternatively, we could argue that A(r) "-> m as r -> 0* and A(r) -> oo ag

r ---> @, so there must be a minimum value of A(r), which must occur at the
critical number. See Figure 4.1

The value of h corresponding to r - ilW;

, 1000 1000rt-,f -M-

IS

FIGURE 4
Thus, to minimize the
height should be equal

cost of the can, the
to twice the radius.

radius should A" TSOO/, cm and the

namely, the diameter. ;

NOTE I r The argument used in
variant of the First Derivative Test
mum values) and is stated here for

Example 2 to justify the absolute mlnlmum rs a

(which applies only to local maximum or mini-
future reference.

NOTE 2 . An alternative method for solving optimization problems is to use im-
plicit differentiation. Let's look at Example 2 again to illustrate the method. We

work with the same equations

A- 2rrr2 + Znrh nr'h -- 100

but instead of eliminating h, we differentiate both equations implicitly with re-

spect to r:

A':4nr + Znh + 2nrh' Znrh + rrr?h':0

The minimum occurs at a critical number, so we set A' -- 0, simplify, and arrive at
the equations

2r + h + rh':0 2h + rh':0

and subtraction gives 2r h: 0, or h : 2r.

EXAMpLE3I Findthe
point (1, 4).

$&LtrYflSru The distance

point on the parabola y? - 2x that is closest to the

between the point (1,4) and the point (x, y) is

d-

y : A(r)

500 :
T

First Derivative Test for Absolute Maximum or Minimum Yalues Suppose that
c is a critical number of a continuous function/defined on an interval.

(a) If/'(x)
absolute maximum value of f.

(b) If/'(x)
absolute minimum value of f.

c, then f (r) is the

c, then f (r) is the
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(see Figure 5). But it (x,y) lies on the parabola, thenx : y'/2, so the expres-
sion for d becomes

FIGURE 5

l/.,, \zd:..ll+- lf +1y-+;'?v\2 I
(Alternatively, we could have substituted y : JU rc get d in terms of x alone.)
Instead of minimizing d, we minimize its square:

(You should convince yourself that the minimum of d occurs at the same point
as the minimumof d2, but d2 is easier to work with.) Differentiating, we obtain

/,,2 \
f,(y) : r\t - r )t + 2(y - D : y, - 8

so,f'(y) :0 when y:2. Observe that/'(y) ( 0 when y <2andf'(y) > 0
when y > 2, so by the First Derivative Test for Absolute Extrema, the absolute
minimum occurs when y : 2. (Or we could simply say that because of the
geometric nature of the problem, it is obvious that there is a closest point but not
a farthest point.) The corresponding value of -r is x : y'/2: 2. Thus, the point
oD y,7 - 2x closest to (1,4) is (2,2).

EXAMPLE 4 r A man is at pointA on abank of a straight river,3 km wide, and
wants to reach point B, 8 km downstream on the opposite bank, as quickly as

possible (see Figure 6). He could row his boat directly across the river to point
C and then run to B, or he could row directly to B, or he could row to some
point D between C and B and then run to B. If he can row at 6 km/h and run at

8 km/h, where should he land to reach I as soon as possible?

SOLUTION Let -r be the distance from C to D. Then the running distance is

lnnl:8 - x and the Pythagorean Theorem gives the rowing distance as

leOl: J*' + 9. We assume the speed of the water is 0 km/h and use the
equation

. distance
tlme : 

a"ta

Then the rowing time is JF + S /A and the running time is (8 - x)/8, so the
total time I as a function of "r is

ffi

1

I

I

8km

I

I

I

The domain of this function T is [0,8]. Notice that
x - 8 he rows directly to B. The derivative of i" is

if x -: 0 he rows to C and if

I

. (1,4)

T'(x) - 6{ir + s
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Thus, using the fact that x

T'(x) == 0 '€

€+

<+

A

The domain of this function is 0

x--------:
6tlxz a 9

l6xz - 9(*'

9
Jt

l7

4x- 3\E{+ 9

7x2 - 8l

1

8

+e)

<=

<=

FIGURE 7

FIGURE 8

The only critical number is x:9/ t/7. To see whether the minimum occurs at

this critical number or at an endpoint of the domain [0,8], we evaluate T at all
three points:

(+):,*{:r33 r(8) : I -t.qz\J7 l 8 " 6

Since the smallest of these values of T occurs when x : 9/ J7,the absolute

minimum value of 7 must occur there. Figure 7 illustrates this calculation by
showing the graph of T.

Thus, the man should land the boat at a point 9/ t/1 km (: 3.4 km) down-
stream from his starting point. I

EXAMPLE 5 I Find the area of the larsest rectansle that can be inscribed in a
semicircle of radius r.

50LUT|0N I Let us take the semicircle to be the upper half of the circle
x' + y': 12 with center the origin. Then the wordinscribedmeans that the
rectangle has two vertices on the semicircle and two vertices on the .x-axis as

shown in Figure 8.

Let (x, y) be the vertex that lies in the first quadrant. Then the rectangle has

sides of lengths 2x and y, so its area is

A: 2xy

To eliminate y we use the fact that (x,y) lies on the circle x' + y': 12 and so

v:Jrr-*.rn"
- z*^/f - f
<x

A' - ZJr' xz
2xz

f a ) - ,,
Jrt xt tl rt x2

which is 0 when 2x2 : 12, that is, *: ,/JZ (since x > 0). This value of x gives
a maximum value of A since A(0) : 0 and A(r) :0. Therefore the area of the
larsest inscribed rectansle is

r)_- 
t/2

y: T(x)

r2 :
2^(r):
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FIGURE 9

l. Consider the following problem: A farmer with 750 ft
of fencing wants to enclose a rectangular area and then
divide it into four pens with fencing parallel to one side

of the rectangle. What is the largest possible total area
of the four pens?
(a) Draw several diagrams illustrating the situation,

some with short wide pens and some with long
narrow pens. Find the total areas of tlrese configu-
rations. Does it appear that there is a maximum
area? If so, estimate it.

(b) Draw a diagram illustrating the general situation.
Introduce notation and label the diaeram with your
symbols.

(c) Write an expression for the total area.
(d) Use the given information to write an equation that

relates the variables.
(e) LIse part (d) to write the total area as a function of

one variable.
(f ) Finish solving the problem and compare the answer

with your estimate in part (a).

7. Consider the following problem: A box with an open
top is to be constructed from a square piece of card-
board.3 ft wide, by cutting out a square from each of
the four corners and bending up the sides. Find the
largest volume that such a box can have.
(a) Draw several diagrams to illustrate the situation.,

some short boxes with large bases and some tall
boxes with small bases. Find the volumes of several
such boxes. Does it appear that there is a lnaximum
volume? If so, estimate it.

(b) Draw a diagram illustrating the general situation.
Introcluce notartion and label the cliasram with vour
symbols.

(c) Write an expression for the volume.
(d) Use the given information to write an equation that

relates the variables.
(e) Use part (d) to write the volume as a function of

one variable.
(f) Finish solving the problem and compare the answer

with your estimate in part (a).

CHAPTER 4 APPLICATIO}'|S OT DIFFERIl.|TIATIOl|

SOLUTIOH 2 A simpler solution is possible if we think of using an angle as a
variable. Let 0 be the angle shown in Figure 9. Then the area of the rectangle is

n 0 A(0) : (2r cos 0) (r sin g) : r'(2 sin 0 cos g) : rz sin20

We know that sin 20has a maximum value of I and it occurs when 20 : rr/2.
So A(0) has a maximum value of 12 and it occurs when 0 : n/4.

Notice that this trigonometric solution does not involve differentiation. In fact
we didn't need to use calculus at all. ru

Exercises

3. If 1200 cmt of material is available to make a box with
a square base ancl an open top,find the largest possible
volume of the box.

4. A box with a square base and open top must have a

volume of 32.000 cm-t. Find the dimensions of the box
that minirnize the amount of material used.

5. (a) Show that of all the rectangles with a given area,
the one with smallest perimeter is a sqLlare.

(b) Show that of all the rectangles with a given
perimeter. the one with greatest area is a square.

6. A rectangular storage container with an open top is to
have a volume of l0 m3. The length of its base is twice
the width. Material for the base costs $10 per squrlre
meter. Material for the sides costs $6 per square meter.
Find the cost of materials for the cheapest such

conta iner.

7. Find the point on the line -l' : 2x 3 that is closest to
the origin.

8. Find the points on the hyperbola v? rn:4 that are
closest to the point (2,,0).

9. Find the dimensions of the rectangle of largest area that
can be inscribed in a circle of radius r.

I0. Find the dimensions of the isosceles triar"rgle of largest
area that can be inscribed in er circle of radius r.

ll. Find the area of the largest rectangle that can be

inscribed in a right triangle with legs of lengths 3 crn
and 4 cm if two sides of the rectangle lie along the legs.

12. A right circular cylinder is inscribed in a sphere of
radius r. Find the largest possible volume of such a

cylinder.

| 3. A Norman window has the shape of a rectangle sur-
mounted by a semicircle. (Thus, the diameter of the
semicircle is equal to the width of the reetangle.) If the
perimeter of the window is 30 ft, find the climensions of
the window so that the greatest possible amount of light
is admitted.



14. The graph shows the fuel consumption c of a car
(measured in gallons per hour) as a function of the
speed u of the car. At very low speeds the engine runs
inefficiently, so initially c decreases as the speed

increases. But at high speeds the fuel consumption
increases. You can see that c(u) is minimized for this
car when ?/ : 30 :rr'tf h. However, for fuel efficiency,
what must be minimized is not the consumption in
gallons per hour but rather the fuel consumption in
gallons per mile. Let's call this consumption G. Using
the graph, estimate the speed at which G has its mini-
mum value.

A piece of wire l0 m long is cut into two pieces. One
piece is bent into a square and the other is bent into
an equilateral triangle. How should the wire be cut so

that the total area enclosed is (a) a maximum? (b) A
minimum?

A fence 8 ft tall runs parallel to a tall building at a
distance of 4 ft from the building. What is the length of
the shortest ladder that will reach from the sround over
the fence to the wall of the building?

A conical drinking cup is made from a circular piece

of paper of radius R by cutting out a sector and joining
the edges CA and CB. Find the maximum capacity of
such a cup.

For a fish swimming at a speed u relative to the water,
the energlr expenditure per unit time is proportional to
u". It is believed that migrating fish try to minimize the
total energy required to swim a fixed distance. If the
fish are swimming against a current u (u < u), then the
time required to swim a distance L is L/ (u r.r) and the
total energy E required to swim the distance is given by

E(u)-at)'' L

a-u
where c is the proportionality constant.

sEcTlot{ 4.6 0pTtl'il zAIt0N pR0BLt t't5 tt7

(a) Determine the value of u that minimizes E.
(b) Sketch the graph of E.

Note: This result has been verified experimentally;
migrating fish swim against a current at a speed 50Va

greater than the current speed.

In a beehive, each cell is a regular hexagonal prism,
open at one end with a trihedral angle at the other end.
It is believed that bees form their cells in such a way as

to minimize the surface area for a given volume. thus
using the least amount of wax in cell construction.
Examination of these cells has shown that the measure
of the apex angle 0 is amazingly consistent. Based on

the geometry of the cell, it can be shown that the
surface area S is given by

S:6sh - Jr2corI + (grt,Etz)csco

where s, the length of the sides of the hexagon, and /r,
the height, are constants.
(a) Calculate dSld|.
(b) What angle should the bees prefer?
(c) Determine the minimum surface area of the cell (in

terms of s and /z).

Note: Actual measurements of the angle 0 in beehives
have been made, and the measures of these angles sel-
dom differ from the calculated value by more than 2o.

Trihedral
angle d

Front
of cell

A boat leaves a dock at 2:00 p.u. and travels due south

at a speed of 20 km/h. Another boat has been heading
due east at 15 km/h and reaches the same dock at

3:00 p.rra. At what time were the two boats closest
together?

The illumination of an object by a light source is

directly proportional to the strength of the source and
inversely proportional to the square of the distance from
the source. If two light sources, one three times as

strong as the other, are placed l0 ft apart, where should

an object be placed on the line between the sources so

as to receive the least illumination?

A woman at a point A on the shore of a circular lake
with radius 2 mi wants to arrive at the point C

19.

t5.

t6.

17.

18.

20.

21.

22.
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23.

G 24.

25.
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diametrically opposite A on the other side

the shortest possible time. She can walk at

4 mi/h and row a boat at 2 mi/h. At what
diameter should she row?

of the lake in
the rate of

angle 0 to the

26.

27.

r':i''

Two vertical poles PQ and SI are secured by a rope

PRS strung from the top of the first pole to a point R on

the ground between the poles and then to the top of the
second pole as in the figure. Show that the shortest
length of such a rope occurs when 01 : 02.

iIIitifff
Find an equation of the line through the point (3,5) that
cuts off the least area from the first quadrant.

The frame for a kite is to be made from six pieces of
wood. The four exterior pieces have been cut with the

lengths indicated in the figure. To rnaximize the area of
the kite, how long should the diagonal pieces be?

Let u' be the velocity of light in air and u2 the velocity
of light in water. According to Fermat's Principle, a ray
of light will travel from a point A in the air to a point B
in the water by a path ACB that minimizes the time
taken. Show that

sin 0 t ur

t*tr:i
where g | (the angle of incidence) and 0: (the angle of
refraction) are as shown in the figure. This equation is

known as Snell's Law.

The upper left-hand corner of a piece of paper 8 in.
wide by 12 in. long is folded over to the right-hand edge

as in the figure. How would you fold it so as to mini-
mize the length of the fold? In other words, how would
you choose x to minimize l'?

l-J-l
t--

I
I

I

t2

I

y (

l<.-8-l

28. A steel pipe is being carried down a hallway 9 ft wide.

At the end of the hall there is a right-angled turn into
a narrower hallway 6 ft wide. What is the length of the

longest pipe that can be carried horizontally around the

corner?

E7Zg.A point P needs to be located somewhere on the line
AD so that the total length L of cables linking P to the
points A, 8,, and C is minimized (see the figure).

-I-

I

6
I

-



Express

of L and

L as a function of x - | Ap I and use the graphs
dL/dx to estimate the minimum value.
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Ornithologists have determined that some species of
birds tend to avoid flights over large bodies of water
during daylight hours. It is believed that more energy
is required to fly over water than land because air
generally rises over land and falls over water during
the day. A bird with these tendencies is released from
an island that is 5 km from the nearest point B on a

straight shoreline, flies to a point C on the shoreline,
and then flies along the shoreline to its nesting area D.
Assume that the bird instinctively chooses a path that
will minimize its energy expenditure. Points B and D
are 13 km apart.
(a) In general, if it takes 1.4 times as much energy to

fly over water as land, to what point C should the
bird fly in order to minimize the total energy
expended in returning to its nesting area?

(b) Let W and L denote the energy (in joules) per
kilometer flown over water and land, respectively.
What would a large value of the ratio WIL mean in
terms of the bird's flight? What would a small value
mean? Determine the ratio WIL corresponding to
the minimum expenditure of energy.

(c) What should the value of WIL be in order for the

bird to fly directly to its nesting area D'J What
should the value of WIL be for the bird to fly to B
and then along the shore to D?

(d) If the ornithologists observe that birds of a certain
species reach the shore at a point 4 km from B, how
many times more energy does it take a bird to fly
over water than land?

The blood vascular system consists of blood vessels

(arteries, arterioles, capillaries, and veins) that convey
blood from the heart to the organs and back to the

heart. This system should work so as to minimize the

energy expended by the heart in pumping the blood. In
particular, this energy is reduced when the resistance of
the blood is lowered. One of Poiseuille's Laws sives the
resistance R of the blood as

where L is the length of the blood vessel, r is the radius,

and C is a positive constant determined by the viscosity

33.

I
I

5m

I

I

I

31.

30.

32.

BDC

A rain gutter is to be constructed from a metal sheet of
width 30 cm by bending up one-third of the sheet on
each side through an angle 0. How should 0 be chosen

so that the gutter will carry the maximum amount of
water?

l.- l0 cm -l.- l0 cm-----+l<- l0 cm -l

Where should the point P be chosen on the line segment
AB so as to maximize the ansle 0?

P
3 --------r

A painting in an art gallery has height h and is hung
so that its lower edge is a distance d above the eye of
an observer (as in the figure). How far from the wall
should the observer stand to get the best view? (In other
words, where should the observer stand so as to maxi-
mize the angle 0 subtended at his eye by the painting?)

B

34.

LR-17

t:
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of the blood. (Poiseuille established this law experi-
mentally but it also follows from Equation 2 in Sec-

tion 6.6.) The figure shows a main blocd vessel with
radius 11 branching at an angle 0 into a smaller vessel

with radius r'.

(a) Use Poiseuille's Law to show that the total resis-

tance of the blood along the path ABC rs

ln bcotl bcscg\R-C[ -1 r : I
\ 11 12 /

where a and b are the distances shown in the figure.
(b) Prove that this resistance is minimized when

cosg : +
f1

(c) Find the optimal branching angle (correct to the

nearest degree) when the radius of the smaller blood
vessel is two-thirds the radius of the larger vessel.

35. The speeds of sound c' in an upper layer and c2 in a

lower layer of rock and the thickness h of the upper

layer can be determined by seismic exploration if the

speed of sound in the lower layer is greater than the

speed in the upper layer. A dynamite charge is deto-
nated at a point P and the transmitted signals are

recorded at a point Q, which is a distance D from P.

The first signal to arrive at Q travels along the surface
and takes fr seconds. The next signal travels from P to
a point R, from R to S in the lower layer, and then to Q,
taking Z2 seconds. The third signal is reflected off the

lower layer at the midpoint O of RS and takes Tr

seconds to reach Q.
(a) Express Tr, Tz, and Z: in terms of D, h, ct,, c?, and 0.

(b) Show that Iz is a minimum when sing : ct/cr.
(c) Suppose that D - I km, Zr - 0.26 s,, T?: 0.32 s,

Tz : 0.34 s. Find ct, cz, and /2.

ROS
Speed of sound: ,,

Note: Geophysicists use this technique when studying
the structure of the earth's crust, whether searching for
oil or examining fault lines.

Elrc. Two light sources of identical strength are placed 10 m

apart. An object is to be placed at a point P on a line f
parallel to the line joining the light sources and at a
distance of d meters from it (see the figure). We want
to locate P on f so that the intensity of illumination is

minimized. We need to use the fact that the intensity of
illumination for a single source is directly proportional
to the strength of the source and inversely proportional
to the square of the distance from the source.
(a) Find an expression for the intensity 1(x) at the

point P.
(b) If d :5 m, use graphs of /(x) and I'(x) to show that

the intensity is minimized when x - 5 m, that is,

when P is at the midpoint of d.

(c) If d: l0 m, show that the intensity (perhaps sur-
prisingly) rs not minim rzed at the midpoint.

(d) Somewhere between d - 5 m and d - l0 m there is

a transitional value of d at which the point of mini-
mal illumination abruptly changes. Estimate this
value of d.

l.-t-l
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In this project we investigate the most economical shape for a can. We first interpret
this to mean that the volume V of a cylindrical can is given and we need to find the
height ft and radius r that minimize the cost of the metal to make the can (see the
figure). If we disregard any waste metal in the manufacturing process, then the
problem is to minimize the surface area of the cylinder. We solved this problem in
Example 2 in Section 4.6 and we found that h : 2r, that is, the height should be the
same as the diameter. But if you go to your cupboard or your supermarket with a ruler,
you will discover that the height is usually greater than the diameter and the ratio h/r
varies from 2 up to about 3.8. Let's see if we can explain this phenomenon.

l. The material for the cans is cut from sheets of metal. The cylindrical sides are
formed by bending rectangles; these rectangles are cut from the sheet with little or
no waste. But if the top and bottom discs are cut from squares of side 2r (as in the
figure), this leaves considerable waste metal, which may be recycled but has little
or no value to the can makers. If this is the case. show that the amount of metal
used is minimized when

2.55

2. A more efficient packing of the discs is obtained by dividing the meral sheet into
hexagons and cutting the circular lids and bases from the hexagons (see the figure).
Show that if this strategy is adopted, then

h :413 : z.ztr7r
3. The values of hfrthat we found in Problems 1and2 are a little closer to the ones

that actually occur on supermarket shelves, but they still don't account for every-
thing. If we look more closely at some real cans, we see that the lid and the base
are formed from discs with radius larger than r that arc bent over the ends of the
can. If we allow for this we would increase hfr. More significantly, in addition
to the cost of the metal we need to incorporate the manufacturing of the can into
the cost. Let's assume that most of the expense is incurred in joining the sides to
the rims of the cans. If we cut the discs from hexagons as in Problem 2, then the
total cost is proportional to

4JTr'4Znrh+k(4nr+h)
where & is the reciprocal of the length that can be joined for the cost of one unit
area of metal. Show that this expression is minimized when

2n h/,
nh/r 1vg

[! l. ftot ili/t, us a function of x: h/r and use your graph to argue rhat when a can is
large or joining is cheap, we should make hfr approximately 2.21 (as in Problem 2).

But when the can is small or joining is costly, h/r shottld be substantially larger.

5. Our analysis shows that large cans should be almost square but small cans should
be tall and thin. Take a look at the relative shapes of the cans in a supermarket. Is
our conclusion usually true in practice? Are there exceptions? Can you suggest
reasons why small cans are not always tall and thin?

h8
r7T

Discs cut from squares

Discs cut from hexagons

w_
k

,l

Th
r
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Applications

c(r)
)' : C(r)

C(r)

FIGURE I

Cost function

FIGURE 2

Averase cost function

See Example 8 in Section 3.3 for an

explanation of why it is reasonable to
model a coe, runction b, r polynomial.

Inflection
point

,'l -/'/- slope

to Economics

In Section 3.3 we introduced the idea of marginal cost. Recall that if C(x), the cost
function, is the cost of producing r units of a certain product, then the marginal
cost is the rate of change of C with respect to x. In other words, the marginal cost

function is the derivative, C'(x), of the cost function.
The graph of a typical cost function is shown in Figure 1. The marginal cost

C'(x) is the slope of the tangent to the cost curve at (x, C(x))' Notice that the cost

curve is initially concave downward (the marginal cost is decreasing) because of
economies of scale (more efficient use of the fixed costs of production). But even-

tually there is an inflection point and the cost curve becomes concave upward (the

marginal cost is increasing) perhaps because of overtime costs or the inefficiencies
of a large-scale operation.

The average cost function

tr c@) : 9(l

represents the cost per unit when x units are froOu."a. We sketch a typical average

cost function in Figure 2 by noting that C(x) /x is the slope of the line that joins the

origin to the point (x,C(x)) in Figure l. It appears that there will be an absolute

minimum. To find it we locate the critical point of c by using the Quotient Rule to

differentiate Equation I :

c'(x) :

Now c'(x) : 0 when xC'(x) C(x) - 0 and this gives

Therefore:

If the average cost is a minimum, then

marginal cost - average cost

This principle is plausible because if our marginal cost is smaller than our average

cost, then we should produce more, thereby lowering our average cost. Similarly, if
our marginal cost is larger than our average cost, then we should produce less in
order to lower our average cost.

x2

EXAMPLE I r A company estimates that the cost (in

x items is C(x) : 2600 + ?x + 0.001x2.
(a) Find the cost, average cost, and marginal cost of
2000 items, and 3000 items.
(b) At what production level will the average cost be

minimum average cost?

dollars) of producing

producing 1000 items,

lowest, and what is this

]'- c(r)
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The marginal cost function is

C'(x):2+0.002x

We use these expressions to fill in the table at the left, giving the cost, average
cost, and marginal cost (in dollars, or dollars per item, rounded to the nearest
cent).

(b) To minimize the average cost

50LUTr0il
(a) The average cost function is

CK\c(x):;

marginal cost

c'(x)

2 + 0.002x

This equation simplifies to

2600
--+2+0.001xx

we must have

: average cost

- c(x)

2600
--+2+0.001xxFigure 3 shows the graphs of the mar-

ginal cost function C' and average cost
function c in Example l. Notice that
c has its minimum value when the two
graphs intersect.

10

:

o._ ^: 3000

FIGURE 3

and

To see that this production
c" (x) - 52001x3 > 0, so c
mum average cost is

o.oolx - 2600

x?-rlo, -)610.001 
: 2'600'000

x - J2,600,000 :' 1612

level actually gives a
is concave upward on

minimum, we note that
its entire domain. The mini-

c(r6rz): # + z + 0.001 (1612): Ss.zzlitem1612 \ - -/ -t ------ ffi

Now let's consider marketing. Let p(x) be the price per unit that the company
can charge if it sells x units. Then p is called the demand function (or price func-
tion) and we would expect it to be a decreasing function of x. If x units are sold
and the price per unit is p(x), then the total revenue is

R(x) : xp(x)

and R is called the revenue function (or sales function). The derivative R' of the
revenue function is called the marginal revenue function and is the rate of
change of revenue with respect to the number of units sold.

If r units are sold, then the total profit is

\ ('(.r ) r'( .v ) (.'(.r 
)

I t)()0

l0(x)
.r(xx)

5.6(X).0t)

10,(r00.(X)

l 7 .600. (x)

5 .60

5 .30

5.137

-t.tx)

6.00

tt.(x)
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and P is called the profit function. The
rivative of the profit function. In order to
numbers of P, that is, the numbers where

To check that this gives a maximum

R"(x) - -0'02

marginal profit function is

maximize profit we look for
the marginal profit is 0. But

c'(x) : o

P', the de-

the critical
if

Figure 4 shows the graphs of the reve-

nue and cost functions in Example 2.

The company makes a profit when

R > C and the profit is a maximum

when x : 103. Notice that the curves

have parallel tangents at this production
level because marginal revenue equals

marginal cost.

320

then

Therefore:

P'(x) - R'(x)

R'(x) - C'(x)

If the profit is a maximuffi, then

marginal revenue - marginal cost

To ensure that this condition gives a maximum we could use the Second Deriva-
tive Test. Note that

P"(x):R"(x)-C"(r)<0

when R"(x) I C"(x)

and this condition says that the rate of increase of marginal revenue is less than the

rate of increase of marginal cost. Thus the profit will be a maximum when

R'(x) -- C'(x) and R"(x) I C"(x)

EXAMPLE 2 r Determine the production level that will maximize the profit for a

company with cost and demand functions

c(x) : 84 + 1.26x - 0.01x2 * 0.00007x3 p(*) :3.5 - 0.01.r

$oLUTloN The revenue function is

R(x) : xp(x\ : 3.5x - 0.01x2

so the marsinal revenue function is

R'(x) - 3.5 0.02x

and the marginal cost function is

C'(x) : 1.26 0.02x + 0.00021x2

Thus, marginal revenue is equal to marginal cost when

3.5 0.02x: 1.26 0.02x + 0.00021x2

Solving, we get

0

F

,r*" :' 103

we compute the second derivatives:

C"(x)- -0.02 + 0.00042x

2.24

0.000x

IGURE 4

160
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Thus, R"(x) < C"(x) for all x ) 0. Therefore, a production level of 103 units
will maximize the profit. I
EXAMPTE 3 r A store has been selling 200 compact disc players a week at $350
each. A market survey indicates that for each $10 rebate offered to the buyers,
the number of sets sold will increase by 20 a week. Find the demand function
and the revenue function. How large a rebate should the store offer to maximize
its revenue?

SoLlJTi0l{ If x is the number of cD players sold per week, then the weekly
increase in sales is.r - 200. For each increase of 20 players sold, the price is
decreased by $10. So for each additional player sold the decrease in price will be
2o-r X 10 and the demand function is

p(x) :3s0 - Ha - 200) : aso - lx
The revenue function is

R(x)- xp(x):450x

Since R'(-r) : 450 - .r, we see that R'(r) : 0 when ,r : 450. This value of x
gives an absolute maximum by the First Derivative Test (or simply by observing
that the graph of R is a parabola that opens downward). The corresponding price
is

p!5o):450 -;(4so):225
and the rebate is 350 - 225:125. Therefore, to maximize revenue the store
should offer a rebate of $125. r

Exercises

i*'

l. A manufacturer keeps precise records of the cost C(x)
of producing x items and produces the graph of the cost
function shown in the figure.
(a) Explain why C(0) > 0.

(b) What is the significance of rhe inflection poinr?
(c) Use the graph of C to sketch the graph of rhe mar-

ginal cost function.

(c) Estimate the value of x for which c(x) is a mini-
mum. How are the average cost and the marginal
cost related at that value of x?

3. The average cost of producing x units of a commodity is

c(x) - 2l.4 0.002x

Find the marginal cost at a production level of 1000
units. In practical terms, what is the meaning of your
answer?

The graph of a cost function C is given.
(a) Draw a careful sketch of the marginal
(b) Use the geometric interpretation of the

c(x) as a slope (see Figure 1) to draw a

sketch of the average cost function.

cost function.
average cost
careful

2.
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4. The figure shows graphs of the cost and revenue

functions reported by a manufacturer.
(a) Identify on the graph the value of x for which the

profit is maximized.
(b) Sketch a graph of the profit function.
(c) Sketch a graph of the marginal profit function.

5-6 I For each cost function (given in dollars), find (a) the

cost, average cost, and marginal cost at a production level of
1000 units; (b) the production level that will minimize the

average cost; and (c) the minimum average cost.

5. C(x) * 1600 * 8x + 0.01x2

6. C(x) - 2u[ * r2lsoocl

fiE z-e r A cost function is given.
(a) Find the average cost and marginal cost functions.
(b) Use graphs of the functions in part (a) to estimate the

production ler,,el that minimizes the average cost.

(c) [Jse calculus to find the minimum average cost.

(d) Find the rninimum value of the marginal cost.

7. C(x) : 3700 + 5.r o.o4x2 + 0.0003;i

8. C(x) : 339 + 25x 0.09x2 + 0.0004x1

(b) Use calculus to find the production level for maxt-
mum profit.

| 2. An aircraft manufacturer wants to determine the best

selling price for a new airplane. The company estimates

that the initial cost of designing the airplane and setting

up rhe factories in which to build it will be 500 million
dollars, and that the additional cost of manufacturing
each plane can be modeled by the function
m(x) - 20x 5x3io + 0.01x2, where r is the number

of aircraft produced and rn is the manufacturing cost,

in millions of dollars. The company estimates that if it
charges a price p (in millions of dollars) for each plane,

it will be able to sell x( f;) - 320 1.7p planes.

(a) Find the cost, demand, and revenue functions.
(b) Find the production level and the associated selling

price of the aircraft that maximizes profit.

13. A baseball team plays in a stadium that holds 55"000

spectators. With ticket prices at $10' the average

attendance had been 21 ,000. When ticket prices were

lowered to $8, the average attendance rose to 33,000.
(a) Find the demand function, assuming that it is

linear.
(b) How should ticket prices be set to maximize

revenue?

14. During the summer rnonths Terry makes and sells neck-

laces on the beach. Last sumrner he sold the necklaces

for $10 each and his sales averaged 20 per day. When he

increased the price by $1, he found that he lost two sales

per day.
(a) Find tl-re demand function, assuming that it is

I i near.
(b) If the material for each necklace costs Terry $6,

what should the selling price be to maximize his

prof it?

15. A manufacturer has been selling 1000 television sets a

week at $450 each. A market survey indicates that for

each $10 rebate offered to the Lruyer, the number of sets

sold will increase by 100 Per week.
(a) Find the demand function.
(b) How large a rebate should the company offer the

buyer in order to maximize its revenue?

(c) If its weekly cost function is C(x) : 68,000 + 150"r,

how should it set the size of the rebate in order to

maximize its profit?

16. The manager of a 100-unit apartment complex knows

from experience that all units will be occupied if the

rent is $400 per month. A market survey suggests that,

on the average, one additional unit will remain vacant

for each $5 increase in rent. What rent should the

manager charge to maximize revenue?

g-10 I For
production

9. C(x) =*

10. C(x) -
P(x) :

the given cost and dernand functions,, find the

level that will maximize profit.

680 + 4x + 0.01x?, p(x) : 12 x/500

10,000 + 28x 0.0lxt + 0.002x:r,

90 - 0.02x

E= n. The cost, in dollars, of producing -r yards of a certain

fabric is

C(x) : 1200 + l?.x 0.1x1 + 0.0005-rl

and the company finds that if it sells x yards, it can

cha rge

p(x) : 29 0.00021x

dollars per yard for the fabric.
(a) Graph the cost and revenue functions and use the

graphs to estimate the prodr-rction level for maxi-
mum profit.

) : R(x)

y - C(r)
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Newton's Method

Suppose that a car dealer offers to sell you a car for $18,000 or for payments of
$375 per month for five years. You would like to know what monthly interest rate
the dealer is, in effect, charging you. To find the answer, you have to solve the
equation

4gr(1 + .r)ut' (l +,{)uo + 1 - 0

0.15 (The details are explained in Exercise 29.) How would you solve such an equation?
For a quadratic equation ax2 + bx + c : 0 there is a well-known formula for

the roots. For third- and fourth-degree equations there are also formulas for the
roots but they are extremely complicated. If / is a polynomial of degree 5 or
higher, there is no such formula (see the note on page242). Likewise, there is no

0'012 formula that will enable us to find the exact roots of a transcendental equation such
.; as cos-r : -tr.

-0'0s We can find an approximate solution to Equation I by plotting the left side of
FIGSRE I the equation. Using a graphing device, and after experimenting with viewing

rectangles, we produce the graph in Figure l.
We see that in addition to the solution x : 0, which doesn't interest us. there is

a solution between 0.007 and 0.008. Zooming in shows that the root is approxi-
mately 0.0076. If we need more accuracy we could zoom in repeatedly, but that
becomes tiresome. A faster alternative is to use a numerical rootfinder on a calcu-
lator or computer algebra system. If we do so, we find that the root, correct to nine
decimal places, is 0.007628603.

How do those numerical rootfinders work? They use a variety of methods,
but most of them make some use of Newton's method, also called the Newton-
Raphson method. We will explain how this method works, partly to show what
happens inside a calculator or computer, and partly as an application of the idea of
linear approximation.

The geometry behind Newton's method is shown in Figure 2, where the root
that we are trying to find is labeled r. We start with a first approximation x1, which
is obtained by guessing, or from a rough sketch of the graph of/, or from a com-
puter-generated graph ofl Consider the tangent line t to the curve y : /(x) at the
point (x1, /(xr)) and look at the .r-intercept of t, labeled xz. The idea behind New-
ton's method is that the tangent line is close to the curve and so its -x-intercept, x2,
is close to the x-intercept of the curve (namely, the root r that we are seeking). Be-
cause the tangent is a line, we can easily find its -r-intercept.

To find a formula for xzin terms of -{1 we uSe the fact that the slope of I is

f'(x,), so its equation is

)' /(r')-J''(x')(r xr)

Since the x-intercept of L is .{2, we set } - 0 and obtain

n

Try to solve Equation I using the
numerical rootfinder on your calculator
or comPuter. some machines are not
able to solve it. Others are successful

but require you to specify a starting
point for the search.

(r', "f(r' ))

)':.f(.r:)=:_*

FIGURE 2
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tf /'(rr) + 0, we can solve this equation for x2:

x2:.t #*
We use x2 &S a second approximation to r.

Next we repeat this procedure with xr replaced by x2,

(xr, f (*r)). This gives a third approximation:

-{i-.{2 +P-- ; 
.f '(x r)

If we keep repeating this process we obtain a sequence

J3, J4, as shown in Figure 3. In general, if the nth

.f'(x,) + 0, then the next approximation is given by

using the tangent line at

of approximations xt, xz,

approximation is J,, and

FIGURE 3

Sequences were briefly introduced in

A Preview of Calculus on page 6. A more

thorough discussion starts in Section 8.1.

J,, become closer and closer to r as n becomes large, then we say

converges to r and we write

E

If the numbers
that the sequence

@

!,\*": '
Although the sequence of successive approximations converges to the desired root
for functions of the type illustrated in Figure 3, in certain circumstances the se-

quence may not converge. For example, consider the situation shown in Figure 4.

You can see that x2 is a worse approximation than xy. This is likely to be the case

when/'(x1) is close to 0. It might even happen that an approximation (such as x3 in
Figure 4) falls outside the domain of /. Then Newton's method fails and a better
initial approximation .r1 shoulcl be chosen. See Exercises 2l-23 for specific exam-
ples in which Newton's method works very slowly or does not work at all.

EXAMPLE I r Starting with xr : 2, find the third approximation xr to the root

of the equation ,rt - 2x - 5 : O.

SOLUTl0lt We apply Newton's method with

f(r) : x3 - 2x - 5 and f'(x) :3x2 - 2

Newton himself used this equation to illustrate his method and he chose x1 : 2

after some experimentation because/(l) : -6, f(2): -1, and/(3) : 16.

Equation 2 becomes

x: 2x,, 5

3*i, 2

FIGURE 4

ri 2x, 5

3"Y:t - 2

23 2Q) 5

3ef-2

(,t', "f(x'))

(-r,."f(.r,))

Withn-lwehave

1t
L.L



Then with n - 2 we obtain

Q.D3-zQ.r)-s _
3(2.D? 2

sEcTlolt 4.8 ltt\l/I0N's t'tEIH0D t29

2.0946

3n

xt: x2 x)-?xz- 5

3xi 2

2.1

It turns out that this third approximatioD .r: - 2.0946 is accurate to four
decimal places. i

Suppose that we want to achieve a given accuracy, say to eight decimal places,
using Newton's method. How do we know when to stop? The rule of thumb that is
generally used is that we can stop when successive approximations _r,, and x,,*;
agree to eight decimal places. (A precise statement concerning accuracy in New-
ton's method will be given in Exercises 8.9.)

Notice that the procedure in going from n to n t I is the same for all values of
n. (It is called an iterative process.) This means that Newton's method is particu-
larly convenient for use with a programmable calculator or a computer.

FiXAMF'i f ? r Use Newton's method to find (i correct to eight decimal places.

$ix,liTl$f,, First we observe that finding f2 is equivalent to finding the positive
root of the equation

so we take f (x) - x6
becomes

x6 2-0

2. Then f'(x) - 6x5 and Formula 2 (Newton's method)

x:2
xn+l : xn 

u'C

If we choose x1 - I as the initial approximation, then we obtain

x2 : l. 16666 667

x3 : 1.12644368

xa : 1.12249707

x-s : 1.12246205

Since Js ond x6 o,gree to

x 6 : 1.12246205

eight decimal places, we conclude that

{, : t.tzz46z0s

lto eight decimal places.
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EXAMPLE 3 I
cosx - x.

Find, correct to six decimal places, the root of the equation

equation in standard form:

cosr x- 0

x' Then f'(x) - -sinx 1, so Formula 2

$$LUTIGN We first rewrite the

Therefore, we let f(x) - cos-x

becomes

xn+': xn 
cosxn - x'? ' cos'tr'? )'n

-sin,r,, - I 
: x" T 

slnx" + I

In order to guess a suitable value forxr we sketch the graphs of y : cosx and

y : x in Figure 5. It appears that they intersect at a point whose.r-coordinate is

somewhat less than I, so let's take xr : I as a convenient first approximation.

Then

xz - 0.7503638'l

xt - 0.73911289

x+ - 0.73908513

xs : 0.73908513

Since xa and xs agree to six decimal places (eight, in fact), we conclude that the

root of the equation, correct to six decimal places, is 0.739085.

FIGURE 5

Instead of using the rough sketch in Figure 5 to get

Newton's method in Example 3, we could have used

a calculator or computer provides. Figure 6 suggests

initial approximation. Then Newton's method gives

fl

a starting approximation for
the more accurate graph that

that we use 11 : 0.75 as the

xz - O.739llll4

r: - 0.73908513

r+ - 0.73908513

and so we obtain the same answer as before, but with one fewer step. In general, it
is often efficient to use a computer and Newton's method in tandem-the graphing

device to eet started and Newton's method to finish.

0-l

FIGURE 6



EXgfCiSgS . . . . . . | . . | | r r . | . | . I

l. The figure shows the graph of a function/ Suppose that
Newton's method is used to approximate the root r sf
the equation/(*) - 0 with initial approximation x1 - l.
Draw the tangent lines that are used to find,{2 flnd r:,
and estirnate the numerical values of J: ond x:.

2. Follow the instructions for Exercise I but use r1 :9 as

the starting approximation for finding the root s.

3. Suppose the line )' - 5x 4 is tangent to the curve

)' - /(x) when r - 3. If lriewton's method is used to
locate a root of the equation /(x) - 0 and the initial
approximation is x1 - 3, find the second approxima-
tion x2.

4. For each initial approximation, determine graphically
what happens if Newton's rnethod is usecl for the
function whose graph is shown.
(a),{1 -0 (b)"r1 :1 (c)x, -3
(d) ,r1 - 4 (e) 'r1 :5

5-6 I use Newton's method with the given initial approxi-
mation xr to find *.,, ttre third approximation to the root of
the given equation. (Give your answer to four decimal
places.)

5.rt+,r+1:0, J1 --1
6.x'- 100:0, J1 -z

7-8 I Use Newton's method to approximate the given
number correct to eight decimal places.

7. W B. $mo
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9-10 r use Newton's method to approximate the indicated
root of the equation correct to six decimal places.

9. The positive root of 2 sin x : r
f 0. The root of tan r - r in the interval (r/2,3n12)

f= ll-18 r Use Newton's merhod ro find all the roots of the
equation correct to eight decimal places. Start by drawing a

graph to find initial approximarions.

ll. xr : 4x I

f3.2cosx-2 r
15. .,ro + 3x"' r l0 : 0

16.Ju-.tru+Lxa +5x 14:0
17. vft "r il - }sin a'r

18. cos(x2 + 1) : r-'

19. (a) Apply Newton's method to the equation xr ct -_ 0
to derive the following square-root algorithm (usecl

by the ancient Babylonians to compute n/a ):

| ( u \
tr,r*r _2\r,,+ 

;)
(b) Use part (a) to comput* ./IOOO correct to six cleci-

mal places.

20. (a) Apply Newton's method to the equation
ll* - a - 0 to derive the following reciprocal
algorithm:

Jn+l :2X,, AX:

(This algorithm enables a computer to find recip-
rocals without actually dividing.)

(b) Use part (a) to compute 1/1.6984 correct to six
decimal places.

2l. Explain why Newton's method does not work for find-
ing the root of the equation xt 3x + 6 - 0 if the
initial approximation is chosen to be .u1 : 1.

22. (a) Use Newtorl's rnethod with x1 - I to find the root
of the equation x' ,r : 1 correct to six decirnal
places.

(b) Solve the equation in part (a) using rr : 0.6 as the
initial approximation.

(c) Solve the equation in part (a) using rr : 0.57. (You
definitely need a programmable calculator for this
parr.)

(d) Graph .f(x): r'' - ,r I and its tangent lines ar
r1 - 1, 0.6,, and 0.57 to explain why Newton's
method is so sensitive to the value of the initial
approximation.

NJ
tt
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23. Explain why Newton's method fails when applied to the

equation i6-- 0 with any initial approximation x1 # 0.

Illustrate your explanation with a sketch.

24. Use Newton's method to find the absolute minimum
value of the function/(r) - irn + sin x correct to four
decimal places.

25. [Jse Newton's method to find the coordinates of the

inflection point of the curve y - ecos 
t correct to six

decimal places.

26. Of the infinitely many lines that are tangent to ttre
curve -)r - -sin x and pass through the origin' there is
one that has the largest slope. Use Newton's method to
find the slope of that line correct to six decimal places.

27. A grain silo consists of a cylindrical main section, with
height 30 ft, and a hemispherical roof. In order to
achieve a total volume of 15,000 ft3 (including the part
inside the roof section), what would the radius of the

silo have to be?

28. In the figure, the length of the chord AB is 4 cm and the

length of the arc AB is 5 cm. Find the central angle 0.

in raclians, correct to four decimal places. Then give the

answer to the nearest degree.

29. A car dealer sells a new car for $18,000. He also offers

to sell the same car for payments of $375 per month for
five years. What monthly interest rate is this dealer

charg ing?

To solve this problem you will need to use the for-

mula for the present value A of an tlnnuity consisting

of ru equal payments of size R with interest rate i per

time period:

RA:; [r (1 + l):"]

Replacing i by x, show that

48x(l +'t')n" (t +,,Y)o''+l-0
Use Newton's method to solve this equation.

,30. The figure shows the Sun located at the origin and

Earth at the point (1,0). (The unit here is the distance

between the centers of Earth and the Sun, called an

ttstronomical unit: I AU : 1.496 x 108 km.) There are

five locations Lr , Lr, L3, La, &nd Ls m this plane of
rotation of E,arth about the Sun where a satellite

remains motionless with respect to Earth because the

gravitational attractions of E,arth and the Sun acting on

the satellite balance each other. These locations are

called libration points. (A solar research satellite has

been placed at one of these libration points.) If /711 is

the mass of the Sun, trLr is the mass of Earth, and

r : m2f Qn1 + mt), it turns out that the r-coordinate of
Lt is the unique root of the fifth-degree equation

p(r) - .{t - (2 + r);a + (t + }r)x} - (1 r)x?

+ 2(l r)r + r - I : 0

and the x-coordinate of L2 is the root of the equation

p(x) Zr.,cz - 0

Using the value r : 3.04042 X 10 6, find the locations

of the libration points (a) L1 and (b) f:.

Antiderivatives

A physicist who knows the velocity of a particle might wish to know its position at

a given time. An engineer who can measure the variable rate at which water is

leaking from a tank wants to know the amount leaked over a certain time period.

A biologist who knows the rate at which a bacteria population is increasing might
want to deduce what the size of the population will be at some future time. In each

case, the problem is to find a function whose derivative is a known function.

5cm
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In Section 2.10 we introduced the idea of an antiderivative and we learned how
to sketch the graph of an antiderivative of/if we are given the graph ofl Now that
we know the differentiation formulas, we are in a position to find explicit expres-
sions for antiderivatives. For instance, let/(x) : x'. It is not difficult to discover
an antiderivative of /if we keep the Power Rule in mind. In fact, if F(x): \x3,
then F'(x) : x' : f(x). But the function G(x) : {x3 + t00 also sarisfies
G'(x) : x2. Therefore, both F and G are antiderivatives of I Indeed, any function
of the form H(x): \x3 + C, where Cis a constant, is an antiderivative ofl The
following theorem says that/has no other antiderivative. A proof of Theorem I,
using the Mean Value Theorem is outlined in Exercise 43.

Going back to the functionf(x) : "trt, we see that the general antiderivative of;f
is x3f3 + C. By assigning specific values to the constant C we obtain a family of
functions whose graphs are vertical translates of one another (see Figure l).

EXAMPLE I r Find the most general antiderivative of each of the following
functions:
(a),f(x): sinx (b) f(x): r/x (c) f(x): x', n # -1
SOLUTION

(a) If F(x) : -cosr, then F'("r) : sinx, so an antiderivative of sine is -cosine.
By Theorem 1, the most general antiderivative is G(.r) : -cosx * C.

(b) Recall from Section 3.7 that

!r"*):1axx
So on the interval (0, m) the general antiderivative of l/x is ln x * C. We also
learned that

+(rnlxl)0x -l x

for all x + 0. Theorem I then tells us that the general antiderivative of
f (*) - llx is ln I x | + C on any interval that doesn't contain 0. In particular,
this is true on each of the intervals (-*,0) and (0, *).
(c) We use the Power Rule to discover an antiderivative of x". In fact, if
n + -1. then

A function F is called
F'(x) : f (x) for all x

an antiderivative of f on an interval
in I.

rif

tr f heorem If F is an antiderivative of f on an interval /, then the most
general antiderivative of ,f on 1 is

F(x) + C

where C is an arbitrary constant.

*(#) :v#:-.n
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To obtain the most general antiderivative
(on an interval) from the particular ones

in Table 2 we have to add a constant, as

in Example l.

Thus, the general antiderivative of /("r) : x" is

xn*'F(x): 

- 

+ Cn*l

This is valid for n ) 0 since then/(.r) : x" is defined on the interval (--.*).
If n is negative (but n + -l), it is valid on any interval that doesn't contain 0.

n

As in Example l, every differentiation formula, when read from right to left,
gives rise to an antidifferentiation formula. In Table 2 we list some particular an-
tiderivatives. Each formula in the table is true because the derivative of the func-
tion in the right column appears in the left column. In particular, the first formula
says that the antiderivative of a constant times a function is the constant times the
antiderivative of the function. The second formula says that the antiderivative of a
sum is the sum of the antiderivatives. (We use the notation F' : f, G' : g.)

E Table of Antidifferentiation Formulas

Funct icln Pa rt icr-r ltrr lult irler ivilt il'e

cl'( r )

/(.r) + q(.r)

-\" (tt + -l)
Ilt
(,'

tlos.I

sin .r

sc c 
l-v

I

\ I - .\l
I

-- 

aI + .r-

cF (.r )

F'(.r) + (i(.r )

i1_
n+l
lnl.r 

I

(t'

sin.r'

- cos .I

tan.r

sin

t |ul

EXAMPLE 2 I Find all functions g such that

g'(x)-4sinr 3xs + 6{F

SOLUTION We want to find an antiderivative of

f(x):g'(x) -4sinx 3xs + 6x3t+

Using the formulas in Table 2 together with Theorem l, we obtain

s(x): 4(-cosx) t++ 6++ c

--4cosx 
x6+ 24ri,^+ c27 ffi
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In applications of calculus it is very common to have a situation as in Example
2, where it is required to find a function, given knowledge about its derivatives. An
equation that involves the derivatives of a function is called a differential equa-
tion. These will be studied in some detail in Chapter 7, but for the present we can
solve some elementary differential equations. The general solution of a differential
equation involves an arbitrary constant (or constants) as in Example 2. However,
there may be some extra conditions given that will determine the constants and
therefore uniquely specify the solution.

EXAMPLE 3 r Find/itf'(x) : e' * 20(l * x')-' and/(0) : -2.
SOLUTION The general antiderivative of

1i
f'(x\:e'+ '"r\^, " llx2

is f(x) : e* + 2}tan-tx + C

To determine C we use the fact that /(0) - -2:

/(o) : eo + 2otan-'o + c: -2

Figure 2 shows the graphs of the func-
tion f in Example 3 and its antideriv-
ative/ Notice that f'(x) > 0 so/is
always increasing. Also notice that when

/' has a maximum or minimum, / appears
to have an inflection point. So the graph

serves as a check on our calculation.

FIGURE 7

have C : -Z 1 - -3, so the particular

f (x) - e* + 2o tan-lx

4 t Find f if f"(x)

The general antiderivative of f " (x) : lLxz

solution is

3

- 4, and/(l) : 1.

+ 6x 4is

once more, we find that

+ cx + D-x4 + x3 2x2 + Cx + D

Thus, we

EXAMPLE

5St"tiTl0r.l

ffi

f'(x): n++ 6+ 4x+ c-4x3+ 3x2 4x+ c32
Using the antidifferentiation rules

f(x): 4++ 3+ 4+432
To determine C and D we use the given conditions that/(O) - 4 and/(l) : 1.

Since/(O) : 0 + D : 4,we have D : 4. Since

/(r):1+l-2+c+4:r
we have C : -3. Therefore, the required function is

f(x):xa+x3-2x2-3x*4 :

EXAMPLE S r If /(x) : JT +-F - x, sketch the graph of the antiderivative F
that satisfies the initial condition F(-l) : 0.

SOLUTIOII We could try all day to think of a formula for an antiderivative of /
and still be unsuccessful. A second possibility would be to draw the graph of/
first and then use it to graph F as in Example 4 in Section 2.10. That would
work, but instead let's create a more accurate graph by using what is called a

direction field.

-25
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Since/(0): l, the graph of Fhas slope I whenx : 0. So we draw several
short tangent segments with slope 1, all centered at x : 0. We do the same
for several other values of -r and the result is shown in Figure 3. It is called a

direction field because each segment indicates the direction in which the curve
y : F(x) proceeds at that point.

v
//4

//3

//2

/ /r

/1

," -tt ,/

,/ .'t //

a.t ...- ,/

./ "-" /"
-/ -./ -..

,.t ---' ,rt

.at ..'t ,a''

." ,"

// I
// /
,// /
,// /
,// /
// /
,// /
// I

-tt -t/ ,"

///

/v-/7/7
// /

-/
l1

FIGURE 3

A direction field for /(x) - fr + 
"3 

- r.
The slope of the line segments above
.x-aisf(a).

FIGURE 4
The graph of an antiderivative
follows the direction field.

Now we use the direction field to sketch the graph of F. Because of the initial
condition F(-l) : 0, we start at the point (-1,0) and draw the graph so that it
follows the directions of the tangent segments. The result is pictured in Figure 4.
Any other antiderivative would be obtained by shifting the graph of/upward or
downward.

G Rectilinear Motion

t

Antidifferentiation is particularly useful in analyzing the motion of an object mov-
ing in a straight line. Recall that if the object has position function s : /(r), then
the velocity function is z(r) : s'(t). This means that the position function is an
antiderivative of the velocity function. Likewise, the acceleration function is
a(t) : u'(t), so the velocity function is an antiderivative of the acceleration. If the
acceleration and the initial values s(0) and u(0) are known, then the position func-
tion can be found by antidifferentiating twice.

EX AMPLE

a(t) - 6t
is s(0) :

$ffiLt",Tr0N

6 I A particle moves in a straight line and has acceleration given by
+ 4. Its initial velocity is ?(0) - -6 cm/s and its initial displacement
9 cm. Find its position function s(r).

Since u'(t) : a(t) - 6t + 4, anttdifferentiation gives

1

t-uk\:6- + 4t + C-3tz + 4t + C\/ ,)
L

Note that ?(0) - C. But we are given that ?(0) - -6,, so C -- -6 and

y
//4

//3

./ /1
/ /L

/t
,/

att .t' ."/
.t' -1

u(t) - 3tz + 4t 6
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Since u(t) - r'(r), s is the antiderivative of u:

tt t' r+ zt? 6t+ Ds(r) - tT + O , 6t + D: t'

This gives s(0) - D. We are given that r(0) - 9, so D - 9 and the required
position function is

t(r)-tt+Ztz 6t+9

An object near the surface of the earth is subject to a gravitational force that
produces a downward acceleration denoted by g. For motion close to the earth we
may assume that g is constant, its value being about 9.8 m/s2 (or 32 ft/sz).

EXAMPLE 7 r A ball is thrown upward with a speed of 48 ftA from the edge of
a cliff 432 ft above the ground. Find its height above the ground / seconds later.
When does it reach its maximum height? When does it hit the ground?

$OLUTlOil The motion is vertical and we choose the positive direction to be
upward. At time t the distance above the ground is s(t) and the velocity a(r) is
decreasing. Therefore, the acceleration must be negative and we have

l,

Figure 5 shows the position function
of the ball in Example 7. The graph
corroborates the conclusions we
reached: The ball reaches its maximum
height after 1.5 s and hits the ground
after 6.9 s.

500

Taking antiderivatives, we have

We reject the solution with
Therefore, the ball hits the

du
a(t) : E- -32

u(t):-32t+C

solve this equation, we get

3 + 3\/13
1-
L

2

To determine C we use the given information that a(0) : 48. This gives
48:0*C,so

u(t):-32t+48
The maximum height is reached when o(r) : 0, that is, after 1.5 s. Since
s'(r) : a(t), we antidifferentiate again and obtain

s(t): -16t2 + 48t + D

Using the fact that s(0) : 432, we have 432 : 0 + D, and so

s(t):-16t2+48t+432
The expression for s(t) is valid until the ball hits the ground. This happens when
s(r) : I, that is, when

-l6t' + 48t + 432-0

or, equivalently,

Using the quadratic formula to

t7 3t 27:0

the minus sign since it gives a negative value for /.

ground after 3(l + t/13 ) lZ -; 6.9 s.FIGURE 5 ,#
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l- | 0 I Find the most general antiderivative
Check your answer by differentiation.

1. f(x) : l2x2 * 6x - 5

2. f(x) - 6.tre - 4x1 + 3x2 + 1

3. f(x) - 6/x5 4. f(x) :

s. g(t) : (t3 + 2t\ I ,E 6. h(x) :

l. f(t): secz/ + t' 8. f(0) _

9. f(*) : 2x + 5(1 - xzl-rtz

10./(xr-x2+x+1

n= ll-12 r Find the antiderivative F otfthat satisfies the
given condition. Check your answer by comparing the
graphs of f and F.

I l. /(x) : 5xa - 7xt, ;'(0) - 4

12. f (x) - 4 3(1 * xt) -" F(1) - 0

f 3-20 r Find f (x).

13. f"(x) : x2 + x3 14. f"'(x) : tE
15. f'(x) : 2/x, x < 0, f(*l) : 7

16. f'(x) - I + l/*', x ) 0, f(I) : I

17. f"(x) : 6x + 6, /(0) : 4, /(1) - 3

18. /"(x) - I2x? 6x * 2, /(0) : l, f(2): ll
19. f"(x) : x-', x ) 0, /(1) : 0, f(2): 0

2O. f"(x) : 3e* + 5 sin x, "f(0) 
: 1, /'(0) - 2

21. Given that the graph of /passes through the point (1,6)
and that the slope of its tangent line at (x, /(x)) is
2x * l, find f(2).

22. Find a function/such that f'(x) - x3 and the line
x * y : 0 is tangent to the graph of /

23. The graph of f is shown. Sketch the graph of 
"f 

if / is

continuous and /(0) : - l.
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Exercises

of the function.

w-8
sinx 2cosx

eu + sec0tanO

El Zq. (a) Use a graphing device to graph f (x) - sx - 2x.
(b) Starting with the graph in part (a), sketch a rough

graph of the antiderivative F that satisfies F(0) : l.
(c) Use the rules of this section to find an expression

for F(x).
(d) Graph F using the expression in part (c). Compare

with your sketch in part (b).

25-26 I A direction field is given for a function. Use it to
draw the antiderivative F that satisfies F(0) : -2.
25.

I / r-\\ \-/
I / t-\ \ \-/
I I t-\ \ \ - /
/ / t-\\ \-/

y

2

-2

//r r\rtZz
/ / t-\\ \-/
/ / t-\ \ \-/
/ / t-\ \ \-/

26.
/ Z -= ,/ / / ,z -'-
/ z --- / / / ,z ---
/ z -- / / / ,z ---
/ / --- / / I / ---
I Z -- / / / ,2/-
/ / -- / / / ,t --
/ / -- / / / / --
/ / -- / / / ,t.--
/ / -: / / / / --
/ ,/ -- / / / ,/.--
/ / -- / / / / -'-
*t---8/ / /12-
/ I -= ,/ / / ,t -'-
/ I -- ,/ / / ,t ---

-2

27-28 I Use a direction field to graph the antiderivative
that satisfies F'(0) - 0.

sin x27.f(x): , ,0< x12rr

28. f(x) : x tan.r, -rr/2 ( x < n/2

29. A function is defined by the following experimental
data. Use a direction field to sketch the graph of its
antiderivative if the initial condition is F(0) : 0.

I 0 0.2 0.-1 0.6 0. ri I.0 t.l l .-l 1.6

I (.t) 0 0.l ( ).5 0.li 1.0 0.6 0.2 0 0.I



31.

30.

32.

33.

34.

35.

36.

37.

(a) Draw a direction field for the function /(x) - ll*t
and use it to sketch several members of the family
of antiderivatives.

(b) Compute the general antiderivative explicitly and

sketch several particular antiderivatives. Compare
with your sketch in part (a).

A particle moves along at straight line with velc-rcity

fr-rnction u(t) - 3 v'r and its initial displacement is

s(1) : 5 rn. Find its position function s(r).

A particle moves with acceleration function
a(/) - cos / + sin /. Its initial velocity is ?r(0) : 5 cm/s
and its initial displaccment is s(0) - 0 cm. Find its
position after / seconds.

A stone is dropped from the upper observation deck (the

Space Deck) of the CN Tower,450 m abol'e the ground.
(a) Find the distance of the stone above ground level at

time /.

(b) How long cloes it take the stone to reach the ground?
(c) With what velocity does it strike the ground'l
(d) If the stone is thrown downwlrrd with a speed of

5 m/s, how long does it take to reach the grouncl'l

Show that for motion in a straight line with constant
accelerertion a, initial velocity ?u, and initial displace-
ment s11, the displacement after time r is

.s : \ttt: + I)ol + .\,

An object is projected upward with initial velocity
il1; tnetors per second from a point s1; treters atrove the
ground. Show that

[u(r)]' -- ui - r e.6 tr(r) sr,l

Two balls are thrown upward from the edge of the
cliff in E,xample 7. The first is thrown with a speed of
48 ft/s and the second is thrown I s later with a speed

of 21 ft/s. Do the balls ever pass each other?

A stone was droppecl off a cliff and hit the ground with
a speed of 120 ft/s. What is the height of the cliff-?
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cost of producing one item is $562, find the cost of
producing 100 items.

The linear density of a rod of length 1 m is given by
p(x) - lltf; in grams per centinteter, where r is

measured in centimeters from one end of the rod. Find
the mass of the rod.

To prove Theorem l, let tr and G be any two anti-
derivatives of ,f on 1 and let H - G Ir.

(a) If x1 and "r2 flre any two numbers in 1 with x1 ( rr,
apply the Mean Value Theorem on the interval

["', x2] to show that H(x,) : H(x=). Why does this
show that H is a constant function?

(b) Deduce Theorern I from the result of part (a).

Since raindrops grow as they fall, their surface area

increases and therefore the resistance to their falling
increases. A rainclrop has an initial downward velocity
of 10 mls and its downward acceleration is

42,

43.

44.

38. A car is traveling at 50 mi/h when the brakes are fully
applied, producing a constant deceleration of 40 ft/s?.

What is the distance covered before the car comes to
a stop?

39. What constant acceleration is required to increase the
speed ol'a car from 30 mi/h to 50 mtlh in 5 s'l

A car brake d with a constant deceleration of 40 ft/s2,

producing skid rnarks measuring 160 ft before coming
to a stop. How fast was the car traveling when the
brakes were first applied?

A company estimates that the marginal cost (in dollars
per item) of producing x items is 1.92 0.002x. If the

40.

If the raindrop is initially 500 m above the ground, how
lons does it take to fall?

45. A high-speed "bullet" train accelerates and decelerates

at the rate of 4 ftfs}.Its maximum cruising speed is

90 m i/h.
(a) What is the maximum distancc the train can travel

if it accelerates from rest until it reaches its cruising
speed and then runs at that speed for l5 minutes?

(b) Suppose that the train starts from rest and must

come to a complete stop in 15 minutes. What is
the maximum distance it can travel under these

condition s?

(c) Find the minirnum time that the train takes to travel
between two consecutive statiotrs that are 45 miles

apart.
(d) The trip from one station to the next takes

31 .5 minutes. How far apart are the stations?

46. A model rocket is fired vertically upward from rest. Its
acceleration for the first three seconds is a(r) - 60/ at

which time the fuel is exhausted and it becomes a freely
"falling" body. After 17 seconds, the rocket's parachute

opens, and the (downward) velocity slows linearly to

- l8 ft/s in 5 s. The rocket then "floats" to the ground

at that rate.
(a) Determine the position function s and the velocity

function a (for all times r). Sketch the graphs of s
and a.

(b) At what time does the rocket reach its maximum
height and what is that height?

(c) At what time does the rocket land?

I s o.er ir' o(t-_lo ifr

41.
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Chapter 4 Review
:r C0NCEPT CHECK i.,

l. Explain the clifference between an absolute maximum
ancl a local maximum.

2. (a) What does the Extreme Value Theorem say?
(b) Explain how the Closed Interval Method works.

3. (a) State Fermat's Theorem.
(b) Define a critical number of l.

4. State the Mean Value Ttreorem and give a geometrical
interpretettion.

5. (a) State the Increasing/Decreasing Test.
(b) State the Concavity Test.

6. (a) State the First Derivative Test.
(b) State the Second Derivative Test.
(c) What are the relative advantages and clisadvantages

of these tests?

7. (a) What does I'Hospital's Rule sa1,'J

(b) How can you use I'Hospital's Rule if you have ar

product /(x)i/(x) where /("r) --+ 0 ernd g(-r) * *
as J '-n ct7

(c) How can you use I'Hospital's Rule if you have a dif-
ference /(") - g(.t) where f (x) --') cc and g(x) -> Dc

ASJ-A?
(d) How can you use I'Hospital's Rr.rle if you have a

power [/t*)f i('] where./(x) ---+ Q and g(.r) ---+ 0 as

r --+ a?

8. (a) Given an initial approxirnation ,{1 to a root of the
equation,f(x) : 0, explain geometrically, *ith a

cliagram, how the second approximation rz in
Newton's rnethod is obtained.

(b) Write an expression fbr x2 in terms of .rr,,f(x1), and

.f '(x 
' 
).

(c) Write an expression for-tr,,*1 in terms of xn,.f(x,,),
and ,f '(x,, ).

(d) Under what circumstances is itlewton's methocl
likely to fail or to work very slowly'?

If .f '(r)

lf .f"(2)- [J, then (?, .f(2)) is an inflection point of the
curve ")' - /(x).
If/'(r) : g'(x) for 0 < -r { l" then/'(x) : q(x) for
0 < x i 1.

There exists a function/such that/(l) - -2,1(3) : 0,

and.f '(x)

The,reexistsafunction.lsuchthtltf(*)>0,f,(*)<
and /"(x)
There exists a function / such that /(x) < 0,.f'(r) < 0,

and l'"(r) > 0 for all x.

,& TRUE-FALSE QUtZ ,& -
Determine whether the statement is true or false. If it is
true, explain wh1'. If it is false, explain why or give an

example that disproves the statement.

f . If f'(c): 0, then f has a local maximum or minimum
at {'.

2. lf f has an absolute rninimum value at c. then J''k') - 0" g.

3. If .f is corrtinuous on (a , b), then.f attains an absolute
maximum value/(c'1 ancl an absolute minimum value g.

f (rl) at some numbers c and cl itt (a, b).

4. If f is clifferentiable and f (-_tl - J'(l), then there is a 10.

nurnher c such tlurt I r' I

5.

6.

7.

l:4 r Find the local and absolute rRaximum and minimum
values of the function on the given interr,'al.

l. /(x) - r' - 12x + 5, [-5,3]

z"/(") :m, [-3,0]

3. /(x) : r r,'7 sin x. [0, "r]

4. .f(.r) : xte ''', [0' 3]

5-[? E

(a) Find the vertical and horizontnl asymptotes, if any.
(b) Find the intervals of increase or decrease.
(c) Find the local maximum ancl minimum values.
(d) Find the intervals of concavity and the inf lection

points.
(e) [Jse the information from parts (a)-(cl) to sketch the

graph of "f Check your rvork with a graphing device.

5. .l'(x) : ro - 3x3 + 3x? r



6./(r): t 
'x(r - 3)n

7.f(x) - -r + VT "t

8. -y 
: 4x tan,r, -r/2

9. _)' 
: sin '(llx)

ll. )r : et + e -l'r

{x<nlz
10. l,'- a2r-rl

12. -.r, 
: ln(-rr - l)

CHAPTER 4 REVIEW 341

24. Let g(x) - ,f(rn), where f is twice differentiable for all
x, f'(x) > 0 for all x # 0. and./it concave downward on

(-co,0) and concave upward on (0, m).

(a) At what numbers does g have a maximum or mini-
mum value?

(b) Discuss the concavity of g.

?5:32 tt Evaluate the limit.

mffi I 3- !6 I Produce graphs of / that reveal all the important
aspects of the curve . Use graphs of .f'and f" ts estimate the
intervals of increase and decrease. maximum and minimum
values, intervals of concavity, and inflection points. In
Exercise 13 use calculus to find these quantities exactly.

rt-l
1 3. /.1" t : 

.r.
l/-

ta. fG): -li-1-x
15. /(x) : 3x6 - 5x5 + ru 5xr 2x2 + 2

16. /("r) : sin rcosol-, 0 < r < 2rr

ffiffi tZ. Graph/(x) - e-r".r* in a viewing rectangle that shows

all the main aspects of this function. Estimate the

inflection points. Then use calculus to find them

exac t ly.

m 18. (a) Graph the function/(r) : ll0 + 
""'t).(b) Explain the shape of the graph by computing the

limits of /(r) as ,{ approaches m, -ffi,0-, and 0-.
(c) Use the graph of ./ to estimate the coordinates of the

in f lection points.
(ct) Use your CAS to compute and graph f.".
(e) Use the graph in part (d) to estimate the inflection

point more accurately.

ffi 19. If /(x) : arctan(cos(3 arcsin r)), use the graphs of f, f ' ,

and f" to estimate the x-coordinates of the maximum
and minimum points and inflection points of /.

ffi ZO. If /(x) - ln(Zx + rsin x), use the graphs of .f f', and f"
to estimate the intervals of increase and the inflection
points of /on the interval (0, 15].

ffiffi Zl. Investigate the family of functions/(x) - ln(sinx * C).
What features do the members of this family have in
common? How do they differ? For which values of C is

/ continuous on (-@, co)? For which values of C does I
have no graph at all? What happens as C -> col

ffiH ZZ. Investigate the family of functions /(x) - cxe:''". What
happens to the maximum and minimum points and the
inflection points as c changes? Illustrate your conclu-
sions by graphing several members of the farnily.

23. For what values of the constants a and b is (1,6) a point
of inflection of the curve )' : -tr3 + ax'+ bx * 1?

33. The angle of elevation of the sun is decreasing at a

rate of 0.25 rad/h. How fast is the shadow cast by a

4O0-ft-tall building increasing when the angle of eleva-

tion of the sun is 1116?

34. A paper cup has the shape of n cone with height 10 cm

and radius 3 crn (at the top). If water is poured into the

cup at a rate of 2 cm'}, how fast is the water level
rising when the watcr is 5 cm deep'?

35. A balloon is rising at a constant speed of 5 ft/s. A boy

is cycling along a straight roacl at a speed of l5 ft/s.
When he passes under the balloon it is 45 ft atrove him.
How fast is the distance between the boy and the bal-
loon increasing 3 s later?

36. A waterskier skis over the ramp shown in the t-igure at

a speecl of 30 ftls. How fast is she rising as she leaves

the ramp?

l :*i-:==:i:--.:5

37. Show that the shortest distance from the point (xr, ]'r)
to the straiqht line A; + B.l, + C - 0 is

lA"r1 * B]', + Cl

38.

r'It + Bn

Find the point on the hyperbola r.' - 8 that is closest to

the point (3, 0).

Find the smallest possible area of an isosceles triangle
that is circumscribed about a circle of radius r.

40. Find the volume of the largest circular cone that can be

inscribed in a sphere of radius r.

sin x
25. linr , .'

ln f - 
- Tf -

In(ln.r)
27 . lirrt 

-

-\ -'c ln x

(r \ lt.t((
26. lim

-r -'0 .f,

I + sinx cosx
28. lim

.r -0 I - sinx cosJ

29. lim
-r-[)

30.

32.

lim
r 

-7,-12

lirn x
r +1

(n
t-
\2
l7 ( I '-.t )

3 l . lim (csc 2x

-r --=(J

l
f-

-1r-r -)

39.
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41. InAABC,DliesonAA,lcnl- 5cm, laOl _ 4cffi,
l&n | - 4 cil, and CD I AB. Where should a poinr p
be chosen on CD so that the sum I ra | + lrA | + | 

pC 
I

is a minimum? What if lCDl : 2 cm?

42. An observer stands at a point P, one unit away from a

track. Two runners start at the point S in the figure and
run along the track. One runncr runs three times as fast
as the other. Find the maximum value of the observer's
angle of sight 0 between the runners . [Hint: Maximize
tan 0.1

43. The velocity of a wave of length L in deep water is

where K and c are known positive constants. what is
the length of the wave that gives the minirnum velocity?

44, A metal storage tank with volume V is to be con-
strusted in the shape of a right circularr cylinder
surmounted by a hemisphere. what climensions will
require the least amount of metal?

45. A hockey team plays in an arena with a seating capacity
of 15,000 spee tators. with the ticket price set at $lz,
average attendance at a game has been 11,000. A market
survey indicates that for each dollar that the ticket price
is lowered, average attendance will increase by 1000.
How should the owners of the team set the ticket price
to maximize their revenue from ticket sales?

EE qe . A manufacturer determines that the cost of making
.r units of a commoditv is

C(x) - 1800 + 25.r 0.2x2 + 0.001x3

and the demand function is

p(r') : 18.2 0.03x

(a) Graph the cost and revenue functions and use the
graphs to estimate the production level for maxi-
mum profit.

(b) Use calculus to find the production level for'
maximum profit.

(c) Estimate the production level that minimizes the
average cost.

47. use Newton's method to find the absolute minimum
value of the function/(,r) - rt' + Zxz 8.r + 3 correct
to six decimal places.

48. use Newton's method to find all roots of the equation
6 cos -t : J correct to six dee imal places.

49-50 t Fincl the most general antiderivative of the
f unction.

49. /(x) -_ e' - (llr) s0. s(t) - (l + t) / ,ft

EE ss.

56.

57.

EE ss.

59.

60.

(a) If/(x) - O.le' + sinx, -4 <,r < 4, use a graph of
f to sketch a rough graph of the antiderivative F of .f
that satisfies f(0) == 0.

(b) Find an expression for tr(.r).
(c) Graph F using the expression in part (b). Compare

with your sketch in part (a).

Sketch the graph of a continuous. even function./ such
that./(O) : O,"f'(x) - 2r if 0 < x { l, f'(x) : _-l if
I { r { 3, and,f'(x) : I if x > 3.

A canister is droppecl from a helicopter 500 m above the
ground. Its parachute does not open, but the canister
has been designed to withstand an impact velocity of
100 m/s. Will it burst or not?

Investigate the family of curves given by

/(x)-,r*+r't+ cx'

In particular you should determine the transitional value
of c at which the number of critical numbers changes
and the transitional value at which the number of inflec-
tion points changes. Illustrate the various possible
shapes with graphs.

Show that the equation xrt" + r't' + r I - 0 has
exactly one real root.

Suppose that/(0) - I and 2 < l.'(.r)
[0, 4]. Show that 9 < .f (+1

A rectangular beam will be cut from
of radius 10 inches.
(a) Show that the beam of maximal

a cylindrical log

cross-sectional area
rs a square.

(b) Four rectangular planks will be cut from the four
sections of the log that remain after cutting the
square beam. Determine the dimensions of the
planks that will have maxirnal cross-sectional area.

6t.



(c) Suppose that the strength of a rectangular beam is
proportional to the product of its width and the

square of its depth. Find the dimensions of the

strongest beam that can be cut from the cylindrical
log.

T
I

Depth

I

i

F- width 
-l

62. If a projectile is fired with an initial velocity u at an

angle of inclination g from the horizontal, then its
trajectory, neglecting air resistance, is the parabola

y:(tang)x - 
^ft*r' 

0< g<!
2

(a) Suppose the projectile is fired from the base of a

plane that is inclined at an angle a, a ) 0, from the

horizontal, as shown in the figure. Show that the

range of the projectile, measured up the slope, is
given by

R(0) : Zuz cosg sin(O - a)

g cosz a

(b) Determine 0 so that R is a maximum.
(c) Suppose the plane is at an angle a below the hori-

zontal. Determine the range R in this case, and
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determine the angle at which the projectile should

be fired to maximize R.

A light is to be placed atop a pole of height h feet to

illuminale a busy traffic circle, which has a radius of
40 ft. The intensity of illumination I at any point P on

the circle is directly proportional to the cosine of the

angle 0 (see the figure) and inversely proportional to
the square of the distance d from the source.
(a) How tall should the light pole be to maximrze I?
(b) Suppose that the light pole is ft feet tall and that a

woman is walking away from the base of the pole at

the rate of 4 ft/s. At what rate is the intensity of the

light at the point on her back 4 ft above the ground

decreasing when she reaches the outer edge of the

traffic circle?

63.



Cover up the solution and try solving
the problem yourself first.

Look Back

What have we learned from the solu-
tion to this examplel

r To solve a problem involving several
variables, it might help ro solve a simi-
lar problem with just one variable.

r When trying to prove an inequality,
it might help to think of it as a maxi-
mum or minimum problem.

2- g

x

1. Also, /'(x) < 0 for 0

minimum value of / is /(1) : 2.

One of the most important principles of problem solving is analogy (see page 87).
If you are having trouble getting started on a problem, it is sometimes helpful to
start by solving a similar, but simpler, problem. The following example illustrates
the principle.

Exarrrple lf x, y, and z are positive numbers, prove that

(x2 + l) (y2 + 1) (e' + t)
xyz

Solution It may be difficult to get started on this problem. (Some students have
tackled it by multiplying out the numerator, but that just creates a mess.) Let's
try to think of a similar, simpler problem. when several variables are involved,
it's often helpful to think of an analogous problem with fewer variables. In the
present case we can reduce the number of variables from three to one and prove
the analogous inequality

tr

ln fact, if we are able to prove (1), then the desired inequality follows because

("t + 1) (l't + l) (e' + l)

x2+1
x

The key to proving (l) is to recognize that it is a disguised version of a mini-
mum problem. If we let

then f'(*)- I - (1/*'), so/'(x) - 0 when x -
and f'(x)
This means that

x? + I
"{

and, 4S previously mentioned,
The inequality in (l) could

we have

for all positive values of x

the given inequality follows by multiplication.
also be proved without calculus. In fact, if x

x2 + I

- 

-.- L \----l,
x

€)

x' 2x + l>-- 0

isBecause the last the first one is true too.inequality is obviously true,



ProbIr.nl s 1. If a rectangle has its base on the r-axis and two vertices on the curve y: e-*',
show that the rectangle has the largest possible area when the two vertices are at the

points of inflection of the curve.

2. Show that I sinx - cosxl = JT for all x.

3. Show that, for all positive values of.r and y,

e"!
xy

Let a and b be positive numbers. Show that not both of the numbers a(l b) and

b(l a) can be greater than | .

Find the highest and lowest points on the curve -rt + 
"y 

* yt : 12.

An arc PQ of a circle subtends a central angle 0 as in the figure. Let A(0) be the

area between the chord PQ and the arc PQ. Let B(0) be the area between the

tangent lines PR,QR, and the arc. Find

4.

5.

6.

A@)
lim -+
d-o+ B(0)

7. Find the absolute maximum value of the function

1l
rrlt -- T 

-

r\^' t+lxl t+lx-21

8. Find a function/such that/'(-1) : i, f'tOl : 0, andf"(x) > 0 for all .r, or prove

that such a function cannot exist.

9. Show that. for -r ) 0,

* 
^ 

( tan-lx ( x
l*x'

10. Sketch the region in the plane consisting of all points (x, y) such that

Zxy < lx - yl <.rr2 + y'



11. The line y : mx * b intersects
figure). Find the point P on rhe
the triangle PAB.

the parabola y : xt in points A and B (see the
arc AoB of the parabola that maximizes the area of

12. For what value of a is the following equation true?

(* + o\*lx\,-,/ :e

13. A triangle with sides a, b, and c varies with time r, but its area never changes. Let
be the angle opposite the side of length a and suppose d always remains acute.
(a) Express d0/dt in terms of b, c, 0, db/dt, and, dcldt.
(b) Express da/dt in terms of the quantities in part (a).

14. Sketch the set of all points (",y) such that lx * y | < r'

15. Let ABC be a triangle with LBAC : l20o and l,qn I 
. lacl : l.

(a) Express the length of the angle bisector AD in rerms of x - | enl.
(b) Find the largest possible value of I AD l.

16. (a) Let ABC be a triangle with right angle A and hypotenuse a : lnC | (see the
figure). If the inscribed circle touches the hypotenuse at D, show that

lcn | : +(lacl + lacl - lABl)

(b) It 0 : +LC, express the radius r of the inscribed circle in terms of a and 0.
(c) rf a is fixed and 0 varies, find the maximum value of r.

17. In an automobile race

some time during the
along a straight road, car A passed car B twice. Prove that at
race their accelerations were equal.

y:mx*b



18. ABCD is a square piece of paper with sides of length I m. A quarter-circle is drawn

from B to D with center A. The piece of paper is folded along EF, with E on AB

and F on AD, so that A falls on the quarter-circle. Determine the maximum and

minimum areas that the triangle AEF could have.

19. A container in the shape of an inverted cone has height 16 cm and radius 5 cm at

the top. It is partially filled with a liquid that oozes through the sides at a rate

proportional to the area of the container that is in contact with the liquid. (The

surface area of a cone is nrl, where r is the radius and I is the slant height.) If we

pour the liquid into the container at a rate of 2 cmlfmin, then the height of the

liquid decreases at a rate of 0.3 cm/min when the height is l0 cm. If our goal is to

keep the liquid at a constant height of 10 cm, at what rate should we pour the liquid

into the container?

20. A cone of radius r centimeters and height & centimeters is lowered point first at a

rate of 1 cm/s into a tall cylinder of radius R centimeters that is partially filled
with water. How fast is the water level rising at the instant the cone is completely

submereed?
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r, r,lu * i o, * :'r' ;:r' : l:, :;, :':," : ;,', ;" ":f i : r:[' ;: ;' :::';;'
to find the amount leaked over a certain time period; using

velocity readings of the space shuttle Endeavour to calculuate

the height it has reached at a given time; using the knowledge

of power consumption to .find the energy usecl on a given day

in San Francisco. These prohlems are solved in Section 5.3.

&

&

,&

A

wB"€@ € In Chapter 2 we used the tangent and velocity problems to intro-

duce the derivative, which is the central idea in differential calculus.

In much the same way, this chapter starts with the area and distance

problems and uses them to formulate the idea of a definite integral,

which is the basic concept of integral calculus. We will see in Chapters

6 and 7 how to use the integral to solve problems concerning volumes,

lengths of curves, population predictions, cardiac output, forces on a

dam, work, consumer surplus, and baseball, among many others.

There is a connection between integral calculus and differential calculus.

The Fundamental Theorem of Calculus relates the integral to the

derivative, ?ild we will see in this chapter that it greatly simplifies

the solution of many problems.
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Now is a good time to read (or reread)
A Preview of Calculus (see page 2). lt
discusses the unifying ideas of calculus

and helps put in perspective where we

have been and where we are going.

CHAPTER 5 It|TIGRALS

Areas and Distances

In this section we discover that in attempting to find the area under a curve or the
distance traveled by a car, we end up with the same special type of limit.

I Tne nrea Froorem

We begin by attempting to solve the area problem: Find the area of the region S

that lies under the curve y : f (x) from a to b. This means that S, illustrated in
Figure l, is bounded by the graph of a continuous function / [where /(x) > 0], the

vertical lines .r : a and x : b, and the x-axis.

FIGURE I S:{(x,y) lo*"-h,0<y<f(x)}

In trying to solve the area problem we have to ask ourselves: What is the mean-
ing of the word area? This question is easy to answer for regions with straight
sides. For a rectangle, the area is defined as the product of the length and the

width. The area of a triangle is half the base times the height. The area of a poly-
gon is found by dividing it into triangles (as in Figure 2) and adding the areas of
the triansles.

FIGURE 2 A: lw A- A-4,*Ar*43+44

However, it is not so easy to find the area of a region with curved sides. We all
have an intuitive idea of what the area of a region is. But part of the area problem

is to make this intuitive idea precise by giving an exact definition of area.
Recall that in defining a tangent we first approximated the slope of the tangent

line by slopes of secant lines and then we took the limit of these approximations.
We pursue a similar idea for areas. We first approximate the region S by rectangles

and then we take the limit of the areas of these rectangles. The following example
i llustrates the procedure.

EXAMPLE I r Use rectangles to estimate the area under the parabola | : x2

from 0 to 1 (the parabolic region S illustrated in Figure 3).

lt

inn

.)' - -f(r)



FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

Approximating S with eight rectangles
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SOtUIlOtl We first notice that the area of S must be somewhere between 0 and I
because S is contained in a square with side length 1, but we can certainly do
better than that. Suppose we divide S into four strips Sy, 52, 53, and Sa by
drawing the vertical lines x : L+, x: |, and.x : J as in Figure 4(a). We can
approximate each strip by a rectangle whose base is the same as the strip and
whose height is the same as the right edge of the strip [see Figure 4(b)]. In other
words, the heights of these rectangles are the values of the function f(x) : "z 

u,
the right endpoints of the subintervats [0, ] ], li ,rl, l+, J ], ana [ ] , t].

Each rectangle has width I and the heights are (|)', (+)', G)', and 12. If we
let Rr be the sum of the areas of these approximating rectangles, we get

Ro: I.(i)'+ i.G)' + i.G)'+ I.r,:E:0.4687s
From Figure 4(b) we see that the area A of S is less than Ra, so

A < 0.46875

Instead of using the rectangles in Figure 4(b) we could use the smaller rect-
angles in Figure 5 whose heights are the values of/at the left-hand endpoints
of the subintervals. (The leftmost rectangle has collapsed because its height
is 0.) The sum of the areas of these approximating rectangles is

Lo: I.o'+ I.(i)'+ i'GY + i.G)'--+:0.2t87s
We see that the area of S is larger than La,, so we have lower and upper estimates
for A:

0.21875<A<0.46875

We can repeat this procedure with a larger number of strips. Figure 6 shows
what happens when we divide the region S into eight strips of equal width.

(b)(a)

(a) Using left endpoints (b) Using right endpoints
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FIGURE 7
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By computing the sum of the areas of the smaller rectangles (La) and the sum

of the areas of the larger rectangles (Rr), we obtain better lower and upper esti-
mates for A:

0.2734375 < A < 0.3984375

So one possible answer to the question is to say that the true area of S lies some-

where betwe en 0.273437 5 and 0.398437 5.
We could obtain better estimates by increasing the number of strips. The table

shows the results of similar calculations (with a computer) using n rectangles
whose heights are found with left-hand endpoints (L,) or right-hand endpoints
(R"). In particular, we see by using 50 strips that the area lies between 0.3234
andO.3434. With 1000 strips we narrow it down even more: A lies between
0.3328335 and 0.3338335. A good estimate is obtained by averaging these

numbers: A-0.3333335. *

From the values in the table it looks as if R, is approaching i as n increases. We

confirm this in the next example.

EXAMPLE 2 r For the region S in Example l, show that the sum of the areas of
the upper approximating rectangles approaches |. that is,

lim
lx --->(n

SOLUTION R,, is the sum of the areas of the n rectangles in Figure 7. Each rect-
angle has widthl/n and the heights are the values of the function/(x): *'at
the points l/n,2/n,3/n,...,nfn; that is, the heights are (l/n)2, (2/n)'z, (3/n)2,

...,(n/n)z.Thus

Rn - _+

R.:;(;)'+ :(+)'
I

+
n

I
+

n (+)'(;) ' *

4Cr'+ 22 + 32
n-

I:i(tt+Zz+32+
n"

Here we need the formula for the sum

integers:

I
Rn:

n-

f+22+3?+ +n2: n(n + r) (2n + l)

Perhaps you have seen this formula before. One method of proving it is by
mathematical induction (see Exercise 12).

Putting Formula 1 into our expression for Rn, we get

tr

of the squares of the first n positive

(n + r)(Zn + 1)

n L,, R,,

l0
20

30

50

I00
I 0(x)

0.2n50000

0.3087500

0.3l6ri5l9
0.3 2 34000

0.32ri3500

0.3328335

0.3 tt 50000

0.3587500
0.350lr{52
0.3431000
0.3383500
0.333ri335

n(n + I) (2n + l)
6nz
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Thus, we have

Here we are computing the limit of the
sequence {R,, }. Sequences were dis-
cussed in A Preview of Colculus and will
be studied in detail in Chapter g. Their
limits are calculated in the same way as

limits at infinity (Section 2.5). In par-
ticular, we know that

Ilim-:0
n+x n

lim R,, - lim
n--,rx n )rc

(n + r)(zn + l)
6nz

:rr+("=) (r#)
: ts*(, +;) ('+;)

It can be shown that the lower approximating sums also approach { , that is,

Itm Lo:
ll --+aa

From Figures 8 and 9 it appears that, as n increases, both L, and R" become better
and better approximations to the area of s. Therefore, we define the area A to be
the limit of the sums of the areas of the approximating rectangles, that is,

A- lim R,, - lim
n tx tI -t:x

t==-!- l..t -16rLl

r 
- 

Il-n 
3

FIGURE 8

Rro : 0.385 - 0.3434

: Q.3169 - 0.3234

FIGURE 9
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Let's apply the idea of Examples I and 2 to the more general region S of
Figure l. We start by subdividing S into n strips S,, Sz, . . . , Sn of equal width as in

Figure 10. The width of the interval [a,b] is b - a, so the width of each of the n

strips is

Ax

These strips divide the interval la,bf into n subintervals

["o,.rr], [",, xz}, l*r,xr], l*^-r, x,]

where x0 : a and x n : b. The right-hand endpoints of the subintervals are

-x1 : a + Ax, xz: a + 2A,x, x3: a + 3Ax,

Let's approximate the ith strip S; by a rectangle with width A.r and height/(xr),
which is the value of/at the right-hand endpoint (see Figure ll). Then the area of

the ith rectangle is /(-r;) Ax. What we think of intuitively as the area of S is ap-

proximated by the sum of the areas of these rectangles, which is

R,, : f(xr)Ar + f(xr)Lx +." + f(x")A'x

ba:-
n

FIGURE IO

y: f(x) r

sr

\

s,s2

\
,Sns3

0

FIGURE II



(d)n:12

FIGURE I2

(a)n-/

(b)n:4

(c)n-8

FIGURE I3

-1
n

---
i: nt

_t
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Figure l2 shows this approximation for n : 2, 4,8, and 12. Notice that this ap-
proximation appears to become better and better as the number of strips increases,
that is, as n '--> oc. Therefore, we define the area A of the region s in the followins
way.

E Definition The area A of the region S that lies under the graph of the
continuous function/is the limit of the sum of areas of approximating
rectangles:

It can be proved that the limit in Definition 2 always exists, since we are assum-
ing that/is continuous. It can also be shown that we get the same value if we use
left endooints:

In fact, instead of using left endpoints or right endpoints, we could take the height
of the ith rectangle to be the value of / at any number -r,t in the ith subinterval
lxi,t, x,).We call the numbers xf , xt,.. .,xf the sample points. Figure 13 shows
approximating rectangles when the sample points are not chosen to be endpoints.
So a more general expression for the area of S is

gl A - lim lf(*f ) Ax + /(xf )A" + + .f(x|) A"l

We often use sigma notation to write sums with many terms more compactly.
For instance,

E

Thi.s tclls us to
entl ri ith i - n.

'fhis tclls us

to lttltl

'l'his tclls us to
stiu'lu'ithr-nt.

i:1
/(xr) Ax : f(x') A* + f(xr) A" + ... + f(x,,) Ax
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So the expressions for area in Equations 2,3,and 4 can be written as follows:

A : lim f fG,) t*

A : tim 2 fQ,-,) t,

4
l\r -A : lim L f?f) Lx

n+@ i:l

We could also rewrite Formula I in the following way:

3 ., n(n + l)(2n + l)
?'' 6

EXAMPTE 3 r Let A be the area of the region that lies under the graph of

f(x) : e*' between x : 0 and x : 2.
(a) Using right endpoints, find an expression for A as a limit. Do not evaluate

the limit.
(b) Estimate the area by taking the sample points to be midpoints and using

four subintervals and then ten subintervals.

SOLUTION

(a) Since c:0 and b:2, the width of a subinterval is

Ax:2-o -2

So xr : Zfn, x2- 4ln, X3- 6fn, xi- Zifn, and xn:::: Znfn.Ihe Sum of the

areas of the approximating rectangles is

R" 

1"u,,1111#i 
. 

.: ::i1 ^"

/r\ /r\ /t\-rt,l' | + €-a/nl " | + + ,-Zn/ttl : I

\r/ \n/ \n/
According to Definition 2, the area is

o : lgo" : lg i{r-''" } e-a/" * e-6/" + .'. + r-2n/n7

Using sigma notation we could write

.tn

A : lim a) r-zi/"
n+@ n i-l

It is difficult to evaluate this limit directly by hand, but with the aid of a com-

puter algebra system it is not hard (see Exercise 16). In Section 5.3 we will be

able to find A more easily using a different method.

(b) With n: 4 the subintervals of equal width Ax : 0.5 are [0,0.5], [0.5,1],
[], 1.5], and [1.5,2]. The midpoints of these subintervals are xT : O'25,



FIGURE I4

FIGURE I5
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xf : 0.75, xt : 1.25, and xf; - 1.75, and the sum of the areas of the four
approximating rectangles (see Figure 14) is

Mq :: /(x,r) Ax

- ,f(0 .25) A,x + .f (0.15) Lx + f (r.25) Lx + f (r.7s) Lx

- e-0'tt(0.5) + e-o tt10.5; + e-' tt10.5) + e-'tr10.5;

- +(e-o'25 + e-o'7s + e-t '25 + ,-t Js1 : 0.8557

So an estimate for the area is

A : 0.8557

with n - l0 the subintervals are [0,0.2], [0.2,0.4),..., [1.8,2] and the
midpoints are xf - 0.1, xf - 0.3, xf - 0.5, ..., xh - 1.9. Thus

^:{:;,:,1': :i: ljl? iT..::::;_,,J foe,Ax

From Figure 15 it appears that this estimate is better than the estimate with
n - 4.

Now let's consider the distance problem: Find the distance traveled by an object
during a certain time period if the velocity of the object is known at all times. (In
a sense this is the inverse problem of the velocity problem that we discussed in
section 2.1.)lf the velocity remains constant, then the distance problem is easy to
solve by means of the formula

distance : velocity X time

But if the velocity varies, it is not so easy to find the distance traveled. We investi-
gate the problem in the following example.

EXAMPLE 4 r Suppose the odometer on our car is broken and we want to esti-
mate the distance driven over a 30-second time interval. we take speedometer
readings every five seconds and record them in the following table:

Tirrrc (s ) 0 l0 l5 o o

Velocirl,(mi/h) t7 2l 11
-*?

I l I l.\

I

In order to have the
velocity readings to

time and the velocity in
feet per second (1 mi/h

consistent units, letos convert the
_: 5280/3600 ft/s):

The Distance Problem

Ti nrc (s ) 0 5 I0 r5 l0 o

Vcloe it1 tlt/st 25 lr -15
l-)

+-'') 4l -l (r -ll
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During the first five seconds the velocity doesn't change very much, so we can

estimate the distance traveled during that time by assuming that the velocity is

constant. If we take the velocity during that time interval to be the initial
velocity (25 tt/s), then we obtain the approximate distance traveled during the

first five seconds:

25ftlsX5s:l25ft

Similarly, during the second time interval the velocity is approximately constant

and we take it to be the velocity when t : 5 s. So our estimate for the distance

traveled from / : 5 s to t : 10 s is

31 ftls x 5 s: 155 ft

If we add similar estimates for the other time intervals, we obtain an estimate

for the total distance traveled:

25x 5 + 31 x 5 + 35 x 5 + 43x 5 + 41 x 5 + 46x 5 - ll35ft

We could just as well have used the velocity at the end of each time period

instead of the velocity at the beginning as our assumed constant velocity. Then

our estimate becomes

3l x 5 + 35 x 5 + 43 x 5 + 17 x 5 + 46 x 5 + 4I x 5 - 1215 ft

If we had wanted a more accurate estimate, we could have taken velocity

readings every two seconds, or even every second.

Perhaps the calculations in Example 4 remind you of the sums we used earlier

to estimate areas. The similarity is explained when we sketch a graph of the

velocity function of the car in Figure 16. The area of the first rectangle is

25 x 5 : 125, which is also our estimate for the distanced traveled in the first five

seconds. In fact, the area ofeach rectangle can be interpreted as a distance because

the height represents velocity and the width represents time. The sum of the areas

of the rectangles in Figure 16 is t6: 1135, which is our initial estimate for the

total distance traveled.

In general, suppose an object moves with velocity u : f(t), where a < t < b

and/(r) > 0 (so the object always moves in the positive direction). We take veloc-

ity readings at times to F a), tt,tz,. . . ,t, (: b) so that the velocity is approxi-

mately constant on each subinterval. If these times are equally spaced, then the

time between consecutive readings is At : (b - a)/n. During the first time inter-

ffi

FIGURE I6
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val the velocity is approximately/(rs) and so the distance traveled is approximately
f(ti at. similarly, the distance traveled during the second rime interval is about
f(tr)At and the total distance traveled during the time interval la,blis approxi-
mately

f(til Lr + f(r,) Ar + + f(t"_r) Ar - i: I

of

f (t,*,) Ar

left-hand endpoints, ourIf we use the velocity at right-hand endpoints instead
estimate for the total distance becomes

expressions:

E

l. (a) By reading values from the given graph of / use
five rectangles to find a lower estimate and an upper
estimate for the area under the given graph of /
from x - 0 to x - 10. In each case sketch the rect-
angles that you use.

(b) Find new estimates using l0 rectangles in each case.

f(t)At + f(tr)Ar +...+ f(t,)Ar: ) fG)A,t
t:t

The more frequently we measure the velocity, the more accurate our estimates be-
come, so it seems plausible that the exact distance d traveled is the limit of such

d: lim i f(t,*,)A/ : lim i f(t,) Lt
n---+ffi i:l n-E i_l

We will see in Section 5.3 that this is indeed true.
Because Equation 5 has the same form as our expressions for area in Equa-

tions 2 and 3, it follows that the distance traveled is equal to the area under the
graph of the velocity function. In Chapter 6 we will see that other quantities of
interest in the natural and social sciences-such as the work done by a variable
force or the cardiac output of the heart-can also be interpreted as the area under
a curve. So when we compute areas in this chapter, bear in mind that they can be
interpreted in a variety of practical ways.

Exercises

(b)

(c)

(d)

(i) L6 (sample points are left endpoinrs)
(ii) R6 (sample points are right endpoints)
(iii) M6 (sample points are midpoints)
Is L6 an underestimate or overestimate of the true
area?
Is R6 an underestimate or overestimate of the true
area?

Which of the numbers Lo, Ro, ot M6 gives the best
estimate? Explain.

Use six rectangles to find estimates of each type for
the area under the given graph of / from x - 0 to
x-12.

2. (a)
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3. (a) Estimate the area under the graph of f(r) - -{' + 2

from r - -l to r : 2 using three rectangles and

right endpoints. Then improve your estimate by

using six rectangles. Sketch the curve and the

approximating rectangles.
(b) Repeat part (a) using left endpoints.
(c) Repeat part (a) using midpoints.
(d) From your sketches in parts (a), (b), and (c), rn'hich

appears to be the best estimate?

4. (a) Graph the function/(x) - e ", -2
(b) Estimate the area under the graph of ,f using four

approximating rectangles and taking the sample

points to be

(i) right endpoints (ii) midpoints
In each case sketch the curve and the rectangles.

(c) Improve )rour estimates in part (b) by using eight

rectangles.

5-6 I With a prograrnmable calculator (or a computer), it is
possible to evaluate the expressions for the sums of areas of
approxirnating rectangles, even for large values of n, using

looping. (On a TI use the Is) command, on a Casio use Isz,

on an HP or in BASIC use a FOR-NEXT loop.) Compute

the sum of the areels of approximating rectangles using

equal subintervals and right endpoints for n - 10, 30, and

50. Then guess the value of the exact area.

5. The region under y : sin r from 0 to n'

6. The region under.)' - I/*'from l to 2

ffi 7. Some computer algebra systems have commands that

will draw approximating rectangles and evaluate the

sums of their areas, at least if r;t is a left or right end-

point. (For instance, in Maple use leftbox, rightbox,
leftsurn, and ri-qhtsurn.)

(a) If /(x) - 1,,"r, I € -r { 4, fincl t}re left and right
sums for n -- 10' 30, and 50.

(b) Illustrate by graphing the rectangles in part (a).

(c) Show that the exact area under/ lies between 4.6

and 4.7.

@ 8 (a) 
:1 JJJI,; lT Exl,j;,? ; ; ;#,?""t"'Jiil",[T,'"*-
suR-ls fbr n - 10' 30. and 50.

(b) Illustrate by graphing the rectangles in part (a).

(c) Show that the exact area under "f lies between 0.87

ancl 0.91 .

9. The speed of a runner incre ased steadily during the

first three seconds of a race. Her speed at half-second

intervals is given in the table. Find lower and upper

estimates for the distance that she traveled during these

three seconds.

I (:l () 0. "5 |.o 1"5 l.( )
1i 1"0

r' ( tt ,: ) 0 ( I 0.8 I *1.r) ll{. I I q.-l o

10. When we estimate distances from velocity data it is
sometimes necessary to use times fs, tr, tz, t3,... that
are not equally spaced. We can still estimate distances

using the time periods Ar; - ti - /;-1. For example, on

May 7, 1992, the space shuttle Endeavour was launched

on mission STS-49, the purpose of which was to install
a new perigee kick motor in an Intelsat communications
satellite. The table, provided by NASA, gives the veloc-

ity data for the shuttle between liftoff and the jettisoning
of the solid rocket boosters.

Use these data to estimate the height above Earth's
surface of the space shuttle Endeavobtr, 62 seconds after
liftoff .

ll. The velocity graph of a braking car is shown. Use it
to estimate the distance traveled by the car while the

brakes are applied.

(tl/s)
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Prove Formula 1, that is,

12+22 +32+ +n': n(n + l) (2n + 1)

using mathematical induction (see the Principles of
Problem Solving, page 88).

13. Use mathematical induction to prove the formula for the

sum of the cubes of the first n positive integers:

13+ 23+33+ + nr- f't'-*rlltL2J

12.

Evc rt t I'irnc (s ) Vcloeitr (lt rr

[- au rtcli

Bcgin rol l tn;utruvr'r'
Enrl rrllI IttrtncLl\ cr'

Tltrottlc to li()( i
-['lit'rrttlc to h7(i
Tltr"ottlt' t() l04r;
Nlrrritttuttt tlr tutttt ic Irl't'rsLtt

Sol itl t'ockt't trottstcl'

\e l)it t"ltt intt

o

l()

l"i
l0
r1

5()

t)l

lt5

(l

lH5

J IL}

++7

7-ll
lll5
l-l-1-r

+r5l



W ts.

(a) Use Definition 2 to find an expression for the area
under the curve rr : .r'from 0 to I as a limit.

(b) Evaluate the limit in part (a) with the help of the
formula in E,xercise 13.

(a) Express the area under the curve .t, : ,r'frorn 0 to 2
as a limit.

(b) LJse a computer algebra system to find the sum in
your expression from part (a).

(c) Evaluate the lirnit in part (a).

ffi 16. Find the exact area of the region under the graph of
.)n 

: e '' from 0 to 2 by using a computer algebra system
to evaluate the sum and then the limit in Exarnple 3(a).

SECTION 5.2 Tl{E DEFII.IITT II.ITTGRAT 36 |

Compare your answer with the estimate obtained in
Example 3(b).

@ 17. Find the exact area under the cosine curve l,- cos.r
from .tr : 0 to J : b, where 0 < b =-< rr/2. (Use a

computer algebra system both to evaluate the sum and
compute the limit.) In particular. what is the area if
b

18. (a) Let 4., be the area of a polygon with n equal sides
inscribed in a circle with radius r. By dividing the
polygon into n congruent triangles with central
angle Znf n" show that A,, : lnr2 sin (Znln).

(b) Show that limo -- A,,: nr'. lHint; use Equation 2
in Section 3.4.1

14.

The Definite Integral

We saw

n

in Section 5.1 that a limit of the form

/(xI) Ax - lim [/(rf) A" + /(xf) Ax + + lQI) A']lim
11 '-+x

rIs/-r
t: l

arises when we compute an.area. we also saw that it arises when we try to find the
distance traveled by an object. It turns out that this same type of limit occurs in a
wide variety of situations even when / is not necessarily a positive function. In
chapter 6 we will see that limits of the form (l) also arise in finding lengths of
curves, volumes of solids, centers of mass, force due to water pressure, and work,
as well as other quantities. we therefore give this type of limit a special name and
notation.

NOTE | . The symbol J was introduced by Leibniz and is called an integral
sign. It is an elongated s and was chosen because an integral is a limit of sums. In
the notation II ffO dx,f(x) is called rhe integrand and a and b are called the lim-
its of integration; a is the lower limit and b is the upper limit. The symbol dx
has no meaning by itself; l'" fUl dx is all one symbol. The procedure of calculat-
ing an integral is called integration.

El Ueflnition of a Definite Integral If f is a continuous function defined for
a<-r
Ax : (b a)ln We let xo (- a), xr,ff?, ...,x,, (- b) be the endpoints of
these subintervals and we choose sample points xf , xf ,,rf in these
subintervals, so xI lies in the ith subinterval ["i-r, ri]. Then the definite
integral of / from a to b is

n

f (x) dx : lT 3 /(x,f) Axf
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Bernhard Riemann received his Ph.D.

under the direction of the legendary
Gauss at the University of Gottingen
and remained there to teach. Gauss,

who was not in the habit of praising
other mathematicians, spoke of
Riemann's "creative, active, truly math-

ematical mind and gloriously fertile
originality." The definition (2) of an

integral that we use is due to Riemann.

He also made major contributions to
the theory of functions of a complex
variable, mathematical physics, number

theory, and the foundations of geometry.

Riemann's broad concept of space and

geometry turned out to be the right
setting, 50 years later, for Einstein's

general relativity theory. Riemann's

health was poor throughout his life, and

he died of tuberculosis at the age of 39.

NOTE 3 . Because we have

limit in Definition 2 always
choose the sample points x,f
points, then xf - ri and the

assumed that./is continuous, it can be proved that the

exists and gives the same value no matter how we

. If we take the sample points to be right-hand end-

definition of an integral becomes

NOTE 2 . The definite integral lI ff*l dx is a number; it does not depend on r,
In fact, we could use any letter in place of .r without changing the value of the

intesral:

f (x) dx : I! rttn,: Il rt'tu'r

r'h
l" f'(*) dr: lim

J tt ,r *x i:l
B

If we choose the sample
definition becomes

/(xi) Ax

points to be left-hand endpoints, then xf : xi-r and the

f (x) dx : lim
t1 - -+rc

f (r,-') A"

Alternatively, we could choose xI to be the midpoint of the subinterval or any

other number between x;-1 atrd )(i.

Although most of the functions that we encounter are continuous, the limit in
Definition 2 also exists if /has a finite number of removable or jump discontinu-
ities (but not infinite discontinuities). (See Section 2.4.) So we can also define the

definite integral for such functions.

ilOTE4.Thesum

f (xI) A*

that occurs in Definition 2 is called a Riemann sum after the German mathemati-

cian Bernhard Riemann (1826-1866). We know that if /happens to be positive,

then the Riemann sum can be interpreted as a sum of areas of approximating

rectangles (see Figure l). By comparing Definition 2 with the definition of area in
Section 5.1, we see that the definite integral tI f@dx can be interpreted as the

area under the curve y : f(x) ftom a to b (see Figure 2).

i
i: I

r

tI\i
,{-r
i: I

FIGURE I

If /tx) > 0, the Riemann sum E /tri) A-r is

the sum of areas of rectangles.

FIGURE 2

If /(x) >0,the integral f'/trtdx is the

area under the curve 1r: Ft*l from a to h.

y : /(r)
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Ifltakes on both positive and negative values, as in Figure 3, then the Riemann
sum is the sum of the areas of the rectangles that lie above the x-axis and the neg-
atives of the areas of the rectangles that lie below the x-axis (the areas of the gold
rectangles minus the areas of the blue rectangles). when we take the limit of such
Riemann sums, we get the situation illustrated in Figure 4. A definite integral can
be interpreted as a difference of areas:

fb
I f(*)dx: At - Az

where A r is the area of the region above the x-axis and below the graph of /and 42
is the area of the region below the x-axis and above the graph ofl

FIGURE 3

EXAMPLE I r Express

FIGURE 4

lim i [",1 + x; sin x;] Ax
n",-tw i_l

as an integral on the interval [0,"r].

soLurloN comparing rhe given limir with the limit
they will be identical if we choose

f(x): x3 + xsinx and

(So the sample points are right endpoints and the
Equation 3.) We are given that a - O and b - 77.

Equation 3, we have

in Definition 2, we see that

xf : xi

given limit is of the form of
Therefore, by Definition 2 or

lim t b? + x;sinx;lAx
n--t% i:l

("' + xsin x) dx

Later, when we apply the definite integral to physical situations, it will be im-
portant to recognize limits of sums as integrals, as we did in Example l. When
Leibniz chose the notation for an integral, he chose the ingredients as reminders of
the limiting process. In general, when we write

ffi

r*I"
Ju

:I:n

lim ) /(x,*) Ax
2--+rc i:l

Y : /(x) y: /(x)

we replace lim) by [, xf by r, and L^xby dx.

f (x) dx
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Formulas 7-10 are proved by writing
out each side in expanded form. The

left side of Equation 8 is

c01 * ca2 + "'+ ca,

The right side is

c(ar * at + " ' * a,,)

These are equal by the distributive

ProPerty.

6

The remaining formulas

E

i3: [^Tr]'

Evaluating Integrals

When we use the definition to evaluate a definite integral, we need to know how to
work with sums. The following three equations give formulas for sums of powers

of positive integers. Equation 4 may be familiar to you from a course in algebra.

Equations 5 and 6 were discussed in Section 5.1.

. n(n + 1)
L-

2

n(n + r) (2n + l)

n

':I

ns
LJ
i: I

n
\--\

i: I

tr

E

nsZ-r
j: I

n

i: I

I't

i: I

Iil

g!

m

EXAMPLE 2 I
(a) Evaluate the Riemann sum

be right-hand endpoints and a

(b) Evaluare ['("3 - 6x) dx.
JO

I-

are simple rules for working with sigma notation:

coi :

h,) -

h.\ 
-

for /(.,r) : x' 6x taking the
:O.b-3.andrz:6.

sample points to

SOLUT!ON

(a) With n - 6 the interval width is

and the right endpoints are x1 : 0.5, xz: 1'O, x3 : 1.5, xt,: 2.0, x5 : 2.5, and

xo : 3.0. So the Riemann sum is

f(x) Lx

- /(0.5) Ax + f(t.0) Ax + f(r.5) Ax + f(2.0) Ax + f(2.5) Ax + f(3.0) A.r

-+(-2.87s 5 s.62s 4+0.62s+9)

- -3.9375

i: I

tl

^\L.L
j- |
t-l

n
sl
Lai
i: I

tI
s-t
/-, ai
i: I

A1

+i hi
i: I

n

t: I

6

Ro:
j: I

ba301
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Notice that/is not a positive function and so the Riemann sum does not repre-
sent a sum of areas of rectangles. But it does represent the sum of the areas of
the gold rectangles (above the x-axis) minus the sum of the areas of the blue
rectangles (below the x-axis) in Figure 5.

(b) With n subintervals we have

Thus xo - O, xt : 3/", x2: 6fn, y: 9fn, and, in general, xi: 3ifn. Since we
are using right endpoints, we can use Equation 3:

FIGURE 5

FIGURE 6

n?
ar,a

| (x' 6x) dx - lim
J0 n+a:

f (*,) Ax :

ba3l-:-: nn

18

n

: rim f+i i3 +i
n+x L n i:l n- i:l

n

,'- |
r-l

3

n

1
n ']

,]

- lim
n_tx

- lim
n--+e

:t,s{*[.Tr]'
:rs 

[+('+ :)' -

s4 n(n + l) 
'l

7rJ
zr(r + 1)l

\ n/l

6.75

:[(+)'

3l#'

li u, it h c' .l ,'ir )

81

-_ 2l
4

This integral cannot be interpreted as an area because/takes on both positive
and negative values. But it can be interpreted as the difference of areas Ar - Az,
where A; and Az are shown in Figure 6.

Figure 7 illustrates the calculation by showing the positive and negative terms
in the right Riemann sum R, for n:40. The values in the table show the
Riemann sums approaching the exact value of the integral, -6.75, as ,4 --> oo.

II II,,

-+(

l(x
5(X

I (XX

5 0(x

- 6. -399E

- 6.(r I 30

- 6.7 229

-6.7365
-6.7173

FIGURE 7

R+o : -6.3998 tr
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Because f(x) - e* is positive, the inte-
gral in Example 3 represents the area

shown in Figure 8.

A much simpler method for evaluating the integral in Example 2 will be given
in Section 5.3 after we have proved the Evaluation Theorem.

rfi EXAMPLE 3 T

(a) Set up an expression for f,t r'dxas a limit of sums.

(b) Use a computer algebra ,"rrr.. to evaluate the expression.

5S[-{JT*,#F&

(a) Here we have/(x) _ €*, a: l, b: 3, and

Ax: b-a 
-2

So xo : 1, xr : I + 2/n, xz: 1 + 4/n, x3 : 1 + 6lr,and

xi:' I + 2i

n

From Equation 3, we get

!,t '. 
d* : rim i fG) a,x: rim i

It---+e i:l n---+€ i:l

')n

lim
n---t& n i:l

algebra system to evaluate the sum and simplify, we

/('+ +)1
FIGURE 8

(b) If we ask a computer
obtain

A computer algebra system is able to
find an explicit expression for this sum n

because it is a geometric series. The
limit could be found using I'Hospital's r:l
Rule.

Now we ask the computer algebra system to evaluate the limit:

ez/n 1

Z ,Bn+Z) /n ,(n+2) /n

lim-'
n'+En €2/n 1-: 

e3 e

EXAMPLE 4 r Evaluate the following integrals by interpreting each in terms of
areas.

Fr 
^l(u) J" Jr - x'dx (b) 

Jn G - r)dx

!" '. d*:

SotuTroN
(a) Since/(f : J-t --r'_Z_0, we can interpret this integral as the area

under the curvey : Jt - x2 from 0 to 1. But, since y' : | - .r2, we get

,t + y': l, which shows that the graph of/is the quarter-circle with radius 1

in Figure 9. Therefore

fl
Jo' 

.'F- * a*: in(l)t :

(In Section 5.5 we will be able to prove that the area

is rrrz .)

7r

4

of

'\ x'+y2:'\\ '

FIGURE 9

a circle of radius r



(b) The graph of y : x I is the line with
compute the integral as the difference of the

sEcTlot{ 5.2 I}|r DtililrTE ritTrcnAt r t6,

slope I shown in Figure 10.

areas of the two triangles:
We

f t" r) dx: At Az: + (z' 2) *tr ' l) : 1.5

FIGURE IO r

t The Midpoint Rule

We often choose the sample point.rf to be the right endpoint of the ith subinterval
because it is convenient for computing the limit. But if the purpose is to find an
approximation to an integral, it is usually better to choose x,* to be the midpoint of
the interval, which we denote by r;. Any Riemann sum is an approximation to an
integral, but if we use midpoints we get the following approximation.

Midpoint Rule

f! rt.t o. -:: f G) a,x: A" I f|c)

+
l (x,-, + xi) : midpoint of

+... + f(i")l

where

and

Ax:

ii: [tr- r, xi]

f't
EXAMPLE 5 r Use the Midpoint Rule with n : 5 to approximare J, * dr.

S0LUTfON The endpoints of the five subintervals are l, 1.2, 1.4, 1.6, 1.8, and 2.0,
so the midpoints are 1.1, 1.3, 1.5, 1.7, and 1.9. The width of the subintervals is

A,x: (2 - l)/5: *, so the Midpoint Rule gives

fz1
J, ;d*- Ar[/(1.1) +/(1.3) + /(l.s) + f(r.1) + /(1.9)]

r/l I I I l\: 
-l 

r r r r I
5 \ l.l 1.3 1.5 1.7 1.9 /

: 0.691908

Since/(x) : l/x > 0 for I < .r < 2, the integral represents an area and the
approximation given by the Midpoint Rule is the sum of the areas of the rect-
angles shown in Figure 11. *FIGURE I I
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FIGURE 12

Mq - -6.7563

At the moment we don't know how accurate the approximation in Example 5 is,
but in Section 5.8 we will learn a method for estimating the error involved in using
the Midpoint Rule. At that time we will discuss other methods for approximating
definite integrals.

If we apply the Midpoint Rule to the integral in Example 2, we get the picture in
Figure 12. The approximation M+o - -6.7563 is much closer to the true value

-6.75 than the right endpoint approximatioo, R+o - -6.3998, shown in Figure 7.

t Properties of the Definite Integral

We now develop some basic properties of integrals that will help us to evaluate inte-
grals in a simple manner. We assume that/and g are continuous functions.

Property I says that
times the length of the
c(b a) is the area of

the integral of a constant function f (*) - c is the constant
interval. If c

the shaded rectangle in Figure 13.

r
FIGURE I3

c dx - c(b - a)

Property 2 says that the integral of a sum
tive functions it says that the area under/ +

is the sum of the integrals. For posi-
g is the area under/plus the area un-

nstant

Properties of the Integral

| . lu , a* : c(b a), where c is any co

z. Il r f (*) + s(x)l d* : Il rt.) dx + I:
3. I! ,f tfl dx: ' I: f Q) dx, where c is

4. f rf (x) s(x)ld*: Il ru) dx I:

s(x) dx

any constant

s(x) dx

area-c(b-a)
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der g. Figure 14 helps us understand why this is true: In view of how graphical ad-
dition works, the corresponding vertical line segments have equal height.

In general, Property 2 follows from Equation 3 and the fact that the limit of a
sum is the sum of the limits:

Ph

| [ f(") + g(x)] dx : lim
n'--+fi } ;yb) + g(x,)l A"

l-n n I
|> fQ)L,x +
Li:l i:l I

: lim
,? --_+m

- lim
n'-+6

t
i: I

f(x) Ax + lim

: Il rwdx+ I:

FIGURE 14

!" rrwl+ g(x)l dx -
I) twto. * I:

s(x) dx

Property 3 can be proved in a similar manner and says that the integral of a
constant times a function is the constant times the integral of the function. In other
words, a constant (but only a constant) can be taken in front of an integral sign.
Property 4 is proved by writing f - S : f + ed and using Properties 2 and 3
with c : -1.

EXAMPLE6 T Usethe + 3x2) dx.

SOLUTlOl,l Using Properties 2 and 3 of integrals, we have

.,lr' to + 3xz) dx 4 dx + 
,lu' 

,"' dx 4dx + 3J'r'dx

We know from Property I that

Io'odx-4(r o):4

and we found in Example 2 in Section 5.1 that J'r'dx

g(xl dx

Property 3 seems intuitively reasonable
because we know that multiplying a

function by 
" 

positive number c

stretches or shrinks its graph vertically
by a factor of c. So it stretches or
shrinks each approximating rectangle
by a factor c and therefore it has the
effect of multiplying the area 6y ,.

properties of integrals to evaluate 
Jr' tO

: 
arfit

: 
,['

,[' to + 3x?) dx

: +. So

x'dx4dx

ffi

ft+3Jo

1-
3-J

: 
J;'

:4 + 3

The final property tells us how to combine integrals of the same function over
adjacent intervals:

s. ttodx+ I! ru)dx : I: f(x) dx
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FIGURE I5

I . Evaluate the Riemann sum for f (x) : 2 - x?,,

0 < x € 2, with four subintervals, taking the sample
points to be right endpoints. Explain, with the aid of
a diagr&fl, what the Riemann sum represents.

7. If/(x) : lnx - l, I ( x ( 4, evaluate the Riemann
sum with n - 6, taking the sample points to be left
endpoints. (Give your answer correct to six decimal
places.) What does the Riemann sum represent?

Illustrate with a diagram.

3. The graph of a function/is given. Estimate Jfi f k) dx
using four subintervals with (a) right endpoints, (b) left
endpoints, and (c) midpoints.

4, The table gives the values of a function obtained from
an experiment. Use them to estimate Jf /(x) dx using
three equal subintervals with (a) right endpoints, (b) left
endpoints, and (c) midpoints. If the function is known
to be a decreasing function, can you say whether your
estimates are less than or greater than the exact value of
the integral?

This is not easy to prove in general, but for the case where /(.r) > 0 and
a 1 c 1b Property 5 can be seen from the geometric interpretation in Figure 15:

The area under y : f(x) from a to c plus the area from c to b is equal to the total
area from a to b.

EXAMPLE 7 I If it is known that JJ' /(r) dx : 17 and I3 fk) dx : 12, find

IJ' /(*) dx.

$ffitUTflffiru By Property 5, we have

: 
.,['o /(t ) dx

.,['o /(" ) dx : ,['t f (x) dx

I- rr") dx + ,['u/(') dx

T' /(x)dx:17 12:5 *

Exercises

5-8 r Use the Midpoint Rule with the given value of n to
approximate each integral. Round each answer to four deci-
mal places.

s. ll*tar, n:5

7. I,'rn * f a*, n_

6. It r d*. n:4
'rl 2x 7

P r/4l0 8. Jr' tanxdx, n:4

@ 9. If you have a CAS that evaluates midpoint approxi-
mations and graphs the corresponding rectangles (use

middlesum and middlebox commands in Maple), check
the answer to Exercise 7 and illustrate with a graph.
Then repeat with n : 20 and n : 30.

10. With a programmable calculator or computer (see the
instructions for Exercise 5 in Section 5.1), compute
the left and right Riemann sums for the function

f(x) : m on the interval [1,2] with n - 100.

Explain why these estimates show that

!:

r.805 . J,-/l * x2 dx <-1.815

Deduce that the approximation using the Midpoint Rule
with n - l0 in Exercise 7 is accurate to two decimal
places.

I l- | 4 r Express the limit as a definite integral on the
given interval.

n

I l. lim ) cosx;Ar, [0,rr]
n ----)ac i: I

n fanx; -12. lim ) 3Ax, 
12,41

n---+x, i-l X i

\ o .l It .l (

/(r) )l 9.() fi. 1 (r.5 7.6 l0
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22. The graph of g consists of two straight lines and a
semicircle. Use it to evaluate each integral.

f2 f6 f7(a) ), o(x) dx (b) 
)r- oQ) dx (c) ), o(x) dx

i: r

n

l: I

of areas.

23. J,',tt +

2s. Jj, tr +

27. Il,tr -

29-30 t Write the given sum or difference
integral in the form I'" 7Q1 ax.

2s. J'rt'l dx * li rt.t o. * ,['' f (x) dx

30. [r" f (*) dx - I: f (x) dx

[0, 1]l2(*!)' 5xll Ax,

tff L*, [1,4]

13. lim
n4.r

14. lim
t? ---+ cc

definition of the integral given
integral.

| 5- I 7 r Use the form of the

in Equation 3 to evaluate the

/ta
I/.

t5. ),t, - x')d*

f's '

| 6. 
Jo tt + 2x3) dx

ra ')IL

17. J, x'dx

18. (a) Find an approximation to the integral

Jl ("t - 3x) dx using a Riemann sum with right
endpointsandn:8,

(b) Draw a diagram like Figure 3 to illustrate the
approximation in part (a).

(c) Use Equation 3 to evaluate Jj (xt 3x) dx.
(d) Interpret the integral in part (c) as a difference of

areas and illustrate with a diagram like Figure 4.

ffi l9-20 I Express the integral as a limit of sums. Then
evaluate, using a computer algebra system to find both the
sum and the limit.

Pn flO r ,

19. J, sin 5x dx 20. ), x" dx

?3-28 I Evaluate each integral by interpreting it in terms

2x) dx

\F - r) a*

I xl) dx

14. I'rJa - *t a*

t6, Il,t, ;) dx

28. 
J,i lr' sldx

as a single

3f . If J; fG) dx - 1.7 and Jl ft"l dx : 2.s, find Ii f@ ax.

!2. If JJ f@dt:2, Iif@dt- -6,andl!fU>dt:r,
find I? f Ql at.

33. In Example 2 tn Section 5.1 we showed that

JJ 12 dx: j. Use this fact and the properties of
integrals to evaluat" JJ (5 - 6xz) dx.

34. Use the properties of integrals and the result of
Example 3 to evaluate J? Qt. - l) dx.

35. Use the result of Example 3 to evaluate Jl e'*2 dx.

36. Express the following limit as a definite integral:
n;4

lim) .
n ---+oo i- I n"

each integral by

dx

dx

2a. The graph of f is shown. Evaluate
interpreting it in terms of areas.

P2 n5
(a) ), f t.l a* (b) 

Jo /t")

(c) Il ft-l o* (d) # rt.l

v - s(x)

y : /(x)
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Evaluating Definite Integrals

In Section 5.2 we computed integrals from the definition as a limit of Riemann
sums and we saw that this procedure is sometimes long and difficult. Sir Isaac
Newton discovered a much simpler method for evaluating integrals and a few years
later Leibniz made the same discovery. They realized that they could calculate

i'" f<O dx if they happened to know an antiderivative F ofl Their discovery is part
of the Fundamental Theorem of Calculus. which is discussed in the next section.

Evaluation Theorern If/is
trh

I
.J {7

rivativ

continuous on the interval lu, bf, then

f G) ax : F(b) F(a)

where F is any antide e of J that is, F' - f.

The theorem states that if we know an antiderivative F. offi, then we can evalu-
ate [! 7Q) dx simply by subtracting the values of F at the endpoints of the interval

la,bf.lt is very surprising that Jj fQ)dx, which was defined by a complicated
procedure involving all of the values of/(x) for a < x 4 b, can be found by know-
ing the values of F(x) at only two points, a and b.

For instance, we know from Section 4.9 that an antiderivative ofl(x): x'is
f(-r) : j-r', so the Evaluation Theorem tells us that

= dx : r(r) r(o) lr I. 63 
- 

j
.JV^3

Comparing this method with the calculation in Example 2 in Section 5.1, where we
found the area under the parabola ! : x2 from 0 to 1 by computing a limit of
sums, we see that the Evaluation Theorem provides us with a simple and powerful
method.

Although the Evaluation Theorem may be surprising at first glance, it becomes
plausible if we interpret it in physical terms. If a(t) is the velocity of an object and
s(t) is its position at time /, then o(t) : s'(t), so s is an antiderivative of u. In
Section 5.1 we considered an object that always moves in the positive direction and
made the guess that the area under the velocity curve is equal to the distance trav-
eled. In symbols:

lnb

I u(t) dr - s(b) s(a)

That is exactly what the Evaluation Theorem says in this context.

Proof of the Evaluation Theorem We divide the interval la,bl into n subintervals
with endpoints x0 (: e), xt, xz, ..., x" (: b) and with length A,x : (b - a)/n.
Let F be any antiderivative of I By subtracting and adding like terms, we can

I

3]"' "
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express the total difference in the F values as the sum of the differences over the

subintervals:

The Mean Value Theorem was discussed Now F is continuous (because it's differentiable) and so we can apply the Mean
in Section 4.3. Value Theorem to F on each subinterval [xi-', r,]. Thus, there exists a number xI

between .r;-, ?rrd .ri such that

Therefore

When applying the Evaluation Theorem we use the notation

FA)l:: F@) F(a)

and so we can write

Other common notations are F(x)lf and [r(r)]3.

In applying the Evaluation Theorem we

use a particular antiderivative F of f. ft
is not necessary to use the most general

antiderivative.

If you compare the calculation in Example I with the one in Example 3 in Sec-
tion 5.2, you will see that the Evaluation Theorem provides a much shorter method.

Now we take the limit of each side of this equation as n --) m. The left side is a

constant and the right side is a Riemann sum for the functionf so

F(b) - F(a) : ri.r' i fG!) a,x : f' fG) a*
n+- i-t Ja r L'' -" E

EXAMPTE I t Evaluate lt ,'dr.
.Jl

5O|-UTIOH An antiderivative of /(-r) : e'is F(x) : e', so we use the Evaluation
Theorem as follows:

Il rtn d* - F@): where F' - f
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FIGURE I

a/y:cosx
*---' afea : 1

EKAtr4FLE 2 I Find the area under the cosine curve from 0 to b" where
0

$ffiL.ft$"$"$#ru Since an antiderivative of /(x) - cos -r is F(x) : sin x, we have

A-

In particular, taking
curve from 0 to n/2

When the French mathematician Gilles de Roberval first found the area under
the sine and cosine curves in 1635, this was a very challenging problem that re-
quired a great deal of ingenuity. If we didn't have the benefit of the Evaluation
Theorem, we would have to compute a difficult limit of sums using obscure trigo-
nometric identities (or a computer algebra system as in Exercise l7 in Section 5.1).
It was even more difficult for Roberval because the apparatus of limits had not
been invented in 1635. But in the 1660s and 1670s, when the Evaluation Theorem
was discovered by Newton and Leibniz, such problems became very easy, as you
can see from Example 2.

E Indefinite Integrals

We need a convenient notation for antiderivatives that makes them easy to work
with. Because of the relation given by the Evaluation Theorem between antideriva-
tives and integrals, the notation I fG) ax is traditionally used for an antiderivative
of /and is called an indefinite integral. Thus

.l' f G) a*: r(x) means F'(x) : f(x)

The connection between them is given by the Evaluation Theorem. If/is
continuous on [a, b], then

f .o, x dx: sin x]f : sin b sin 0 : sin b

b : nlZ, we have proved that the area under the cosine
is sin(nlT): 1 (see Figure 1).

[! ral n.: J rc,'l d.]:

Recall from Section 4.9 that if F is an
the most general antiderivative of 

"f 
on / is

stant. For instance, the formula

antiderivative of f on an interval 1, then
F(x) + C, where C is an arbitrary con-

f1

) :0.: rnlxl+ c

is valid (on any interval that doesn't contain 0) because (dldx)ln I x | : 1/x. So an

indefinite integral ! 7Q)ax can represent either a particular antiderivative of/or
an entire family of antiderivatives (one for each value of the constant C).
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The effectiveness of the Evaluation Theorem depends on having a supply of
antiderivatives of functions. We therefore restate the Table of Antidifferentiation
Formulas from Section 4.9, together with a few others, in the notation of indefinite
integrals. Any formula can be verified by differentiating the function on the right
side and obtaining the integrand. For instance,

n

J sec2xdx: tanx + C because d

*(tanx + C)- sec2x

We adopt the convention that when a

formula for a general indefinite integral

is given, it is valid only on an interval.

The indefinite integral in Example 3 is
graphed in Figure 2 for several values

of C. The value of C is the y-intercept.

EXAMPLE 3 t Find the general indefinite integral

{. (loxa 2 sec 2x) dxJ\

$Sfr-*-$T$ffiru Using our convention and Table 1, we have

J {to"o 2sec'x)d,16 _ to+ 2hnx+ C

:Zxs Ztanx + C

You should check this answer by differentiating it.

Il Table of Indefinite Integrals

Pr.
I cf@)dx: c I fk)a*

J t rt') + s(x)l dx :J n

f (x) dx + | s(x) dx

*n+l

J

J

t o* _ lnlxl + ci'ndx: # + c (n * -l)n + 1

!r.a*: e* + C
a*

A.'dX:- + C
lna

f.,
I sin xdx: -cos.x + C

P

I cos xdx : sinx + C
J

PA
I csc'x dx : -cot x + C

J

fi

I seczxdx: tanx + C
lJ

J

J

secxtanxdx- sec.x + C

I
"L dX: tan-lX + C

x" + I

J

J

cscxcot xdx - -cscx + C

I
*dx: sin-rx + C
Jl x'

FIGURE 2

iffi
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FIGURE 3

EXAMPIE 4 r Evaluare f (*' - 6x)dx.

SOtUTlOt{ Using the Evaluation Theorem and Table l, we have

13 . ,4 ,'1t
J;(''- 6x)dx:;-u;),

: (i'3- - 3.3') - (i. o' - 3 .o')

:+-27-o+o:-6.75
Compare this calculation with Example 2(b) in Section 5.2. t

ExAMPIE 5 r Find f' (r* - 6x *=+) dx andinterpret the result in
terms of areas. Jo \ x' * | ,

SOLUTION The Evaluation Theorem gives

t'z/ 3 \ _-4 -2 l,l lzr' - 6x * -;- |a, : z+ - o* + 3tan-'.r IJo\ x'*r/ 4 '2 lo
: Lxo - 3x2 + 3tun-'r]l

:' lli' :,'l?-,:' "u' 
2 - o

This is the exact value of the integral. If a decimal approximation is desired, we
can use a calculator to approximate tan-l 2. Doing so, we get

f2/ q \
J, 1"' - 6x -r ?i )dx 

= -o'67855

Figure 3 shows the graph of the integrand. We know from Section 5.2 that the
value of the integral can be interpreted as the sum of the areas labeled with a

plus sign minus the area labeled with a minus sign. I

ExAMPIE 6 | Evaluate ln 2t' + t"/l - |J, r o''

S0LUTlOll First we need to write the integrand in a simpler form by carrying out
the division:

fe zt2 + t2 t/l - t.'s
Jr f 

:dt:),'{z+t'/r-t-r)dt

f/z r-'ln:2t+ 3 - _ |z 'l I'
:2t +1r''' + l1t' t l'
: lz' g + zo)3/2 + ;l - (2. r + l. fr'z + l)
:18+ra+j-z-i-r:3zt I
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H Applications

The Evaluation Theorem says that if f is continuous on [a , bf, then

where F is any antiderivative ofl This means that F' : f, so the equation can be
rewritten as

We know that F'(x) represents the rate of change of y : F(.r) with respect to.x and
F(b) - F(c) is the change in y when x changes from a to b. So we can reformulate
the Evaluation Theorem in words as follows.

Total Change Theorem The integral of a rate of change is the total change:

t ,'tn d*: F(b) F(a)

This principle can be applied to all of the rates of change in the natural and so-
cial sciences that we discussed in Section 3.3. Here are a few instances of this idea:

r If y(r) is the volume of water in a reservoir at time r, then its derivative
V'(r) is the rate at which water flows into the reservoir at time r. So

is the change in the amount of water in the reservoir between time /r and

time fz.

I If [C] (r) is the concentration of the product of a chemical reaction at

time /, then the rate of reaction is the derivative dlc)ldt. So

ftz dlcl .| -+= at: [c](r') - [c](r,)J,, dt

is the change in the concentration of C from time f r to time /z.

I If the mass of a rod measured from the left end to a point x is m(x), then
the linear density is p(x) - m'(x). So

I! rtn dx : F(b) F(a)

Il o'tn dx : F(b) F(a)

ll ot,.] dx: m(b) m(a)

is the mass of the segment of the rod that lies between x _ a and x - b.

I If the rate of growth of a population is dn/df, then

l', dn
| 1 at : n(t?) n(rt)J,, dt

is the increase in population during the time period from rr to tz.
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lf C(x) is the cost of producing x units of a commodity, then the margi-
nal cost is the derivative C'(x). So

: C(xr) C(x t)

the increase in cost when production is increased from x r units to
units.

an object moves along a straight line with position function s(t), then
velocity is a(t) : s'(r), so

f" ,1r1 a, : s(r2) s(rr )
Jtt

is the change of position, or displacement, of the particle during the
time period from /1 to tz. In Section 5.1 we guessed that this was true
for the case where the object moves in the positive direction, but now
we have proved that it always true.

If we want to calculate the distance traveled during the time interval,
we have to consider the intervals when a(t)
the right) and also the intervals when a(t)
left). In both cases the distance is computed by integrating luG) l, the
speed. Therefore

[,,' I uG) | dt : total distance traveled

Figure 4 shows how both displacement and distance traveled can be
interpreted in terms of areas under a velocity curve.

The acceleration of the object is a(r) : u'(t), so

a(t) dt : a(tz) u(t )

is the change in velocity from time fr to time f2.

EXAMPLE 7 I A particle moves along a line so that its velocity at time / is
a(t) - tz t 6 (measured in meters per second).
(a)Findthedisplacementoftheparticleduringthetimeperiodl<t<
(b) Find the distance traveled during this time period.

5CILUT!CIhl

(a) By Equation 2, the displacement is

s(4) s(1) a(t) dt :

I r' t2
It-
L3 2

I:,' t'(x) dx

is
Xz

rIf
its

a

E

FIGURE 4

displacement : 
,[:' 

ug) dt : At - Az* A,

distance - l,u lu(r) ldt - A, * Az + A3 I,:,,,

Lru2-_t

o,l': -sJ' 2

l4: 
J,

r u(t)

This means that the particle moved 4.5 m toward the left.

6) dt



(b) Note that u(t) - t'
interval [1,3] and u(t)
traveled is

t-

sEcTlol{ 5.3 El'ALUATIt'lG DEil}llTt lilTt6RALS I 
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6 : (t 3) (r + 2) and so u(r)

[3, 4]. Thus, from Equation 3, the distance

To integrate the absolute value of u(t),
we use Property 5 of integrals from
Section 5.2 to split the integral into
two parts, one where u(r) < 0 and

one where u(t) > 0.

FIGURE 5

I u(t) | dt

EXAMPLE B r Figure 5 shows the power consumption in the city of San

Francisco for September 19, 1996 (P is measured in megawatts; / is measured
in hours starting at midnight). Estimate the energy used on that day.

P

800

S*ttlT$ffif{ Power is the rate of change of energy: P(t)
Change Theorem,

182tr
Pacific Gas & Electric

: E'(t). So, by the Total

ll' 16 at : l'o n'tt) dt : E(24) - E(o)

is the total amount of energy used on September 19,1996. We approximate the
value of the integral using the Midpoint Rule with 12 subintervals and At : 2.

J- P(r)41 -lP(r) + P(3) + r(s) +.'. + P(2r) + P(23))Lt

- @40 + 400 + 420 + 620 + 790 + 840 + 850

+ 840 + 8r0 + 690 + 670 + 550) (2)

: 15.840

The energy used was approximately 15,840 megawatt-hours. I

How did we know what units to use for energy in Example 8? The integral

!3' 
pO dr is defined as the limit of sums of terms of the form P(tf) Lt. Now P(tf)

is measured in megawatts and Ar is measured in hours, so their product is mea-

l,-
: l,' l-u(r)ldr + I: ,u) dt

: l,' ?t2 + t + 6) dr + Ii Uz - t

l- f .f +6/-|,*[4 f:L-;+ z J, L3 2

6l:?--10.17m

6) dt

.,];

A note on units
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l. If w'(t) is the rate of growth of a child in pounds per
year, what does .ilo r,u'(r) dt represent?

2. The current in a wire is defined as the derivative of the

charge I(r) - Q'(r). (See Example 3 in Section 3.3.)
What does I!, tt l dr represent?

3. If oil leaks from a tank at a rate of r(r) gallons per
minute at time /, what does J",1no r(r) dr represent?

4. A honeybee population starts with 100 bees and
increases at a rate of n'(r) bees per week. What does
100 + J,lt "'(r) 

dr represent?

5. In Section 4.7 we defined the marginal revenue func-
tion R'(x) as the derivative of the revenue function
R(r), where x is the number of units sold. What does

J ij,ff R'(x) dx represent?

6. If /(x) is the slope of a trail at a distance of x miles
from the start of the trail, what does J{ 7(x) ax
represent?

7-30 I Evaluate the intesral.

sured in megawatt-hours. The same is true of the limit. In general, the unit of
measurement tor l!|Q)dx is the product of the unit for/(x) and the unit for x.

Exercises

zr.J"4riar. 28. f (.r. #) 
'u*

7s. f, t,tr' - rldx 30. Ji, lx - r'la*

HH I l-34 r Use a graph to give a rough estimate of the area
of the region that lies beneath the given curve. Then find
the exact area.

3t. .)n 
:'ffi, 0 < -r < 27

33. .)': sinx, 0 < x { zr

32.

34.

.y : J-0, 1 { x < 6

.),-secttr,0<x( rr/3

HH fS. Use a graph to estimate the r-intercepts of the curve
y : x * x2 xo. Then use this information to estimate
the area of the resion that lies under the curve and
above the x-axis.

36. Repeat Exercise 35 for the curve y - 2x + 3xa Zxo

37-38 I Evaluate the integral and interpret it as a differ-
ence of areas. Illustrate with a sketch like Figure 3.

39-40 r Verify bv differentiation that the formula is

correct.

r' ^ ,t sin 2.r
39. lsin'xdx:r--_-+ C.r 24

40.f+rtx--l*'!o'+c,l x2 V'x, + a, a'x

e^) dx I o. l^' (yn - z!' + 3y) dy
.10

u(rli + i/i)au

A?
r'2 t" - t-
l,dt

.f I [,

l'l 1

J, (x' l)- dx

/'8"X-l
| 

- 
c/.r

*r I 
i/-r:2

rt 
-t')

.fn 
-(cos0+2sing)d0

f. *11

.1,./r 
cscJ cot x d-r

i'ln 6

J,", 8e' dx

f -e 3

| ,- d*
.J -e- X

ro.s dxl_| ]_--_---
"lo \/ | J2

ffig
IL

ffiH
HM

T. 
_[_0, 

{rr 5) dx

I r. I,i J; o.

tr */7.

I srntdt
| */ij tt)ta

it rr,i'3

t - csc'0 d0
rr74'O

t'8 I
21. t. - dx

"r+ X

23. [*' z' a,

25. l"t 6 . ,c-*.ll | + -trt

La "l

B. 
J,- {5*t - 4x + 3) dx

37. 
.f 

t, *'d" tn 5n/2
38. ),,o sin -r r/.r

s. 
J_', 

(zx

12.

t4.13.

16.15.

18.t7.

.l,t

,lu'

rt+l
rdx

V,J

EE + t4z
graphi

41 , J

I Find the
ng several

* tli a*

geiler&l indefinite integral. Illustrate by
members of the family on the same screen.

42. f q.u, r 2 sin x) dr

t9. 20.

22.

24.

4346 r Find the general indefinite integral.

r' ra

43. J Q ,/i )' a* 44. J ,/i (*' - rlx) dx

,/l

45. J (2x + sec,{ tan r) dr

,,/ t \
46..1 (",+ I + ;fi )d-26.



47.

48.

49-50 r The velocity function (in meters per
given for a particle moving along a line. Find
displacement and (b) the distance traveled by
during the given time interval.

49.u(t):3t 5, 0<t<3
50.u(t):tz 2t 8, 1<r<6

The area of the region that lies to the right of the y-axis
and to the left of the parabola x - 2y y2 lthe shaded

region in the figure) is given by the integral

.|'u2 
(Zy )'2)d)'. (Turn your head clockwise and think of

the region as lying below the curve x - 2y yt from

)' : 0 to )' - 2.) Find the area of the region.

The boundaries of the shaded region are the -y-axis, the

line -y : 1, and the curve yr : {,G. Find the area of this
region by writing x as a function of y and integrating
with respect to .1' (as in Exercise 4l).
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the Midpoint Rule to estimate the distance traveled by
the car.

56. The inflation rate is often defined as the derivative of
the Consumer Price Index (CPI), which is published by
the U.S. Bureau of Labor Statistics and measLlres prices
of items in a "representative market basket" of typical
urban consumers. The table gives the inflation rate in
the United States from 1980 to 1994. Write the total
percentage increase in the CPI from 1980 to 1994 as

a definite integral. Then use the Midpoint Rule to
estimate it.

{ (11

rts(l
()hi 

I

ril"il
()N i
() 

hi-.1"

()li5

() 
i'i (r

r"JNr

li5
l{}.,1

t- -l
tl"*

.rl
+l
.1 "{l

I (l

I fr

I

rj5 5

rlH{-)

()t){l

rl.) 
l

tlt,l]

llt,l I

(,}t,Jl

l!

:'
it

5 l-52 r The acceleration function (in m/st) and the initial
velocity are given for a particle moving along a line. Find
(a) the velocity at time r and (b) the distance traveled during
the given time interval.

5f. a(t) : t + 4,, ?r(0) - 5, 0 < r < 10

52. a.(t) _ 2t + 3, u(0) _ -4, 0 < r < 3

53. The linear density of a rod of length 4 m is given by
p(x) : 9 + 7Jx measured in kilograms per meter,
where x is measured in meters from one end of the rod"

Find the total mass of the rod.

54. An animal population is increasing at a rate of
200 + 50r per year (where I is measured in years).By
how much does the animal population increase between

the fourth and tenth years?

55. The velocity of a car was read from its speedometer
at ten-second intervals and recorded in the table. Use

The marginal cost of manufacturing x yards of a certain
fabric is C'(x) - 3 0.01r + 0.000006xt (in dollars
per yard). Find the increase in cost if the production
level is raised from 2000 yards to 4000 yards.

Water leaked from a tank at a rate of r(r) liters per hour,
where the graph of r is as shown. E,xpress the total
amount of water that leaked out during the first fonr
hours as a definite integral. Then use the Midpoint Rule
to estimate that amount.

Economists use a cumulative distribution called a

Lorenz curve to describe the distribution of income
between households in a given country. Typically, a

Lorenz curve is defined on [0, 1], passes through (0,0)
and (1, l), and is continuous, increasing, and concave
upward. The points on this curve are determined by
ranking all households by income and then computing
the percentage of households whose income is less than
or equal to a given percentage of the total income of

second) is
(a) the
the particle

57.

58.

59.

1 (\l t) l{) l{) U +cl *]{} (r{ } {} j1){

I lr t( Ill I r'l Ir , {q i I

x-2y-y'
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the country. For example, the point (all00,b/100) is on
the Lorenz curve if the bottom ao/a of the households

receive less than or equal to b7o of the total income.
Absolute equaliry of income distribution would occur
if the bottom a%o of the households receive aVo of the
income, in which case the Lorenz curve would be the
line _y 

: x. The area between the Lorenz curve and

the line y - .r measures how much the income distribu-
tion differs from absolute equality. The coefficient of
inequaliry is the ratio of the area between the Lorenz
curve and the line v : x to the area under y : J.

(a) Show that the coefficient of inequality is twice the
area between the Lorenz curve and the line y : r,
that is. show that

coefficient of inequality - 2 [.' [" L(x)ldx
JO

(b) The income distribution for a certain country is
represented by the Lorenz curve defined by the
equation

L(x) - #x' + #*
What is the percentage of total income received by
the bottom 50Vo of the households? Find the coef-
ficient of inequality.

60. On May 7,, 1992, the space shuttle Endeavour was

launched on mission STS-49, the purpose of which was

to install a new perigee kick motor in an Intelsat com-
munications satellite. The table gives the velocity data
for the shuttle between liftoff and the jettisoning of the
solid rocket boosters.

(a) Use the methods of Section LI to model these data
by a third-degree polynomial.

(b) Use the model in part (a) to estimate the height
reached by the EndeavoLr, 125 seconds after liftoff.

6f . Suppose lr is a function such that h(1) : -2, h'(l):2,
h"(l) : 3, h(2) * 6,, h'(2) : 5, h"(21 : 13, and h" is
continuous everywhere. Evaluate !'rn"fu) au.

67. The area labeled B is three times the area labeled A.
Express b in terms of a.
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f . (a) Draw the line y : 2t + I and use geometry to find the area under this line,
above the r-axis, and between the vertical lines r : I and t:3.

(b) If x > l, let A(x) be the area of the region that lies under the line y : 2t + I
between t : 1 and t : )(. Sketch this region and use geometry to find an

expression for A(x).
(c) Differentiate the area function A(,r). What do you notice?

2. (a) If 0 { x < zr, let

Px
A(x) : 

Jo 
sin r dr

A(x) represents the area of a region. Sketch that region.
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(b) Use the Evaluation Theorem to find an expression for A(.r),
(c) Find A'(r). What do you notice?
(d) If r is any number between 0 and n'and ft is a small positive number, then

A(x + h) - A(r) represents the area of a region. Describe and sketch the
region.

(e) Draw a rectangle that approximates the region in part (d). By comparing the

areas of these two regions, show that

A(x + h) - A(x) -_ ,_,_
h - sln-x

(f) Use part (e) to give an intuitive explanation for the result of part (c).

EE f. <ul Draw the graph ofthe function/(x) : cos(x') in the viewing rectangle [0,2]
by l*1.2s,1.251.

(b) If we define a new function g Qy

sG) : ['cos(t2) dt

then 9(x) is the area under the graph of/from 0 to.t [until/(x) becomes
negative, at which point g(x) becomes a difference of areasl. Use part (a) to
determine the value of .r at which g(x) starts to decrease. [Unlike the integral
in Problem 2, it is impossible to evaluate the integral defining g to obtain an

explicit expression for g(.r).1

(c) Use the integration command on your calculator or computer to estimate
g(0.2),9(0.q,9(0.6), . . . ,g(1.8),9(2). Then use these values to sketch a graph
of g'

(d) Use your graph of g from part
tation of g'(x) as the slope of a

with the graph of/?

4. Suppose / is a continuous function
function g by the equation

(c) to sketch the graph of g' using the interpre-
tangent line. How does the graph of g' compare

on the interval la, b] and we define a new

s(x): f' f0 a,

Based on your results in Problems l-3, ron3r.ture an expression for g'(x).

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus is appropriately named because it estab-
lishes a connection between the two branches of calculus: differential calculus and
integral calculus. Differential calculus arose from the tangent problem, whereas in-
tegral calculus arose from a seemingly unrelated problem, the area problem. New-
ton's teacher at Cambridge, Isaac Barrow (1630-1677), discovered that these two
problems are actually closely related. In fact, he realized that differentiation and

integration are inverse processes. The Fundamental Theorem of Calculus gives the
precise inverse relationship between the derivative and the integral. It was Newton
and Leibniz who exploited this relationship and used it to develop calculus into a

systematic mathematical method.
In preparation for the Fundamental Theorem we first investigate some addi-

tional properties of the definite integral.
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Eil Properties of Integrals

When we defined the definite integral I'"ffOdx, we implicitly assumed that
q < b. But the definition as a limit of Riemann sums makes sense even if a > b.

Notice that if we reverse a and b, then Ax changes from (b - o)/n to (a - b)/n.
Therefore

!, n.l o.: - I: rk) dx

If a : b, then L,x - 0 and so

r f(x)dx:0

In the following properties we compare sizes of functions and sizes of integrals.
These properties are true only if a < b.

Comparison Properties of the Integral

l. lf f (x)

z. If /(x) > s(x) for a { x ( b, rhen I! fAdx
3. If m < /(r)

m(b a)

It f(x) > 0, then l2 tt*l dx represents the area under the graph of/ so the geo-

metric interpretation of Property I is simply that areas are positive. (It also follows
directly from the definition because all the quantities involved are positive.) Prop-
erty 2 says that a bigger function has a bigger integral. It follows from Property I
because/-g>0.

Property 3 is illustrated by Figure I for the case where/(r) > 0. If/is continu-
ous we could take m and M to be the absolute minimum and maximum values of/
on the interval la,bl. In this case Property 3 says that the area under the graph of
/is greater than the area of the rectangle with height ra and less than the area of the
rectangle with height M.

In general, since n < "f(r) { M, Property 2 gives

mdx f(x)dx a Mdx

Evaluating the integrals on the left- and right-hand sides, we obtain

rrr
FIGURE I

m(b a) f (x) dx < M(b a)
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Property 3 is useful when all we want is a rough estimate of the size of an inte-
gral without going to the bother of using the Midpoint Rule.

EXAMPLE

$sH"$T*0$d

maximum
m: /(1)

e-'(t - o) -r' dx

-'' dxe-l

^. -lSrnce e ', : 0.3679. we can write

0.361
ffi

The integral is greater than
of the square.

I r Use Property 3 to estimate li^' ,-*'dx.
JO

Because/(x) - e-" is a decreasing function on [0, l], its absolute
value LS M : /(0) - 1 and its absolute minimum value is

- e*'. Thus, by Property 3,

FIGURE 2

U

The result of Example 1 is

the area of the lower rectangle

The Fundamental Theorem

illustrated in Figure 2.

and less than the area

In order to motivate the Fundamental Theorem, let/be a continuous function on

la,b) and define a new function g by

tr

where a
upper limit in the integral. If x
definite number. If we then let x
a function of x denoted by g(x).
by the Evaluation Theorem, we

s(x)

s(x) f (t) dr

g depends only on .tr, which appears as the variable
is a fixed number, then the integral J') f ftl dt rs a
vary, the number {j f (t) dt also varies and defines
For instance, if we take/(r) - t? and, a- 1, then,
have

. -tr' It-dt:
3

- J"'

-1,.

Notice that g'(x) : x2, that is, g' : /. In other words, if g is defined as the integral
of/by Equation 1, then g turns out to be an antiderivative of/ at least in this case.

To see why this might be generally true we consider any continuous function/
with /("r) > 0. Then Sb) : I: ttldt can be interpreted as the area under the
graph of/fromato x, where xcanvary from a to b. (Think of g as the "area so

far" function; see Figure 3.)

In order to compute g'(,r) from the definition of derivative we first observe that,
for h > 0, g(x I h) - SQ) is obtained by subtracting areas, so it is the area under

area : g(x)

FIGURE 3
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FIGURE 4

We abbreviate the name of this theo-
rem as FTCI. In words, it says that the
derivative of a definite integral with
respect to its upper limit is the inte-
grand evaluated at the upper limit.

the graph of/from x to x * i (the gold area in Figure 4). For small ft you can see

from the figure that this area is approximately equal to the area of the rectangle
with height/(.r) and width ft:

g(x + h) s(x)

s(x + h) s(x)

- hf(x)

- f(x)

Intuitively, we therefore expect that

g'(x) : lim
ft-+0

s(x + h)-s(x) : f(x)

The fact that this is true, even when/is not necessarily positive, is the first part of
the Fundamental Theorem of Calculus.

Using Leibniz notation for derivatives, we can write this theorem as

f(t)dt: f(x)

when / is continuous. Roughly speaking, this equation says that if we first inte-
gratef and then differentiate the result, we get back to the original functionl,

It is easy to prove the Fundamental Theorem if we make the assumption that/
possesses an antiderivative F. (This is certainly plausible. After all, we sketched

graphs of antiderivatives in Sections 2.10 and 4.9.) Then, by the Evaluation
Theorem.

f(t) dt : F(x) F(a)

for any x between a and b. Therefore

d Px
I

dx Ja

r

df"
dx Ja

as required. At the end of this section we present a proof without the assumption
that an antiderivative exists.

The Fundamental Theorem of Calculus, Part I If "f is continuous on [a ,bf,
then the function g defined by

g(x) : l: fu) dt a

isanantiderivativeoff,thatis,g,(x):f(x)fora<
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EXAMPTE 2 r Find rhe derivative of the funcrion S(x) : [" lt .Z ar.

SOtUTlOlt Since/(r) : Jl +7 is continuous, Part I of the Fundamenral
Theorem of Calculus gives

4(x):'n +-F t
EXAMPLE 3 r Although a formula of the form S(x) -- l: ftO dt may seem like a
strange way of defining a function, books on physics, chemistry, and statistics
are full of such functions. For instance. the Fresnel function

sin(zrf? lD ars(x) :J;

is named after the French physicist Augustin Fresnel (1788-1827), who is famous
for his works in optics. This function first appeared in Fresnel's theory of the
diffraction of light waves, but more recently it has been applied to the design of
highways.

Part 1 of the Fundamental Theorem tells us how to differentiate the Fresnel
function:

S'(r) : sin(rrx2 /2)

This means that we can apply all the methods of differential calculus to analyze
S (see Exercise 25).

Figure 5 shows the graphs of/(x) : sin?rxz/2) and the Fresnel function
S(x) : I; lrldr. A computer was used to graph S by computing rhe value of
this integral for many values of .r. It does indeed look as if S(-r) is the area under
the graph of/from 0 to x [until x - 1.4, when S(.r) becomes a difference of
areasl. Figure 6 shows a larger part of the graph of S.

FIGURE 5

/(x) : sin(rrxzl2)
ir -\'I

S(x) : I sin 1rrt2l2y dr
JO

FIGURE 5

The Fresnel function S(r) sin( nf l4 dr-fJO

If we now start with the
derivative should look like,
S is increasing when /(x)
visual confirmation of Part

graph of S in Figure 5 and think about what its
it seems reasonable that S'(r) : f(*). [For instance,
0 and decreasing when f(x)
1 of the Fundamental Theorem of Calculus. r
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'df*a
EXAMPLE4lFind. I secrdr.

dx Jt

SffituTF*N Here we have to

Part I of the Fundamental

*

be careful to use the Chain Rule in conjunction
Theorem. Let u - xo. Then

d fu:
dx Jt

d f ,, I du
- | | Secf ffil llrr lhe ('ltrtirt lttrll

du LJ' J dx

du
- sec u 

d- 
{ br' [j"l'('l I

: sec(xo) ' 4x3

with

We now bring together the two parts of the Fundamental Theorem. We regard

Part I as fundamental because it relates integration and differentiation. But the
Evaluation Theorem from Section 5.3 also relates integrals and derivatives, so we

rename it Part 2 of the Fundamental Theorem.

The Fundamental Theorem of Calculus Suppose,f is continuous on [a ,bf.

t. If g(x) : I" Xrl dt, then g'(x) : f (*).

Ph
Z. I f(x) dx: F(b) F(a), where F is any antiderivative of "[ that is,

;: f.

d f.' sectdt
dx Jt

We noted that Part 1 can be rewritten as

d f'+ | f(t)dt: f(x)
AX .ra

which says that if/is integrated and the result is then differentiated, we arrive
back at the original function/. In Section 5.3 we reformulated Part 2 as the Total
Chanse Theorem:

F'(x) dx : F(b) F(a)

This version says that if we take a function F, first differentiate it, and then inte-
grate the result, we arrive back at the original function F, but in the form
F(b) - F(a). Taken together, the two parts of the Fundamental Theorem of Cal-
culus say that differentiation and integration are inverse processes. Each undoes

what the other does.

The Fundamental Theorem of Calculus is unquestionably the most important
theorem in calculus and, indeed, it ranks as one of the great accomplishments of
the human mind. Before it was discovered, from the time of Eudoxus and

Archimedes to the time of Galileo and Fermat, problems of finding areas, vol-

r

Differentiation and Integration as lnyerse Processes



389SECTIOI{ 5.4 Tt|T ItJIIDAFITI{TAL Tl{TORI11 OI CALTULUS

umes, and lengths of curves were so difficult that only a genius could meet the
challenge. But now, armed with the systematic method that Newton and Leibniz
fashioned out of the Fundamental rheorem, we will see in the chapters to come
that these challenging problems are accessible to all of us.

Proof of FTCI

Here we give a proof of Part 1

assuming the existence of an
x + h are in the open interval

and so, for /r # 0,

a

For now let's assume
Value Theorem says

f(") - m andf(u) -
values of f on [x, x +

By Property 3, we

of the Fundamental
antiderivative of f.
(a, b), then

Theorem of Calculus
Ler s(x) -- I; f@ dt.

without
If x and

r
r.^

(r:

f.'

f(t) dt f ro o,

f(t) dt + J;'.' f (t) d,)

f (r) dt

f (r) dt

s(x + h) s(x) I f*+n: i )r fu)dr

that h
that there are numbers u and a in l*, * + h] such that

M, where m and M are the absolute minimum and maximum
hl (see Figure 7).
have

mh a l.*^ f (r) dr

f (u)h

FIGURE 7

that is,

Since h can divide this inequality by h:

< f(u)

Now we

E

use Equation 2 to replace the middle part of this inequality:

f (u)
g(x + h) s(x) < f(u)

Inequality 3 can be proved in a similar manner for the case where ft < 0. Now
weleth -+ 0. Then u ---> x and u -+ r, since uanda lie between xandx * ft. Thus

I f*+n
; | /(t) dt
n .tX

lim f(") : lim f(u) : f(x)
h --'+0 u ----rx

limf(u):limf(u):f(*)
h-+0 u ---,x

because/is continuous at x. We conclude, from (3) and the Squeeze Theorem, that

g'(x) - lim
h--->0 W

y: f (x)

s(x + h) s(x) : f(x)
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Exe rc ises

l. Explain exactly what is meant by the statement that
"differentiation and integration are inverse processes."

2. Suppose / has absolute minimum value m and absolute

maximum value M. Between what two values must

Ji ftrl dx lie? Which property of integrals allows you

to make your conclusion?

3. Use the properties of integrals to verify that

0 < J,ttt xdx < 2ln3

4-5 I Use Property 3 to estimate the value of the integral.

,r1 ,t I
tLt^

4. )' '[*' + T a, s. J], e" dx

6. (a) Use Property 3 to show that

!,^ ,FF dx > iO

(b) Show that tffi ,t' 7 x..

(c) Use part (b) and Property 2 to show that

t+

J, /t + xz dx > 7.5

7. Let g(x) : J; f0 dt, where f is the function whose

graph is shown.
(a) Evaluate g(0) , g(l), g(2), g(3)o and 9(6).
(b) On what intervals is g increasing?
(c) Where does g have a maximum value?

(d) Sketch a rough graph of g.

Let g(x) - Jl, f@ dt, where f is the function whose

graph is shown.
(a) Evaluate g(-3) and g(3).

(b) Esrimate g(-Z), g(- 1), and g(0).
(c) On what interval is g increasing?
(d) Where does g have a maximum value?

(e) Sketch a rough graph of g.

(f) Use the graph in part (e) to sketch the graph of
g'(x). Compare with the graph of f.

9-10 r Sketch the area represented by g("). Then find
g'(x) in two ways: (a) by using Part I of the Fundamental

Theorem and (b) by evaluating the integral using Patt 2

and then differentiating.

g. g(x) : 
.,1, tt + rz) dt lo. g(x) : E f, + cos r) dr

I l-20 I Use Part I of the Fundamental Theorem of Cal-
culus to find the derivative of the given function.

I t. g(x) : 
1," U' - r)20 dr

r r t------
12. g(x) - .l_, Vt' + | dt

13. s(u): J; if o,

14. r(x) : f cos(r') dt

l-A
I uin,, l'cos(r') d, :
L 

CJ.T

f s. h(x) : Jr'^' srnat dt

-,[' cos(r ') d,]

_2

f 6. h(x): J,t-- fi; rt

t7 . y : Jj:, sin(ra) dr 18. ) : Jl'r cos(r t) dr

f 9. g(x): I'. ft n,

I 
Hint: I]. r,) du: ,[1 ftu) du+ I]. rr,, o,)

20. g(x):J:,ffi0,

2 | . If F(x) : 
J," f 

(r) dt,

find F" (2).

8.

where f(t): 1," #Or,



22. Find the interval on which the curve

)'-i---f -a,-. ,r0 l+t+t'
is concave upward.

?3-?4 m Let g(x) : J; f\dt, whercf is the function whose
graph is shown.

sEcTtoil 5.4 T|{E f Ut{DAt{iltTAt Illt0REt't 0t CAtCULUt 39r

rhar its limit is I when t --+ 0. So we define /(0) : I
and this makes / a continuous function everywhere.l
(a) Draw the graph of Si.
(b) At what values of r does this function have local

maximum values?
(c) Find the coordinates of the first inflection point to

the right of the origin.
(d) Does this function have horizontal asymptotes?
(e) Solve the following equation correct to one decimal

place:

rx sin f
J,, , dt- I

Find a function/such that/(l) - 0 and f'(x) - 2*/x.

Let

and mini-

value?

(a) At what values of x do the local maximum
mum values of g occur?

(b) Where does g attain its absolute maximum
(c) On what intervals is g concave downward?
(d) Sketch the graph of 9.

23.

-0.2

s(x): f f0dt

c(t):+ff/(s)+s(s)lds

27.

28.

/(x) :I:
L;

if x < 0

if 0 < x { I
x if 1(x{2

ifx>2

and

(a) Find an expression for g(;) similar to the one

for /(x).
(b) Sketch the graphs af f and g.

(c) Where is / differentiable? Where is g differentiable?

29. Find a function/and a number a such that

- frf(t), ,6*J,'?dt-z,E
30, A high-tech company purchases a new computing sys-

tem whose initial value is V. The system will depreciate
at the rate f : f (t) and will accumulate maintenance
costs at the rate g : g(t), where r is the time measured
in months. The company wants to determine the opti-
mal time to replace the system.
(a) Let

Show that the cr
numbers f where

(b) Suppose that

(v
f(tt: { "

L0

ffid
LP. Friqj

25. The Fresnel function ,S was defined in Example 3 and
graphed in Figures 5 and 6.
(a) At what values of x does this function have local

maximum values?
(b) On what intervals is the function concave upward?
(c) Use a graph to solve the following equation correct

to one decimal place:

fr

Jo^ 
sin(nt?lz) dt - 0.2

26. The sine integral function

si(x): I ttnt 
o,'Jot

is important in electrical engineering. [The integrand

f (t) - (sin t) lt is not defined when t - 0 but we know

itical numbers of C occur at the
C(r):f(t)+g(r).

V t if 0 < r < 30
450

ifr>30

and s(t): +* r > o' l2,go0

Determine the length of time Z for the total depreci-
ation D(t) : J; /(s) ds to equal the initial valu e V.

!
/

I
/

,n/'

fiFffEFq
0ffi'u.Yk#5ci
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(c) Determine the absolute minimum of C on (0, f].
(d) Sketch the graphs of C and f + g in the same coor-

dinate system, and verify the result in part (a) in

this case.

3l. A manufacturing company owns a major piece of equip-

ment that depreciates at the (continuous) rate f : f(t),
where f is the time measured in months since its last

overhaul. Because a fixed cost A is incurred each time

the machine is overhauled, the company wants to deter-

mine the optimal time Z (in months) between overhauls.

(a)

(b)

Show that Ji /(r) ds represents the loss in value
the machine over the period of time r since the
overhaul.
Let C - C(/) be given by

c(t): I fo + {,l rt,t ,,1f L ''/u I

of
last

What does C represent and why would the company
want to minimize C?

(c) Show that C has a minimum value at the numbers

t - Zwhere C(f) : fQ).

Newtoh, Leibniz, and the lnvention of Calculus

We sometimes read that the inventors of calculus were Sir Isaac Newton (1642-1727)

and Gottfried Wilhelm Leibniz (1646-1716). But we know that the basic ideas behind
integration were investigated 2500 years ago by ancient Greeks such as Eudoxus and

Archimedes, and methods for finding tangents were pioneered by Pierre Fermat
(1601-1665), Isaac Barrow (1630-1677), and others. Barrow, Newton's teacher at
Cambridge, was the first to understand the inverse relationship between differentiation
and integration. What Newton and Leibniz did was to use this relationship, in the form
of the Fundamental Theorem of Calculus, in order to develop calculus into a systematic

mathematical discipline. It is in this sense that Newton and Leibniz are credited with
the invention of calculus.

Read about the contributions of these men in one or more of the given references

and write a report on one of the following three topics. You can include biographical
details, but the main thrust of your report should be a description, in some detail, of
their methods and notations. In particular, you should consult one of the sourcebooks,

which give excerpts from the original publications of Newton and Leibniz, translated
from Latin to English.

r The Role of Newton in the Development of Calculus

r The Role of Leibniz in the Development of Calculus

r The Controversy between the Followers
in the Invention of Calculus
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The Substitution Rule

Because of the Evaluation Theorem, it's important to be able to find antideriva-
tives. But our antidifferentiation formulas don't tell us how to evaluate intesrals
such as

! 2.,/t + *'a*

To find this integral we use the problem-solving strategy of introducing something
extra. Here the "something extra" is a new variable; we change from the variable x
to a new variable u. Suppose that we let ube the quantity under the root sign in (1),
u: | -l xt. Then the differential of u is du:2xdx. Notice that if the dx in the
notation for an integral were to be interpreted as a differential, then the differen-
tial 2xdx would occur in (l) and so, formally, without justifying our calculation,
we could write

E !2./ + F .,[ +-F zx dx

tr

Differentials were defined in Section 3.8.

lf u: f(x), then

du : f'(x) dx

dx: J
lf,)2,/)

- | vu tlu - iu''!- +

:ir*'+r)'r'+c
But now we could check that we have the correct answer bv
to differentiate the final function of Equation 2:

C

using the Chain Rule

-d 
f 2r 1 ,, ti(.r' + l)."t + c] -ax

In general, this method works

I fCg(x)) g'(x) dx. Observe rhar if F'

+ I)r/z . 2x: 2x t/fi

whenever we have an integral of the form
: f, then

?'i(*'

E
J.

I r'(g(x)) s'(x) dx : F(s(*)) + c
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because, by the Chain Rule,

/1

+ [r( s(r))] : F' (s(x))g' (x)
clx

If we make the "change of variable" or "substitution" u : g(.r), then from Equa-

tion 3 we have

fl'

J F'(s(x))s'(x)dx: F(g(x)) + c: F(u) + c:J F'(u)du

or, writing F' : f, we get

'(x) dx

rule.

f (u) du

Thus, we have proved the

Notice that the Substitution Rule for integration was proved using the Chain
Rule for differentiation. Notice also that it u : g(x), then du : g'(x) dx, so a way

to remember the Substitution Rule is to think of dx and du in (4) as differentials.
Thus, the Substitution Rule says: It is permissible to operate with dxand

duafter integral signs as if they were differentials.

EXAMPLE I r Find | -r3cos("ra + 2) dx.

SOIUTIOI{ We will ,*0" ,n" substitution tr : xo* 2 because its differential is

du : 4x3 dx. which, apart from the constant factor 4, occurs in the integral.

Thus, using xt dx : dul4 and the Substitution Rule, we have

| "t 
cos(x4 + 2) dx

J rt suDs

following

:J

:iJf
-l J

_l
4

_l
4

cosr, 'idu

sina + C

cos u du

sin(xa+2)+C

Check the answer by differentiating it. Notice that at the final stage we had to return to the original variable x. t

The idea behind the Substitution Rule is to replace a relatively complicated inte-
gral by a simpler integral. This is accomplished by changing from the original
variable .r to a new variable u that is a function of r. Thus, in Example I we re-

placed the integral J x3cos(.ra + 2)dx by the simpler integral I I cosudu.

E ttre Substitution
range is an interval

Rule If u : g(x) is a differentiable function whose

1 and "f 
is continuous on /, then

J fkkDs'G)dx :J f (u) du
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The main challenge in using the Substitution Rule is to think of an appropriate
substitution. You should try to choose u to be some function in the integrand
whose differential also occurs (except for a constant factor). This was the case in
Example 1. If that is not possible, try choosing u to be some complicated part of
the integrand. Finding the right substitution is a bit of an art. It's not unusual to
guess wrong; if your first guess doesn't work, try another substitution.

SOLUTION I Let u : 2x * l. Then du : 2dx. so dx : du/2.Thus. the Substitu-
tion Rule gives

EXAMPLE 2 I Evaluare | ,f + t ar
U

ffduI JZx + | dx: l r/u _ -JJ)

x

- 

|,.-+.

Vl 4x'

4xz. Then du - _gx dx, so x dx : _ * au and

utlT du

+C +C

: tre* + t)',, + C

S*LlJTr*rd 3 Another possible substitution is a : ttr- + l. Then

du: ,f+ r
dx: tE + t au: udu

(Or observe that u2: 2x + 1, so 2udu: Zdx.) Therefore

! ,n- . t dx: I ,'ttdbt u2 du

iQ* + l)ztz + c

f
EXAMPLE3 T Find 

IU

+l

: 
+ uslz

I u3/':-.-
2 312

dx

:J
n
1

u-
:-L/-1 :

-t 
| \-/

J C

$SLq.$T$#he Letu: I -

|. ----r- a*
J f _TF I'JJI

_L f du: -8 | -ru \/ u

: - *(z J;)

: -;J u-1/7 du

FIGURE I

f(-r) -r\'' 
{l-4x2
f,l'

s(x)- J /t') dx : -+.,f . 4xt

+ c: -ilT=-4F + c *

n= The answer to Example 3 could be checked by differentiation, but instead let's
check it visually. In Figure I we have used a computer to graph both the integrand

f(x): il\n --4" and its indefinite integral sG): -iJl -Z? (we take the
case C : 0). Notice that g("r) decreases when/(x) is negative, increases when/(x)
is positive, and has its minimum value when f(x) :0. So it seems reasonable,
from the graphical evidence, that g is an antiderivative ofl

s(x) - [ 161ax
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EXAMPLE4 I Calculate f .or5xdx.

s#l-{JT{*Fd If we let u :*, ,n, n du : 5 dx,so dx - ! du.Therefore

f 'ff .ot5xdx:+ f .otudu: Isinu+ C: f sin5x+ C
UIU *

EXAMPLE 5 r Calculat I tunrdr.

SoLuTloH First we *.ir"'runr"nt in terms of sine and cosine:

r f sinxItanxdx: l' a*
r .) COS.I

This suggests that we should substitute u: cosx, since then du: -sinx dx
and so sinx dx: -du:

r f sinx lauItanxdx dx:-l-
.J tl COSX .J U

: -lnlul + c: -lnlcos.rl+ c *

Since -lnlcos"rl : ln(lcos-rl-') : ln(l/lcos.rl) : lnlsec.rl, the result of
Example 5 can also be written as

I anrd*: lnlsec.rl+ C

EXAMPLE5 I EvaluateJ cos3.rd"r.

50LUllOll In order to use the Substitution Rule, we first use the trigonometric
identity costx : I - sin2x and write

cos,.r: cosrx.cos.r: (l _ sin2-r)cosx

It is useful to have the extra factor of cos x because if we make the substitution

u : sinx. then we have du: cosxdx. Thus

111

J .o, 3x dx: J .ort" ' cos x dx: J tt sinzx) cos x dx

:J(t-u')du \u3+c

:sin.r-fsin3x*C t
fl,

EXAMPLET r Find | 

- 

dx.J x(x+l)
SOLUTION We rewrite the integrand in terms of simpler fractions (called partial
fractions) using the identity

x(x+1) x x+1



ln Appendix F we give a systematic
procedure for integrating rational func-
tions by splitting them into partial
fractions.

Computer algebra systems are also

able to obtain partial fraction decom-
positions. See Exercise 59.
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which you can verify by combining the fractions on the right-hand side. Then

f I f (t \
| 

- 

dx:tt- --L-la,J x(x*l) J \x x+l/
f I 1:t-o*-l 

-dxJ x J x*l

In the last integral we make the substitution u : .r I 1. Thus

-lnlxl-lnlx+11+ C

M Definite Integrats

When evaluating a definite integral by substitution, two methods are possible. One
method is to evaluate the indefinite integral first and then use the Evaluation Theo-
rem. For instance, using the result of Example 2, we have

li ,,o- - r a.: !Jz. + | a"li,:\12* + r),/,)l

: +(e)'/, _ l0),,' : \(zt _ r) : +

Another method, which is usually preferable, is to change the limits of integration
when the variable is chansed.

El ttre Substitution Rule for Definite Integrals If g' is continuous onla,,b)
and 

"f 
is continuous on the range of u - g(x), then

ll rrse))s'(x)dx: I::i rtu)du

Proof Let F be an antiderivative of/. Then, by Q), fQU)) is an antiderivative of
fG(x))S'G), so by the Evaluation Theorem, we have

This rule says that when using a substi-
tution in a definite integral, we must
put everything in terms of the new
variable a, not only x and d.r but also

the limits of integration. The new limits
of integration are the values of u that
correspond to x : a and x : b.

But, applying the Evaluation Theorem a second time, we also have

Il rte(x)) g'(x) dx -- r(s(*))l!,: p(s(b)) - F(s(o))

f:' f fu) du: F(r)l',',::,: p(g(b)) - p(s(o))
E

EXAMPTE 8 r Evaluate [i ,n- . t dx using (5).

S0LUTION Using the substitution from Solution I of Example 2, we have

u : 2x * I and dx : du/2. To find the new limits of intesration we note that

whenx- 0. a- I and whenx: 4.u- 9
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The geometric interpretation of
Example 8 is shown in Figure 2. The
substitution u : 2x * I stretches

the interval [0,4] by a factor of 2 and

translates it to the right by I unit.
The Substitution Rule shows that the
two areas are equal.

Therefore

Observe that when using (5) we
simply evaluate the expression

[] ma. : 
l,'+ 'E au

: ; 'lutftf',
:I(gtft ftz;-+

do not return to the variable x after integrating. We
in u between the appropriate values of u. tr

I

I

I

I:.* _1

I
I

I

t,

FIGURE 2

Since the function /(x) : (ln x)/x in

Example 9 is positive for x ) 1, the
integral represents the area of the
shaded region in Figure 3.

FIGURE 3

EXAMPLE 9 I Calculate I"
lnx

- 
dx.

x

SOLUTfOI{ We let u : ln x because its differential du -- dxfx occurs in the inte-
gral. When x : l, u : lnl : 0; whenr : €, il : lne : l. Thus

L"Yo.:.l; udu: +)i ,:I
EXAMPLE l0 I Prove that the area of a circle with radius r is trr'

ru

SOtUTlOl{ This is, of course, a well-known formula. You were toldthat it's true
a long time ago; but the only way to actually proveit is by integration.

For simplicity, let's place the circle with its center at the origin, so its equa-
tion is x2 * y' : r'. Solving this equation for y, we get

y-tJr'-f
Because the circle is symmetric with respect

four times the area in the first quadrant (see

the first quadrant is given by the function

to both axes, the total area A is
Figure 4). The part of the circle in

0

and so ,lrt - * a*

To simplify this integral, we would like to make a substitution that turns
r' xt into the square of something. The trigonometric identity
I - sin2g - cost9 is useful here. In fact. because

!e: J;

l--**t----i---[---T-- T_-_-t-_-_-j 
il\iiill!llriiiilli- --L-- _*l- --j-----j= - I --:r----l_---j-----l-- --li I -*-l*----I---T:--:l----*T-*_r *--*i***-*l

rliiitiiriiiltriiiii!iillllrri
L*.: ---t -----:t---- l- ---, I *--*i** * -*-f ***-*i-_*--*+:--_*--jiiif-#l iirriI I i f' 'r i i i I I

Jt+)t

FIGURE 4 r' r2 sin' 0 - r' cos'?



sEcTloll 5.5 Tl|E t|JBsTtTUTt0il nUtr I 399

we make the substitution

This substitution is a bit different from x: rsino
our orevious substitutions. Here the old
variable x is a function of the new vari- Since 0 ( x { r, we restrict 0 so that 0 < I < r/2. We have dx : r cos? d0 and
able 0 instead of the other way around.
But our substitution x : rsin0 is

equivafenttosayingthat 0: sin '(x/r)' 
because cos0 ) 0 when 0 < 0 < rf2.Therefore, the Substitution Rule gives

This is Formula l7a in Appendix C.

Here we make the mental substitution
u:20.

,R:ffi:t@:rcoso

fr 11 ' f,/2/ ,-,\ ^,,\ lftl2 1^

we i n,egra'; lJ,,1 ̂':^,-i1, 
j::::::;: :,, " J' co s' o do

Thus

We have therefo

I syrnrnerry

The next theorem uses the Substitution Rule for Definite Integrals (5) to simplify
the calculation of integrals of functions that possess symmetry properties.

6 Integrals of Symmetric Functions Suppose / is continuous on [ - a, a.f.

(a) rf f is even t/(-x) : f(x)1, then I:, f(*) dx: 2 It fb) dx.

(b) It f is odd t/(-,r) : -/(")1, rhen Ii, fQ) dx: 0.

Proof We split the integral in two:

a I_"ralo,: tl"f(x)dx + li l,lo*: -to-' f(x)dx * t, t@a,

In the first integral on the far right side we make the substitution u : -r. Then
du : -dx and when x : -a. u : a. Therefore

-I-" f(x)dx: -ff feu)?du): Ii rt-u)du

and so Equation 7 becomes

E I_" rtn dx - [, rt-u) du + L rt-) dx

(a) If/is even, then f(-u) : f(u) so Equation 8 gives

f"f(x)dx: L rtodu + f rt"l dx - r l: fk)dx

ffi

costp : i(t + cos 20)

i e - ,' [:'' cos 'o do : +r' !o''' tt + coszo) do

: +r'le + j sin zo)y' : +r'(++ o t)
:inr'

re proved the famous formula A - rrr'.
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(b) It f is odd, then f (-a) : -f(u) and so

f" fk) dx : -r[" ffu) du

Theorem 6 is illustrated by Figure 5. For the case where/is positive and even,
part (a) says that the area under y : f(x) from -a to a is twice the area from 0 to
c because of symmetry. Recall that an integral lX ft l dx can be expressed as the
area above the.r-axis and below y : f(x) minus the area below the axis and above
the curve. Thus, part (b) says the integral is 0 because the areas cancel.

EXAMPLE ll r 5ins.1(x) : xu * I satisfies f(-x): f(x),it is even and so

(*u + l)dx - + I)dx

Equation 8 gives

Pa
+,ln f?)dx:0 T

(a) /even,f' f(x)dx:z[lftfldx

r, , I: ("u

'l++
x)/0 +

(b) / odd, f 
' /t"l dx: O

FIGURE 5 EXAMPLE 12 I Since f(x)
odd and so

: 2(# + 2) --T

xo) satisfies /(-x) : - f(*),

"1,

x2+

:

: (tan

#J],

ffi

it is

tan "r

- 

dx:01+x'+x*

Exercises

integral by making the grvenl-5 r
substit

nl. I
J

Evaluate the

ution.

ft

6. I sec a0 tan a0 d0, u

x(x' l)qe dx,, u - x' I

-a0

n)l-f3. | , 
^dtr (r + 11

lr

1 5. J e'( l + e')to dx

f.

17. J sec' 3e de

('
19. J cos*r sin x dx

1{

oszx dx21. J sin'xc,

i' dx
23. t-JZx I

r' dx
25. l-J xlnx

r. e' + I27.J a dx

i' X + I
29. | ^ d.rJ x' + 2x

/'l+x
31. I ud*r l+x

.t

t4. J \/3 5y dy

r. tan -lx
16. | . 

-dx
J 1*x

r
tg. f tot]" 

Atr Jx

l'
20. J cotxdx

f
22. J cos .r cos(sin x) dx

24. | ,* d*.'t x' +1

P
25. J e* sin (e') dx

2g. I u' 
d.r.,r e-, + I

P sinx30.1 ^ dx.f I + cos'.tr

fx
32. | . . odxJ 1*x

afx'2. lldx, Lt:2+x'rr t/Z + x3

f3.J e*'dx, u-4x 4. lr=ol ,ru, u-2xr (2x + t),

i' x +3
5. | )-:-ax. u-.trt+6xJ (x' + 6x)'

+l

7-32 I Evaluate the indefinite

r (ln,r)27'.1 * o*

t/-
9. J lx ldx

lrll. J x'Jz * xa dx

integral.

8. ! rr.' d*

I o. [ ,'cos(l - t3) dt

tz. I *Q'+ l)t/'dr



fi! llle r Evaluate the indefinite integral. Illustrate and
check that your answer is reasonable by graphing both
the function and its antiderivative (take C - 0)"

SECTION 5.5 Tl{E IUBITITUIIOI{ RULE 40 1

EE Sg-00 r Evaluate the integral by first using a computer
algebra system to rewrite the integrand as a sum of simpler
fractions. The Maple command is convert (f, parfrac, x); the
Mathematica command is Apart[f]; the Derive command is
Expand.33. I L

+2.
3x r' .{,/.r 34. | 

-rl.r

.,VJ:+l
rl

35. I sin'x cos x rLx 36. I tantgsec'odo
l'/ x(x + 1) (2x + 3)

6f . Prove that the area enclosed by the given ellipse is rab:

4+4:ru- b'

52. [Jse the trigonometric substitution x - sin 0, where

-n/2 < B < n/2, to evaluate

l'^-Lax*r x-J | - -tl

53. Use the trigonometric substitution r - 2 tan 0, where

- nlT < 0 < n/2, to evaluate

| !a.
'r -t-y--rl * 4

54. A bacteria population starts with 400 bacteria and
grows at a rate of r(r) - (450.268)e r r?567t bacteria
per hour. How many bacteria will there be after
three hours?

65. Breathing is cyclic and a full respiratory cycle from the
beginning of inhalation to the end of exhalation takes
about 5 s. The maximum rate of air flow into the lungs
is about 0.5 Llr.This explains, in part, why the func-
tion .f (t) : * sin (znt/5) has often been used to model the
rate of air flow into the lungs. Use this model to find
the volume of inhaled air in the lungs at tirne l.

66. Alabanta Instruments Company has set up a production
line to manufacture a new calculator. The rate of produc-
tion of these calculators after / weeks is modeled by the
equation

a* / 100 \
,t, 

: s000(,l 
,, iif / 

calculators/week

(Notice that production approaches 5000 per week as

time goes on, but the initial production is lower because
of the workers' unfamiliarity with the new techniques.)
Find the number of calculators produced frorn the
beginning of the third week to the end of the fourth
week.

GT. rf fis continuous and l,]ft"l dx :10, find f^t f(2il a*.
JO" JO

1)o(3r t

se. ,[
xt+zx_ 1

2x3 + 3x2 2x
dxrl x 60. 

J"

37-57

37, 
,l;,

r Evaluate the definite

' (z* r)roodx

integ ral.

lt nr'?
38. .f,, 

gsrn \ cos -r d-r

,.r 3.rl I
40. | 

- 

r/-r.rt (-r' x)-

42. l'* - r/..'o y,'l + Zx

tn n,/4

44. .ln sin 4t dt

ril2 x: sin x
46. Ld.u.r-q,'l I * ,r"

r'',i3 Sin d
48. 1 ,-tl?.'o cos -d

rarj-l ^ ^rll50. J, t'2-'

,'li I sin 'x52. | :c/-t
.'() Vl i.l

irl

43. 
J,

,!,'l

4s. 
J,

{-tLt
47. 

ti-a

i'3
4e ' J,,

r-4
lesr. 

J"

I
),t-

cos rrt d.t

*r?t + o' a*

dx

2x+3
dx
r-x/lnx

fi! SISC t Use a graph to give a rough estimate of the area
of the region that lies under the given curve. Then find the
exact area.

53. )r - ,E; + l, 0 ( x { I

54.'l,' : 2sinx sinZx, 0 <,r < rr

55. Evaluate Jln (* + 3) V? - "r'? dx by writing it as a sum
of two integrals and interpreting one of those integrals
in terms of an area.

56. Evaluat. .[,] " 
.r{ .** dx by making a substitution and

interpreting the resulting integral in terms of an area.

57. Verify that

r r(r r\
.rt - I - t\" - I - - + | )

and use this equation to evaluate {' ,] , U'r.

_ 
r' -rt I

5g. Evaluate r' 4x'
-l t. * , dx

by first performing long division.
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68.
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rf f is conrinuous ana f f @) dx :4, find [i .f f.\ d.*.
70. It f is continuous on Ro prove that

Il t. + c) dx : [::,' f(x) dx

For the case where f (x) > 0, draw a diagram to inter-
pret this equation geometrically as an equality of areas.

lf a and b are positive numbers, show that

ft .L fl ..

Jo *"(t x)b dx: 
.,fo' 

xb\ - ,r)" dx

69. It f is continuous on R, prove that

[! rt- x) dx : I_: rk) dx

For the case where f (x) 7 O, draw a diagram to inter-
pret this equation geometrically as an equality of areas.

71.

Integration by Parts

Every differentiation rule has a corresponding integration rule. For instance, the
Substitution Rule for integration corresponds to the Chain Rule for differentiation.
The rule that corresponds to the Product Rule for differentiation is called the rule
for integration by parts.

The Product Rule states that ifland g are differentiable functions, then

d

* lf(x)g(x)l: f(x)s'(x) + s(x)f'(x)

In the notation for indefinite integrals this equation becomes

J t /(;) g'(x) + g(x) f '(x)l dx : f (x) s(x)

I ff.>s'(x) dx + ! o(if'(*) dx - f(*)s(x)

We can rearrange this last equation as

I f f.>s'(x) dx : f (x)s(x) [ ok)f'(x) dx

Formula I is called the formula for integration by parts. It is perhaps easier to
remember in the following notation. Let u : /(-r) and a : SG). Then the differen-
tials are au : f'(x) dx and da : g'(x) dx, so, by the Substitution Rule, the formula
for integration by parts becomes

tr

z

EXAMPLE I r Find f "rin 
xdx.

$OLUTION USING fOnr,rUf* | Suppose

f'(x) : 1 and g(x) - -cosx. (For g
we choose f (x) - x and g'(x) - sin x. Then
we can choose any antiderivative of g' .)

I ,du - uu ! uau
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Thus, using Formula l, we have

Then

u: x dlt - sinxdx

du:dx a- -cosx

tutluuuudu
and so | "*in 

xdx: f ; rt";t -;Cis i G;Oa'JJJ

NOTE . Our objective in using integration by parts is to obtain a simpler inte-
gral than the one we started with. Thus, in Example 1 we started with J x sin x dx
and expressed it in terms of the simpler integral i cosx dx. lf we had chosen

u : sin xandda: xdx,thendu: cosxdxanda: x'fZ,so integrationby parts
gives

f r' I f ") xsinxdx: (sin n; - 2 ) x'cosxdx

But J x2cos-x dxis a more difficult integral than the one we started with. In gen-

eral, when deciding on a choice for a and da, we usually try to choose u : f(x) to
be a function that becomes simpler when differentiated (or at least not more com-
plicated) as long as da: g'(x)dx can be readily integrated to give u.

trn

I xsin xdx : f(x)g(x) | s(*)f'(x) dx
aJ jl

:x(-cosr)- | (-cosx)dx

:-.rcos;+ f cosxdx

: -ncos.r * sin-r * C

It is wise to check the answer by differentiating it. If we do so, we get x sin x, as

expected.

SOTUTION USING FORMULA 2 Let

It is helpful to use the pattern

u-l) du -- tr
du:ll U:ll

ffi

- -x cosx + [ .o, x dx
J

- -Jcosx + sinx + C

EXAMPLE 2 t Evaluate I t" xdx.
U

SOLUTION Here we don't have much choice for u and du. Let

u - lnx du - dx

IThen du--dx u:x
x



Integrating by parts, we get

r' l' dx
J lnxdx-xlnx 

"l 
*;

l'

-xlnx J dx

: xlnx x + C

4O4 I CHAPTER5Il{IEGRALS

It's customary to write it ax as I dx.

SOLUT$*${ Let

Then

Integration by parts gives

Integration by parts is effective in this example because the derivative of the
function/("r) : lnx is simpler than/ t

EXAMPLE3 r Find I x2e'dx.

Check the answer by differentiating it.

u - x' du - e-'dx

du:Zxdx u- e''

E I xte'dx: x.e'_ z J' xe'dx

The integral that we obtained, t xe'dx, is simpler than the original integral but
is still not obvious. Therefore, we use integration by parts a second time, this
time with u : x and da : e" dx. Then du : dx. a : e*. and

Pr'
) xe'dx:xe'- ) e'dx

--xe'-g'*C

)x'e.dx:x'e'-2)xe'dx
: x2e' - 2(xe' - e' -f C)

: x2e'- 2xe'* 2e'* C1 where Cr : -2C *

EXAMPTE 4 r Evaluate t e"sinxdx.

Putting this in Equation 3, we get

Aneasiermethod,usingcomplex SOLUTION Letu: e* anddu: sinxdx.Thendu: e'dxanda: -cos-r, so
numbers, is given in Exercise 50 in integration by parts gives
Appendix H.

E f e"sin xdx: -e'cosx + | e'cosxdx

The integral that we have obtained. ) e'cosxdx, is no simpler than the original
one, but at least it is no more difficult. Having had success in the preceding
example integrating by parts twice, we persevere and integrate by parts again.



Figure I illustrates Example 4 by show-
ing the graphs of /(x) - e'' sinx and

f(x) : Ie'(sinr - cosx). As a visual

check on our work, notice that"f(x) : 0

when F has a maximum or minimum.

FIGURE I

This time we use tr: e* anddtl: cosxdx.Thendu: e'dx, u: sinx, and

E I e'cosxdx: e'sin.r - ! e'sinxdx

At first glance, it appears as'if we have accomplished nothing because we have

arrived at J e'sinxdx, which is where we started. However, if we put Equation 5

into Equation 4 we get

PP
J e'sin xdx: -e'cos-tr * e'sin x - ) e'sinxdx

This can be regarded as an equation to be solved for the unknown integral.
Solving, we obtain
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- e't cos J + e"' sin x

and, dividing by 2 and the constant of integration, we get

| ,'sin x dx - ] e*(sin ,r cos r) + C

If we combine the formula for integration by parts with the Evaluation Theo-
rem, we can evaluate definite integrals by parts. Evaluating both sides of Formula
I between a and b, assuming f' and g' are continuous, and using the Evaluation
Theorem. we obtain

inxdx:2 J ,'rt

adding

*

6 t rrns'(x) dx : f(x)s@l: t ntnf'Q) dx

EXAMPLE 5 I Calculate

SSLUTION Let

Then
dxdu: ^ u -- xl+x'

x > 0 for x > 0, the integral
5 can be interpreted as the
region shown in Figure 2.

y

tan

J.'
tan -'x dx.

u - tan -lx du: dx

Since tan I

in Example
area of the

So Formula 6 gives

i'l ar fl

l'tan-'xdx:.trtan-'"1 ' 1 x
.f, --Jx:JIan xlu Jo |+ r,

- I .tan-rl 0.tan-r0

Tr l't x
-- | ^ dx4 Jo I + x'

To evaluate this integral we use the substitution f : I
meaning in this example). Then dt - 2x dx, so x dx -

dx

x
^dx1+ x"

+ x2 (sin ce u has
dtlL. When x -

another
0, r : l;FIGURE 2



406 I CHAPTER5IIIITGRALS

when x - I, t - 2: so

Pt x , r f' dt 12| .1 ' dx:+ f'nt -+rnlrlrJo 1+ XTLLJv 2J, t 
'2 "''''J,

: |1tnz ln t) - | tnz

rherefore J;' ran-'xdx: + ,f, fi7 n.: + +
EXAMPLE 6 r Prove the reduction formula

n ! sin"xdx: -+cosxsinn-rx + +J rin"-zxdx

where n

SOLUTION Let u- sino-rx da - srnxdx

Then du : (n l) sin"-tx cos x dx a - -cos -r

so integration by parts gives

! sin"x dx - - cos x sin'-rx + (n t) J sinn-'x cos 2x dx

As in Example 4, we solve this equation for the desired integral by taking the
last term on the risht side to the left side. Thus. we have

ffn Jsin"x dx - -cosxsinn-rx + (n l) J sinn-zxdx

r I n Lr
J sinnx dx : -tn cosxsin'-rx + f ) sinn-?xdx r

The reduction formula (7) is useful because by using it repeatedly we could
eventually express tsin"xdx in terms of J sinxdx (if a is odd) or in terms of

J (sinx)odx : I a" (if n is even). For instance, if we put n : 2 inFormula 7, we

set

!sin'xdx:-jcosxsinx+ +lrdx: + Y+ C

If we now put r? : 4 in Formula J, we obtain

f-^-1.?1f
J sinax dx - - | cosx sin3x + i J sinzx dx

- -j cosxsin3x + fr fi sin2x + C

=

sin2x, we have

tl tl

cos x sinn-rx + (n l) | sin" -?x dx (n 1) | sin "x dx
JJ

Since cos2x - I

f
I sin"xdx:

J
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Exercises

t-2

I.

25-28 I First make a substitution
by parts to evaluate the integral.

25. J sin tli a* 26.

zr . I xt e*' dx 28.

35. (a) Use the reduction formula in Example 6 to show

that

'"'' ,in"x dx - 
n - | l'/' ,inn-zx dxJrnJo

where n > 2 is an integer.
(b) Use part (a) to evaluat 

" I{/' 
sin3x dx and

Jflit sint x dx.
(c) Use part (a) to show that, for odd powers of sin,

rr/2 2 ' 4' 6 " " ' 2nI sint"-'-rc dx :Jo 3.5.7. (Zn+l)

36. Prove that, for even powers of sin,

fntl.)n. l'3'5""'(2n l) 7T

)0"'" 
sinznxdx : 24 4. ... Jn z

37-38 r Use integration by parts to prove the reduction
formula.

PP
37. J (lnx)"dx: x(lnx)" n J(lnx)"-t dx

PP
38. J x"erdx: xne'' n ) xtt-te''dx

39. Use Exercis e 37 to find i (tn x)3 dx.
U

42.

Use Exercise 38 to find I xoe* dx.

A particle that moves uron, a straight line has velocity
u(t) : t?e-t meters per second after / seconds. How far
will it travel during the first / seconds?

A rocket accelerates by burning its onboard fuel, so its
mass decreases with time. Suppose the initial mass of
the rocket at liftoff (including its fuel) is m, the fuel is

consumed at rate r, and the exhaust gases are ejected
with constant velocity It" (relative to the rocket). A
model for the velocity of the rocket at time r is given
by the equation

u(t): -gt u"lnm-rt
m

where g is the acceleration due to gravity and r is not
too large. If g - 9.8 m/s?, ffi: 30,000 kg, r - 160 kg/s,
and 't),:3000 m/s, find the height of the rocket one

minute after liftoff.

43. Use integration by parts

4 r Evaluate the integral.

I *t'" dx z.

J "sin 
4xdx 4.

I *'cos 3x dx 5.

J Ctn x)? dx 8.

J Oringcos edT 10.

! ,'h r dt t2.

I t"srn30d0 |4.

Iot 
rr-'dt t6.

I:'' -r cos zx dx lB.

Jo'" 
sin- tx dx 20.

J- tn ,/i a* zz-

-fo' 
,"t - l)e* dx 24.

3.

5.

7.

9.

ll.

13.

15.

17.

19.

21.

J.cosxdx

J " rnxdx

J "2 
sin 2x dx

J rin -tx dx

! esec' o do

! t'e' dt

I ,-'cos 30 d0

!,r ,fr tn t dt

Jt " 
?e-' dx

l'n'' .r csc 
2x dx

Jfl4

J'"tan-txdx

J" .or( ln x) dx23.

and then use integration
40.

41.

J "s 
cos(x t) d*

Lo t6 d*

filze-lz I Evaluate the indefinite integral. Illustrate, and
check that your answer is reasonable, by graphing both the
function and its antiderivative (take C - 0).

30. I ,f lnxdx

32. [ -t e*' dx

33. Prove the reduction formula

J .or "xdx : 
+cosn-rxsinx 

+ +J .o, n-zxdx
njl

34. (a) Use Exercise 33 to evaluate { coszx dx.
(b) Use part (a) and Exercise 33 to evaluate J cosax dx.

29. J ".ot 
nx dx

3f . !t * + 3)e*dx

to show that

P

f (*) - J xf'(x) dxJrt"ldx:x
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44. (a) If f is one-to-one and f is continuous, prove that

lHint: Use Exercise 43 and make the substitution

)' - .f(x1'1
(b) In the case where"f is a positive function and

b ) a > 0, draw a diagram to give a geometric
interpretation of part (a).

45. If /(0) - s(0) : 0, show that

Itd rttr

J,, ff"l s"(x) dx - f(a)s'(a) - f'(a)s(a) + 
Ju /"(")g(x) dx

45. Let 1,, - .i,ltt sin".r r/x.

(a) Show that lz,*z ( 12,,*r

(b) Use Exercise 36 to show that

Izr*z _2n*l
Izn 2n + 2

(c) Use parts (a) and (b) to show that

'24'*'=*=1
and deduce that lim., -,n 12n+t/lzo : 1.

(d) Use part (c) and Exercises 35 and 36 to show that

2244662n2n
lim -rr+7: I 3 3 5 5 7 2n I 2n+l

This formula is usuallv written as an infinite
product:

n22

[] ra dx : bf(b:) af(a) - J;:i' f 
-'(y) dy

44 6 6

2133557

and is called the Wallis product.
(e) We construct rectangles as follows. Start with a

square of area 1 and attach rectangles of area I
alternately beside or on top of the previous rect-
angle. (See the figure.) Find the limit of the ratios
of width to height of these rectangles.

TM
T-*

I

I

lntegration Using Tables and Computer Algebra Systems

In this section we describe how to evaluate integrals using tables and computer al-
gebra systems.

I Tables of Integrals

Tables of indefinite integrals are very useful when we are confronted by an inte-
gral that is difficult to evaluate by hand and we don't have access to a computer
algebra system. A relatively brief table of l2O integrals is provided on the back
endpapers. More extensive tables are available in the CRC Mathematical Tables
(463 entries) or in Gradshteyn and Ryzhik's Table of Integrals, Series and Prod-
acts (New York: Academic Press, 1979), which contains hundreds of pages of inte-
grals. It should be remembered, however, that integrals do not often occur in
exactly the form listed in a table. Usually we need to use the Substitution Rule or
algebraic simplification to transform a given integral into one of the forms in the
table.

f'x2+l?
EXAMPTE I r Use the Table of Integrals to evaluate ), ;q7 a".

I

T---l
It
tl
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SOLUTIOI{ The only formula in the table that resembles our given integral is
The Table of Integrals appears on the number 17:
back endpapers.

f du | .u
) -"' * "': 

-tan-'; * c

If we perform long division, we get

x'+ lz 8

x\4:lr x\4
Now we can use Formula 17 with a: 2:

l'r'+tr,*:f'(r*_i.)*
J" r'*q' Jo\ x'r4t

:x+s.ltun'4-l
2lo

:2 + Atan*t 1:2 * rr I

EXAMPLE 2 r Use the Table of Inteerals to find | -L OtJ tr1 -47*'
SOLUTION If we look at the section of the table entitled Forms involving

JA -7, we see that the closest entry is number 34:

f ,' , u tr .) , e'_._,(O)*,
I 6 au: -t"/o- - u' + t srn 

\a /
This is not exactly what we have, so we make the substitutian u : 2x:

( ,' (. (u/2)' du I I u'
| ,- ,ir: | __..----_ --:-: -- | 

- 

n,
r \/)-4x- ',,8-u, 2 8J i5-rr"-

Then we use Formula 34 with a2 : 5:

| *' lf u'
J Ji=-47 "^ 8 J Jj -7 "-

- I | -' /. -.,, ' 5 -,n-r 4l *,:_l_rv)_u- +;sr8L JsI
y 

- 

s /r'\?Js-47+isin-'l :=^1+c
8'- 16- \J5l - I

EXAMPLE 3 r Use the Table of Integrals to find t f sinxdx.

SOIUTIOI{ We look in the section called Trigonometric Forms and use the reduc-
tion formula in entrv 84 with n: 3:

11.t1''
I x- srnxax- _ x3cosx + 3 | *'cos xdx
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85. ! "cos 
u du : u" sin a

-,1"

Then we use entries 85 and 82:

f)r)P
J x2cosxdx-x2sinx 2)

- x2 sin x 2(si

Combining these calculations, we get

fi
I

| "' stn x dx - -J'cos x + 3xz sin x

where ,": 3K.

xsin xdx

xcosx) + K

6xcosx 6sinx + C

n-l stn u au n-x

+

ffi

ExAMPLE4IUsetheTableofIntegralstofind|*@a*.

soLUTlo[|Sincethetablegivesformsinvolvingfu,Ff,and
tffi, but not M, we first complete the square:

xr+2x+4-(x+1)r+3
Therefore, we make the substitution u - x + 1:

*Wdx: I t" Drffia,
ii: lurffiza" lrff+za"

The first integral is evaluated using *. *ubstitution r ---,u uz +3:

na na

| "rffi au : + | ,fr dt - *.tr',, : Ifu'+ 3)ttz

For the sec"r; integral we use ,";" la 2l with a : .rE t

rt ll

J'ffi1 au : ;,[7 + t + ]rn(u + \m)
Thus

^

| *J*2 + 2x + 4 dx +2x+4)t'' x*lW
2

ln(x+1+ W) + c

I Computer Algebra Systems

21. lwdu:iwdJL
?

a+--ln(u+m) +c
2

: IQ,
3
2

ffi

We have seen that the use of tables involves matching the form of the given inte-
grand with the forms of the integrands in the tables. Computers are particularly
good at matching patterns. And just as we used substitutions in conjunction with
tables, a CAS can perform substitutions that transform a given integral into one

that occurs in its stored formulas. So it is not surprising that computer algebra sys-

tems excel at integration. That does not mean that integration by hand is an obso-

lete skill. We will see that a hand computation sometimes produces an indefinite
integral in a form that is more convenient than a machine answer.
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To begin, let's see what happens when we ask a machine to integrate the rela-
tively simple function y : l/(3x - 2). Using the substitutionu: 3x - 2, an easy

calculation by hand gives

iQ*trQ'

whereas Derive, Mathematica, and Maple all return the answer

lt"1tx - z'1

The first thing to notice is that computer algebra systems omit the constant of inte-
gration. In other words, they produce a particular antiderivative, not the most gen-
eral one. Therefore, when making use of a machine integration, we might have to
add a constant. Second, the absolute value signs are omitted in the machine an-
swer. That is fine if our problem is concerned only with values of -r greater than 4.
But if we are interested in other values of x, then we need to insert the absolute
value symbol.

In the next example we reconsider the integral of Example 4, but this time we
ask a machine for the answer.

ExAMPLE5lUseacomputeralgebraSyStemtofind|*@a*.

SSl-UTlOFl Maple responds with the answer

+ 2x + 4)zrz + DW |r"(zffi + 2x + z)

Notice that this is equivalent to the answer we got in Example 4 because the
third term can be rewritten as

-+tnlz(w+x+r)l : ln(x + 1 + t/*'+ 2x + 4)

The extra term - * tn 2 can be absorbed into the constant of integration.
Mathematica gives the answer

ft| 

-dx-+lnl3x 

2l+cJ3x 2

(Z+ x +x:\ 3 (t+"\
\6 6 T)Jx'+2x+4 turcsinh\--/

-|tnz i

This is the formula in Problem 9(c) in

the Discovery Project on page 254.

The first term corresponds to the first two terms in the answer in Example 4.

The last terms are equivalent because of the identity

arcsinhx: ln(x + &+ l)

Derive gives the answer

iJP + 2x + 4(2x2 +x + 5) - iln(tF + z* + q + x + 1)

The first term is like the first term in the Mathematica answer. The second term
is identical to the last term in Example 4. I

EXAMPLE 6 r Use a CAS to evaluate J *0' + 5)B dx.

SOIUTION Maple and Mathematica give the same answer:

*r'' + tr*tu + 50xta + t7:oxt2 * 43i5xto * 21gi5x8 +2t8:s0x6 * l5625oxa +3eos25)i
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It's clear that both systems must have expanded (x' + 5)t
Theorem and then integrated each term.

If we integrate by hand instead, using the substitution

by the Binomial

u:x'+5,weget

Derive also gives this answer. J xQ'+ 5)8dx - *("'+ 5)n + c

For most purposes, this is a more convenient form of the answer.

EXAMPLE 7 r Use a CAS to find I sintx coszx dx.

SOLUTIOII Derive and Maple report the answer

-)sino-rcos3.r - $sin'.rcos'r - ftcos'x

whereas Mathematica produces

- *a cosx - $ cos 3x + ficos5x - of cosTx

We suspect that there are trigonometric identities which show these answers are

equivalent. Indeed, if we ask Derive, Maple, and Mathematica to simplify their
expressions using trigonometric identities, they ultimately produce the same form
of the answer:

fsI sin'r cos tx dx cos3x+Jcostx |costx *

EXAMPLE 8 r lfl(x) : x + 60sinarcossr, find the antiderivative F oflsuch
that F(0) : 0. Graph F for 0 { x { 5. Where does F have maximum and
minimum values and inflection points?

SOLUTIOI{ The antiderivative of/produced by Maple is

F(x) : i*' - ? sin3xcos6x - f sinxcos6x + f cosaxsin, + *cos2xsin x t 3] sinx

and we note that F(0) : 0. This expression could probably be simplified, but
there is no need to do so because a computer algebra system can graph this
version of F as easily as any other version. A graph of F is shown in Figure l.
To locate the maximum and minimum values of F we graph its derivative F' : f
in Figure 2 and observe that F has a local maximum when x - 2.3 and a local
minimum when x = 2.5. The graph of F" : /' in Figure 2 shows that F has

inflection points when x - 0.7, 1.3, 1.8, 2.4,3.3, and 3.9.

ffi

I
3

t0

\

-7

FIGU RE 2 *,FIGURE I
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fd Can We Integrate All Continuous Functions?
I

4t 3

The question arises: Will our basic integration formulas, together with the Substi-
tution Rule, integration by parts, tables of integrals, and computer algebra systems,
enable us to find the integral of every continuous function? In particular, can we

use it to evaluate I e" dx? The answer is No, at least not in terms of the functions
that we are familiar with.

Most of the functions that we have been dealing with in this book are what are

called elementary functions. These are the polynomials, rational functions,
power functions (x"), exponential functions (c"), logarithmic functions, trigono-
metric and inverse trigonometric functions, and all functions that can be obtained
from these by the five operations of addition, subtraction, multiplication, division,
and composition. For instance, the function

f(x)- + ln(cos x) *rsinzx

is an elementary function.
If/is an elementary function, then/' is an elementary function Au I 71flax

need not be an elementary function. Consider/( x) : e". Since/is continuous, its
integral exists, and if we define the function F by

F(x) g'' dt

then we know from Part I of the Fundamental Theorem of Calculus that

F'(x) : ,')

Thus, /(,r) : e" has an antiderivative P, but it has been proved that F is not an

elementary function. This means that no matter how hard we try, we will never
succeed in evaluating ! e" dx in terms of the functions we know. (In Chapter 8,

however, we will see how to express ) e'- dx as an infinite series.) The same can be

said of the following integrals:

- ,['

In fact, the majority of elementary functions don't have elementary antiderivatives.

Exercises

l{n.
l)X

['rr*ra.

J ri" (x?) dx

[*0.

r' ,l-g'- Is'J ; ax

7. J "sin-'(*t) 
dx

s.iffia-

J .ot( e') dx

J"*

i' Sln J COS -f
rffo l:(.!i]' ll + sinx

f.

8. I rt sin-'(xt) dx
J

lr
t^

10. I x'cos 3x dx
J

l-72 I Use the Table of Integrals on the back endpapers to
evaluate the integral.

r.-tr3 x2 *x I
r. l-ut x'+9

lr

dx 2. J csc3(x/Z) dx

- r- tlq ixz
4. J * d*

x2 I

x3+2x- l

3. I u-t' cos 4x dx
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73. Verify Formula 53 in the Table of Integrals (a) by
differentiation and (b) by using the substitution
t-e+hu.

74. Verif)' Formula 31 (a) by differentiation and (b) by
substituting Lt : c sin 0.

EIE zs-rz I use a computer algebra system to evaluate the

integral. Compare the answer with the result of using tables.

If the answers clon't appear to be the same, show that they
are equivalent.

zs. ]' ., 
z ,{- f ax

27. { sintx cos2x r/r

29. .f' . nT + 2, ,/"

3l. { ,"nr.r r/x

E[s 33. Computer algebra systems sometimes need a helping
hand from human beings. Ask your CAS to evaluate

.l' 2' ,/+^ - t a*

If it doesn't return an answer, ask it to try

.f z' ,/zt' - t ar

instead" Why do you think it was successful with this
form of the integrand?

EIE fA. Try to evaluate

r{

J (1 + lnx)r/l + (xlnr)Z dx

with a computer algebra system. If it doesn't return an

answer, make a substitution that changes the integral
into one that the CAS ccn evaluate.

Ef,E f S-f O r Use a CAS to find an antiderivative F of ,f such

that f(0) - 0. Graph / and tr and locate approximately the

"r-coordinates of the extreme points and inflection points
of F.

,tt - I
35. /("r) - Ir + rr + I

36. l'(r) - x"-"'sinr, -5 < x < 5

![E fZ-fA I Use a graphing device to draw a graph of/and use

this graph to make a rough sketch,by hand, of the graph of
the antiderivative Fsuch that F(0) - 0. Then use a CAS to
find Fexplicitly and graph it. Compare the machine graph

with your sketch.

37. f(x) - sinax coso-r, 0 < x { n
'l

38. /(;) : {- --1ro+l

ll. { ,*r5rr/r

1 3. 
.1" 

*int-r cos .r ln(sin x) dx

| 5. 
.l;,"'t 

cos --.r c/r

,' .r 
t d-r,7. I _.' 

V'"f 
tr, - z

| 9. { n'ln(l + e-) dx

21. .f' n'FrT./.,

ll

I2..l sin"2xdx

r' d.t
r4. Irr d-(l + 2e')

t6. l'-, I a.,.' Vxt 4x

i-l
f 8. 

.1,, 
x"e ' dx

1-t

20. J rrtan 'xd.r

ra

22. 
"l 

esrrr 
\ sin 2x r/-t

26. J rttt + xt)o dx

28. { ,"ntx sec 
ax clr

30. J sinox dx

32. 
.f' 

*s u[: 1 1 7.*

@ Patterns in Integrals
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(b) Based on the pattern of your responses in part (a), guess the value of the
integral

rl
) 1**oyt*uyd'

if a * b. What if a : D?

(c) Check your guess by asking your CAS to evaluate the integral in part (b).
Then prove it by differentiation.

2. (a) Use a computer algebry system to evaluate the following integrals.
fF

(i) J sinxcos2-xdx (ii) J sinlcos7xdx

(iii) J sin8xcos3xdtc

(b) Based on the pattern of your responses in part (a), guess the value of the
integral

J sin ar cos bx dx

(c) Check your guess with a CAS. Then prove it either by differentiation or by
integration by parts. For what values of a and b is it valid?

3. (a) Use a computer algebra system to evaluate the following integrals.

(i) [rnxdx (ii) f "tnxdx., J J

(iii) I*'lnxdx (iv)Jx3tnxdx

(v) I *'rnxdx

(b) Based on the pattern of your responses in part (a), guess the value of

J x"lnxdx

(c) Use integration by parts to prove the conjecture that you made in part (b).
For what values of n is it valid?

4. (a) Use a computer algebra system to evaluate the following integrals.

6\ | xe'dx (ii) | x2e'dx-,J.l

Gii\ | x3e'dx 6v\ | xae'dx

Q) ! xse'dx

(b) Based on the pattern of your responses in part (a), guess the value of I x6e'dx.
Then use your CAS to check your guess.

(c) Based on the patterns in parts (a) and (b), make a conjecture as to the value
of the integral

P

J x"e'dx

when n is a positive integer.
(d) Use mathematical induction to prove the conjecture you made in part (c).
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(a) Left enclpoint approximation

(b) Right endpoint approximation

(c) Midpoint approximation

FIGURE I

App roxi mate I nteg ration

where x,f is any
endpoint of the

n ,l) nt u* .f(*'-') Ax

There are two situations in which it is impossible to find the exact value of a defi-
nite integral.

The first situation arises from the fact that in order to evaluate l2tAdrusing
the Evaluation Theorem we need to know an antiderivative ofl, Sometimes, how-
ever, it is difficult, or even impossible, to find an antiderivative (see Section 5.7).
For example, it is impossible to evaluate the following integrals exactly:

e"r' dx ,l t + 7 a"

The second situation arises when the function is determined from a scientific
experiment through instrument readings or collected data. There may be no for-
mula for the function (see Example 5).

In both cases we need to find approximate values of definite integrals. We al-
ready know one such method. Recall that the definite integral is defined as a limit
of Riemann sums, so any Riemann sum could be used as an approximation to the
integral. In particular, let us divide [a, b] into n subintervals of equal length
A,x: (b - a)/n. Then we have

,t ll 
tl

)" tt.) d.x : ) r(",r) Ax
i: I

point in the ith subinterval [rr-r, ri]. If xI is chosen to be the left
interval, then xf - Ji-r and we have

J',.['

TT

f 
- 

\t-/un ,1_J
,-|
al

lf f(x) > 0, then the integral represents anarea and (1) represents an approxima-
tion of this area by the rectangles shown in Figure 1(a). If we choose xI to be the
right endpoint, then *! : ,, and we have

tl

Ru- )/(*,)A*
.t
ll

[See Figure l(b).] The approximations ,Ln and R, defined by Equations I and 2
are called the left endpoint approximation and right endpoint approximation,
respectively.

In Section 5.2 we also considered the case where xf is chosen to be the mid-
point x; of the subinterval [.r;,1, -r,]. Figure 1(c) shows the midpoint approximation
M", which appears to be better than either Ln or R,.

fruto.:E

/ ( \
\

0 | \'r .\-, .\'r .\'r ,{

Midpoint Rule

J"

where

ancl

A-r- b-u

ti - +(r,-r + xi) - *,loo,nt of [*,-r,xi]
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The reason for the name Trapezoidal Rule can be seen from Figure 2, which illus-
trates the case /(-r) > 0. The area of the trapezoid that lies above the ith sub-
interval is

Another approximation results from averaging the approximations in Equa-
tions I and 2:

Fh .f: 3 I n'l-.". I
Ji rtldx-illrr,,-,yAx + )/(;,)A.r_J :;l] rft,,_,t + r(,,))J

:*UfAo) +,f(.r,)) + (/(xr) + f(x,)) +...+ (f(x,-) + f(x^)))

+ 2f (1.6) +

2 +rlr.8 2 )

f (r.7) +

*)

f(x,-,) + f(x,)

and if we add the areas
zoidal Rule.

2

of all these tr

: 0.691908

This approximation is illustrated in Figure 4.

+ f(x,)l

he right side of the Trape-

the Midpoint Rule with

(2 l)15 - 0.2, and so the

2f(r.8) + f(2)l

1.5, 1.7, and 1.9, so the

[ /(xr- r)

we get t

\Ax
): 2

apezoids,

a"(

FIGURE 2

Trapezoidal approximation

EXAMPLE I r Use (a) the Trapezoidal Rule and (b)
n: 5 to approximate the integral {f (l/x) dx.

SOLUTION

(a) With n : 5, a- l, and b : 2, we have Ax :
Trapezoidal Rule gives

fz I o.zI dx - 15 - =t/(l) 
+ 2f(r.2) + 2f(r.4)Jt x " 2

[r 2 z z:0.11 I + ' +
L I t.2 r.4 1.6

: 0.695635

This approximation is illustrated in Figure 3.

(b) The midpoints of the five subintervals are 1.1 , 1.3,,

Midpoint Rule gives

f' ! O* -, Ar[/(1.1) + ,f(1.3) + /(1.5) +J' x

- I (L* I + I + 1 
+

s \ 1.1 1 .3 1.5 r.7

I

Trapezoidal Rule

rb Ax
)" f(*) dx - Tn: ;;1(xo) + Zf(xt) + Zf(*r) + + 2f(*"-') + f(*")l

where Ax - (b a)ln and xi- a + iAx.

/(r.e)l
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In Example I we deliberately chose an integral whose value can be computed
explicitly so that we can see how accurate the Trapezoidal and Midpoint Rules are.

By the Evaluation Theorem,

), rcl a": approximation * error The error in using an approximation is defined to be the amount that needs to be

added to the approximation to make it exact. From the values in Example 1 we see

that the errors in the Trapezoidal and Midpoint Rule approximations for n - 5 are

Er : -0.002488 and Eu - 0.001239

In general, we have

The following tables show the results of calculations similar to those in Ex-
ample l, but for n : 5, 10, and 20 and for the left and right endpoint approxima-
tions as well as the Trapezoidal and Midpoint Rules.

II L,, R,,
.I

M,,

)
I0
l0

0.7-15 6i 5

o"7 t877 |

0.7( )5 801

0.6+5 6 I 5

0.(r6f(7 7 l

0.6fi0ri03

0 6e5635
0.(r9 3ll I

0.(rt) 1 l0 j

0.69 l90r{
0.691 ti 3 5

0. (r9.1( )(r9

fzI
J, i o* -- h x]1 : rnz: 0.6e31 47 . . .

Er: [! rO dx ro and Eu : I! rtn dx Mn

Approximations ,o 
J,t 

L o*

Corresponding errors

n Ii, 1.,, E, I li rr

.i

l0
l0

-0.()5l+8s
- 0.01.561+

0.0 [656

0.0-175l2
( ). ( )t-13 76

0.0113-1-l

0. (x)l-1r{ ri

-0.(XXXrl-l
-0.(xx)156

0.(x) ll_19

0.(xx)3 tl
0.(xxx)7t{

We can make several observations from these tables:

l. In all of the methods we get more accurate approximations when we

increase the value af n. (But very large values of n result in so many
arithmetic operations that we have to beware of accumulated round-off
error.)

2. The errors in the left and right endpoint approximations are opposite in
sign and appear to decrease by a factor of about 2 when we double the
value of n.

3. The Trapezoidal and Midpoint Rules are much more accurate than the
endpoint approximations.

4. The errors in the Trapezoidal and Midpoint Rules are opposite in sign and

appear to decrease by a factor of about 4 when we double the value of n.

5. The size of the error in the Midpoint Rule is about half the size of the
error in the Trapezoidal Rule.
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Figure 5 shows why we can expect the Midpoint Rule to be more accurate than
the Trapezoidal Rule. The area of a typical rectangle in the Midpoint Rule is the
same as the trapezoid ABCD whose upper side is tangent to the graph at P. The
area of this trapezoid is closer to the area under the graph than is the area of the
trapezoid AQRD used in the Trapezoidal Rule. [The midpoint error (shaded red) is
smaller than the trapezoidal error (shaded blue).1

These observations are corroborated in the following error estimates, which are
proved in books on numerical analysis. Notice that Observation 4 corresponds to
the n2 in each denominator because (2n)2 : 4n2. The fact that the estimates de-
pend on the size of the second derivative is not surprising if you look at Figure 5,
because/"(x) measures how much the graph is curved. [Recall thatf"(x) measures
how fast the slope of y : /(x) changes.l

E Error Bounds Suppose l "f"(r) l = K for a
the errors in the Trapezoidal and Midpoint Rules, then

l-, K(b a)t r rr | _K(b a)3lErl< o; and lE*l=-#

Let's apply this
ample l. If /(x) -
have l lx

error estimate to the Trapezoidal Rule
lf x, then"f'(x) : -U*2 and f "(x) - 2l*'

approximation in Ex-
Sincel<J<2.we

Therefore, taking
see that

| ,f"(*) | :

K - ?, a- l, b- 2,,

1
L

"x'
2

l_ | -2(2 l),
lE'l < -,tCf

and rz : 5 in the error estimate (3), we

I : 0.006667
150

Comparing this error estimate of 0.006667 with the actual error of about
0.002488, we see that it can happen that the actual error is substantially less than
the upper bound for the error given by (3).
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FIGURE 6

Error estimates are upper bounds for
the error. They give theoretical, worst-
case scenarios. The actual error in this

case turns out to be about 0.0023.

or

Thus, n - 41 will ensure
For the same accuracy

.2
It./ .

l2(0.0001)

I
n ) 

-:40.8

v0.0006

the desired accuracy.
with the Midpoint Rule we choose r? so that

2(n3

24n"

EXAMPLE 2 I How large should we take z in order to guarantee that the

Trapezoidal and Midpoint Rule approximations tor \'z, (t/x)dx are accurate to
within 0.0001?

$OLUTI0N Wesawintheprecedingcalculationthat lf"(x)l < 2for I < x < 2,

so we can take K :2, a: 1, and b:2in (3). Accuracy to within 0.0001

means that the size of the error should be less than 0.0001 . Therefore, we choose

n so that

,rr)l
ia .0.0001

Solving the inequality for n, we get

wh ich g ives

EX AMPLE 3

(a) Use the
(b) G ive an

5tr rr.i"r $# ru

(a) Since a

I
Midpoint Rule with
upper bound for the

In) ,-:29
v0.0012

n - l0 to approximate the integral 
.l J e" tlx.

error involved in this approximation.

il

- 0, b : l, and n - 10, the Midpoint Rule gives

: 0.1[e0.0o25 + e00225 + e0.0625 + eo.t225 + ett.2o25 + eo3o25

+ eo.4225 + e0.s62s + eo.'t225 + eo.eoz5l

= 1.460393

Figure 6 illustrates this approximation.

(b) Since/(-r): e", we have/'(x):2xe" andf"(x): (2 + 4x')e". Also,
since 0 ( x s l, we havex' < I and so

0 < -f"(*) : (2 + 4x2)e" < 6e

Taking K : 6e, a : O, b : |, and n : l0 in the error estimate (3), we see that
an upper bound for the error is

6e(l )3

24(w

J,'

t0.007



Simpson's

FIGURE 7

Here we have used Theorem 6 in Sec-
tion 5.5. Notice that Axr + C is even
and Bx is odd.

Jl,, r^" + Bx + c) rlx - , J:: (Ax' + c) dx
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Another rule for approximate integration results from using parabolas instead of
straight line segments to approximate a curve. As before, we divide [a, b] into rr

subintervals of equal length h : Lx : (b - a)/n,but this time we assume rhat rr

is an even number. Then on each consecutive pair of intervals we approximate the
curve 1, : f(x) > 0 by a parabola as shown in Figure 7. lf vi: /(x;), then
P,(x,,y,) is the point on the curve lying above x;. A typical parabola passes through
three consecutive points P,, Pitt, and P1p.

FIGURE 8

In order to simplify our calculations, we first consider the case where -r1 : - h,
xr: O, and x2: lr. (See Figure 8.) We know that the equation of the parabola
through P11, P1,and P: is of the form ! : Ax2 -l Bx * C and so the area under the
parabola from x : -h to x : h is

'"]:

,^)

+

-r

'[^+

'(^+ -- +eAh2 
+ 6c)

But, since the parabola passes through PuGh,)o), P,(0,.yr), and Pr(h,yr), we have

yo: A(-h)'+ B(-h) + C: Ah2 - Bh + C

It: Q

tt:Ah2+Bh+C
and therefore lo -f 4yt * y, : zAh'1 + 6C

Thus, we can rewrite the area under the parabola as

l}r*4y,+yr)
J

Now, by shifting this parabola horizontally we do not change the area under it.
This means that the area under the parabola through Po, Pr, and Pz from -{ : .r0 to
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Thomas Simpson was a weaver who
taught himself mathematics and went
on to become one of the best English

mathematicians of the l8th century.

What we call Simpson's Rule was actu-
ally known to Cavalieri and Gregory in

the lTth century, but Simpson PoPular-
ized it in his best-selling calculus text-
book, entitled A New lreotise of Fluxions.

h
^ (yo + 4yt * yr)
5

Similarly, the area under the parabola through Pz, Pz, and Pt from .r : x2 to
x:.rais

x -- xz in Figure 7 is still

nner and add the results,

n..' + :( !n.z * 4y^-, -t y,)
J

n/: ;()0 * 4y1 * 2y2 * 4y + Zya * ... t 2yn-, + 4y^-r t !^)
J

Although we have derived this approximation for the case in which/(x) > 0, it is
a reasonable approximation for any continuous function/and is called Simpson's

Rule after the English mathematician Thomas Simpson (1710-1761). Note the pat-

tern of coefficients: 1, 4,2, 4, 2, 4,2, . . . , 4,2, 4, l.

h
*(yt + 4),t + 1l+)3\

If we compute the areas under all the parabolas in this ma

we get

fh h , . , . \ , h / ,

J_/{r1 dx: T(r'+ 4),, +}z)+T(n'+ 4v.. +}+)

Simpson's Rule

t'lt AX -

),,,' f(*)d*: s, - ;[/(ro) + +f(xt) + zf(x) + a/(x,) +

+ Tf(x,,-r) + 4f (x,,-t) + /(r")]

where n is even and Ax - (b a)ln.

EXAMPLE 4 r Use Simpson's Rule with n: 10 to approximate ll1t/x)ax.

soLUTtoN Putting/(x) : l/*,n -- 10, and Ar:0'l in Simpson's Rule, we

obtain

f2 | Ax.| : a*-,sro : *tftrl + 4f(r.r) + zf(t.z) + 4f(r.3) + ... + zf(r.8) + 4f(1.e) + f(2))
r./l x 5

o.r[t 4 z 4 2 4 2 4 2 4 r-l:;Lr*t, * rz * t: * t.o 
* t. * t.o 

*i* ls * **t)
- 0.693150 I

Notice that, in Example 4, Simpson's Rule gives us a much better approximation
(Sro - 0.693150) to the true value of the integral (ln2 - 0.69314'7... ) than does
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the Trapezoidal Rule (Trc - 0.693771) or the Midpoint Rule (M'e : 0.692835). It
turns out (see Exercise 32) that the approximations in Simpson's Rule are weighted
averages of those in the Trapezoidal and Midpoint Rules:

lm"
(Recall that Er and Ey have opposite signs and I E7a I is about half the size of I E,l.)

In many applications of calculus we need to evaluate an integral even if no ex-
plicit formula is known for y as a function of r. A function may be given graphi-
cally or as a table of values of collected data. If there is evidence that the values
are not changing rapidly, then the Trapezoidal Rule or Simpson's Rule can still be
used to find an approximate value for I'.yd*, the integral of y with respecr ro.r.

EXAMPTE 5 r The inflation rate r(t) is the derivative of the Consumer Price
Index (CPI), which measures average prices of items in a "representative market
basket" of urban consumers. The table gives the inflation rate (as a percentage)
in the United States from 1984 to 1994 as published by the U.S. Bureau of
Labor Statistics. Use Simpson's Rule to estimate the total percentage increase in
the CPI from 1984 to 1994.

SOLUTI0i{ Because the derivative of the CPI is the inflation rate r(r), the Total
Change Theorem (see Section 5.3) tells us that the increase in the CPI from 1984
to 1994 is

P 1994

),n*o 'Q) 
d'

To estimate the value of this integral we use Simpson's Rule with n : 10 inter-
vals. The interval length is Ar : l, so

f t994

J ,n*o 
r(t) dt

: 4't [r(19g4) + 4r(19g5)
3

: +[4.3 + 4(3.6) + z(r.e)

+ 2(s.4) + 4(4.2)

sz,, - +T^ +

+ 2r(1986) + + 4r(r993) + r(1994)l

+ 4(3.6) + 2(4.1) + 4(4.8)

+ 2(3.0) + 4(3.0) + 2.61

- 37.5

Thus, the CPI increased by about 37.5Vo from 1984 to 1994.

In Exercise 2O you are asked to demonstrate, in a particular case, that the error
in Simpson's Rule decreases by a factor of about 16 when n is doubled. That is con-
sistent with the appearance of na in the denominator of the following error esti-
mate for Simpson's Rule. It is analogous to the estimates given in (3) for the
Trapezoidal and Midpoint Rules, but it uses the fourth derivative of I

E|ErrorBoundforSimpson'sRu|eSupposethat|/,*,(*)|<
a { x ( b. If E5 is the error involved in using Simpson's Rule, then

il.
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Many calculators and computer algebra

systems have a built-in algorithm that
computes an approximation of a defi-
nite integral. Some of these machines

use Simpson's Rule; others use more

sophisticated techniques such as adap-

tive numerical integration. This means

that if a function fluctuates much more

on a certain part of the interval than

it does elsewhere, then that part gets

divided into more subintervals. This

strategy reduces the number of calcula-

tions required to achieve a prescribed
accuracy.

Figure 9 illustrates the calculation in

Example 7. Notice that the parabolic

arcs are so close to the graph of

-), 
: e'" that they are practically indis-

tinguishable from it.

24n\5+
180n.

n4> 
24

l80(0.0ool)

I
n

70.00075\

EXAMPLE 6 I How large should we take n in order to guarantee that the
Simpson's Rule approximation for J? 0/*) dx is accurate to within 0.0001?

Sot-UTl$l*l If /(x) - l/*, then f 
(o)(*)

and so

| /(*)(') | :

l6x 4) 
exz

l6)e l : l6e

24
-------

x"

Therefore, we can take K :24in (4). Thus, for an error less than 0.0001 we

should choose n so that

This gives

or

Therefore, n : I (n must be even) gives the desired accuracy. (Compare this
with Example 2, where we obtained n : 4l for the Trapezoidal Rule and n : 29

for the Midpoint Rule.) I

$#tuTlfir{
(a) If n- 10, then Ax : 0.1 and Simpson's Rule gives

EXAMPLE 7 I
(a) Use Simpson's Rule with n :
(b) Estimate the error involved in

0'l r o ,: 
-|€ 

-r
aLJ

-; 1.462681

(b) The fourth derivative of /(x) - e"' is

,t+r(x) - (lz + 48x2 +

and so, since 0

0 < /t+i(x)

10 to approximate the integral lJ e*' dx.

this approximation.

4e0.at + 2no.0a + 4e0.0e + 2ra.rc + 4e0.?s + Zeo.36

+ 4ta'ae + 2ra'6a + 4eo'8t + etf

Therefore, putting K:76e,a:0,b: l,andn: l0 in (4), we see thatthe
error is at most

l6e(I)s : 0.000115
180(10)*

FIGURE 9
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(Compare this with Example 3.) Thus, correct to three decimal places, we have

Let 1 : 
"fJ f k) dx, where f is the function whose graph

is shown.
(a) Use the graph to find Lz, R2,, &nd M2.
(b) Are these underestimates or overestimates of 1?

(c) Use the graph to find 22. How does ir compare
with 1?

(d) For any value of n, list the numbers L,,, R,, M,,,, Tn,,

and / in increasing order.

The left, right, Trapezoidal, and Midpoint Rule approxi-
mations were used to estimate .l'02 /(r) dr, where f is the
function whose graph is shown. The estimates were
0.9540,0.7811,0.8675, and 0.8632, and rhe same number
of subintervals were used in each case.

(a) Which rule produced which estimate?
(b) Between which two approximations does the true

value of J'; /(*) dx lie?

n= 3. Estimate {j cos(x') d* using (a) the Trapezoidal Rule
and (b) the Midpoint Rule, each with n - 4. From a
graph of the integrand, decide whether your answers are
underestimates or overestimates. What can vou conclude
about the true value of the integral?

Jr' e'" clx : 1.463

E= 4. Draw the graph of /'(x) : si n(xz /z) in rhe viewing recr-
angle [0, 1] bv [0,0.5] and ler 1 : .fJ fk) rtx.
(a) Use the graph to decide whether Lz, Rt, Mt, and L

underestimate or overestimate /.
(b) F'or any value of n, list the numbers L,,, R,,, M,,,7,,,

and / in increasing order.
(c) Compute L.:, R-r, Ms, and 15. From the graph, which

do you think gives the best estimate of /?

5-12 I Use (a) the Trapezoidal Rule, (b) the Midpoint Rule,
and (c) Simpson's Rule to approximate the given integral
with the specified value of n. (Round your answers to six
decimal places.)

ffi

Exercises

l.

2.

5. J;' e '" ,1*, n - lo

7. 
J;"'n 

cos(e'*) r/x, n - 8

itI
9. J, .x 

-r,'dl.tr. n : l0

ll. l"],d.r. tt-6.r() I + -t*

6. l':-!r/r. tt- l0
'rl) r,tl + r'1

B. f.'rL rr. ,- lo
|ti lnX

f 0. "[ rG.sinrr/x, tt - 8

lZ. l't ! 4.r. ,- l0fr.,''/' X

| 3. (a) Find the approximations 7"ro and M n for the integ ra I

I:, t " dx.
(b) Estimate the errors in

part (a).

(c) How large do we have to choose /x so that the
approximation s 7,, and M,, to the integral in part (a)
are accurate to within 0.00001?

14. (a) Find the approximations Tq, Tz, Mo, ancl Ms for

.l',f cos(.r') d*.
(b) Estimate the errors involved in the approxirnations

of part (a).

15. (a) Find the approximations Z1a1 and 516 for.i,l r'd; and
the corresponding errors E7 and d5.

(b) Compare the actual errors in part (a) with the error
estimates given by (3) and (4).

(c) How large do we have to choose /? so that the
approximations 4, , Mn, and S,, to the integral in
part (a) are accurate to within 0.00001?

the approximations of
y : /(x)
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How large should rz be to guarantee that the Simpson's

Rule approximation to J,l e.*' dx is accurate to within
0.00001?

The trouble with the error estimates is that it is often
very difficult to compute four derivatives and obtain a

good upper bound K for I ,f'o'(t) | Uy trand. But computer

algebra systems have no problem computing.f (o) 
and

graphing it, so we can easily find a value for K from a

machine graph. This exercise deals with approximations
to the integral I :.f3'/(*) dx, where /(x) - e'u'*.
(a) Use a graph to get a good upper bound for | ,f"(t) l.

(b) Use M tn to approximate /.
(c) Use part (a) to estimate the error in part (b).

(d) Use the built-in numerical integration capability of
your CAS to approximate /.

(e) How does the actual error compare with the error
estimate in part (c)?

(f) Use a graph to get a good upper bound for | ,f(o'(") l.

(g) Use ^S1n to approximate /.
(h) Use part (f) to estimate the error in part (g).
( i ) How does the actual error compare with the error

estimate in part (h)?

U) How large should n be to guarantee that the size of
the error in usitrg S,, is less than 0.0001?

Repeat E,xercis e 17 for the integral f ' , ,f 4 - r: d*.
-l

Find the approximations L,,, R,,, f,,, and M,, to the

integral [,f xt dx for n _- 4,8, and 16. Then compute the

corresponding errors E1 , En,, Er, and Ep. (Round your

answers to six decimal places.) What observations can

you make? In particular, what happens to the errors

when n is doubled?

Find the approximations 4,, M,,, antl S,, to the integral

J'1, *u.dx for n - 6 and 12. Then compute the corre-

sponding errors Er,8,p1, ord Er. (Round your answers to

six decin-ral places.) What observations can you make?

In particular, what happens to the errors when n is
doubled?

22. (a) Use Simpson's Rule and the given data to estimate

the value of the integral Ii f G) ax.

I l(r)

l.()
2.5

3.0

3"5

-1.0

-1.5

5.0

5.-s

6.0

e.ll
r). [) I

t{.76

ft.l0
7.5l
6. ril
T f/'\
l.-1 '

7.6e
-v 

.t) |

(b) If it is known that -2 < f(o)* < 5 for all x, estimate

the error involved in the approximation in part (a).

23. The speedometer reading (u) on a car was observed

at l-minute intervals and recorded in the chart. Use

Simpson's Rule to estimate the distance traveled by

the car.

24. Water leaked from a tank at a rate of r(r) liters per hour,

where the graph of r is as shown. Use Simpson's Rule

to estimate the total amount of water that leaked out

during the first four hours.

@ t7.

EIE 18.

19.

20.

25. The graph of the acceleration
ft/s? is shown. Use Simpson's
increase in the velocity of the

time interval.

a(t) of a car measured in
Rule to estimate the

car during the 6-second

21. Estimate the area under the graph in the figure by using

(a) the Trapezoidal Rule, (b) the Midpoint Rule, and

(c) Simpson's Rule, each with n - 4.

r (n'lin ) 0 I
') -)

"') "t ) 6 1 X o lo

u (rni/h) -ir) i-)+' -+5 -19 5l 5-+ .5f) 57 57 55 5(r

fi}
**""i'"-*'T*'**"t'*'

-i-r- i-
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26. The table (supplied by Pacific Gas and Electric)
gives the power consumption in megawatts in the
San Francisco Bay Area from midnight to noon on
September 19, 1996. Use Simpson's Rule to estirnate
the energy usecl during that time period. (Use the fact
that power is the derivative of energy.)

27.In addition to the general inflation rate (Example 5), the
U.S. Bureau of Labor Statistics also publishes the rates
of increase of prices of more specialized goods. The
table gives the rate of change in the price of tood in the
United States (as a percentage). Use Sirnpson's Rule to
estirnate the totell percentage increase in the cost of
food from 1986 to 1994.

The figure shows a pendulum with length L that makes
a maximum angle 0p with the vertical. Using Newtor-l's
Seconcl Law it can tre shown that the period r (the tirne
for one complete swing) is given by,

dxT:1
1'l Arsinlr

where ft -- sin(+ 00) ancl g is the acceleration clue to
grilvity. If L : 1 m and 0,, : 12", use Simpsolt's Rr_rle

with rz - 10 to fincl the periocl.

\- | e-

29. If f is a positive function and .f"(*) < 0 for a { .r I lt,
show that

30.

@ zs.

32.

7,, 1],lfC.l dx 4 M,,

Show that if / is

Simpson's Rule

Show that

Show that

a polynomial of degree

-eives the exact value of

+ M,,)- T2,,.

* 1M,, - Sr,,.

or lower, then

f (r) dr.

nJ
ib
I.tu

3t. i (r,,
!r
3rn

lmproper Integrals

In defining a definite integral I': fl-l dx we dealr with a funcrion / defined on a
finite intervalla,bl and we assumed that/does not have an infinite discontinuity
(see Section 5.2).In this section we extend the concept of a definite integral to the
case where the interval is infinite and also to the case where/has an infinite dis-
continuity inla,b).In either case the integral is called an improper integral. One
of the most important applications of this idea, probability distributions, will be
studied in Section 6.7.

I Type l: Infinite Intervals

Consider the infinite region S that lies under the curve y : llx2, above the x-axis,
and to the right of the line,r: 1. You might think that, since S is infinite in ex-
tent, its area must be infinite, but let's take a closer look. The area of the part of S
that lies to the left of the line "r : r (shaded in Fisure l) is

A(r): l'4n-: -ll ' -r - I

r,,l X- -f J, f

l{otice that A (r)

I l: I 1 ")
_t 4 5 6

I .t I t{l 3r{56 36.10 355t{ 35.1.7 3679 4lt2

I
.1

ll I IO ll t2

P -1699 5r5r 55 r4 575 I 604.i 6206

I I gf{6 let{7 l9t{tt l9f{9 1 990 t99l l 992 I 993 t994

r a ,'r
.J. "n 4.1 4"1 5.lt 5. r{ 2.9 l.l ?.2 2.4

FIGURE I



428 CHAPTER 5 II{TIGRALS

FIGURE 2

We also observe that

The area of the shaded

the area of the infinite

Using this example as a
positive function) over an

intervals.

guide, we define the integral
infinite interval as the limit

2), so we say that

of f (not necessarily a
of integrals over finite

/ 1\
ls A(t): ls (' +): I

region approaches 1 as t + oo (see Figure
region S is equal to 1 and we write

l,- * o*: lil .1,',' 
j o*: l

r/t _f- t_.x Jl

Any of the improper integrals in Definition I can be interpreted as an area

provided that / is a positive function. For instance, in case (a) if /(-x) > 0 and

the integral II ft*ldr is convergent, then we define the area of the region

S : {(x, y)1, > a, 0 < y < 
"f(x)} in Figure 3 to be

A(s) f (x) dx:I:

I Definition of an lmproper lntegral of Type I

(a) If .f: /(*) dx exists for every number /

provided this limit exists (as a finite number).
(b) If .fi /(r) dx exrsts for every number r

provided this limit exists (as a finite number).

The improper integralr .|'; f (*) dx and .l\* f (*) dx are called convergent if
the corresponding limit exists and divergent if the limit does not exist.

(c) If both L f f*) dx and J'i* f Q) dx are convergent, then we define

In part (c) any real number a can be used (see Exercise 52).

ff rtndx: lg [.rtio*

J: re)dx:,[T [,u ftio*

f-fk)dx: J* f(x)dx + f rtndx

y : /(x)

FIGURE 3



This is appropriate because lI tt l dx is the limit as t ---, @ of the area under rhe
graph of /from a to t.

EXAMPLE I r Derermine whether rhe inregral li O/*) dx is convergent or

sEcTtoN 5.9 [,lpRoptR I{TIGRAts 429

integral

divergent.

SOLUTfrSN According to

fa
IJr

part (a) of Definition 1, we have

I {"' 11 d* - lim l, : a*- lim tn lx l]i
X t---+a Jl X t---->ffi

:lg(lnr ln1)-lgln/:oo

as a finite number and so the improperThe limit does not exist

J, t l/x) dx rs divergent. ffi

Let's compare the result of Example I with the example at the beginning of this
section:

diverges

Geometrically, this says that although the curves y : l/r'and y : l/x look very
similar forx ) 0, the regionundery :1/x' tothe right of x: I (the shaded re-
gion in Figure 4) has finite area whereas the corresponding region under y : l/.r
(in Figure 5) has infinite area. Note that both l/x2 and lfx approach 0 as x -+ co

but lfxz approaches 0 faster than l/x. The values of l/x don't decrease fast enough
for its integral to have a finite value.

l" + dx converges L" I o.

FIGURE 4

FIGURE 5

EXAMPLE 2 I Evalua

S$ttlTfi#ru Using part

We integrate by parts

We know that e' -> 0

l'0
te I xe' dx.

J -co

(b) of Definition 1, we have

f0 f0
I xe'dx - lim I xe'r dx

J -x r ____+-* J t

with ru : x, du - e* dx so that du - dx, u -- e*:

fo -'to I"o

J, xe* dx : xe. ); J, e' dx

- -te' - I + et

as / -) -@, and by I'Hospital's Rule we have

=: 
,ta ?e') -- o

f0
| *r" dx : lim (-te' - 1 + e')

J -x, | ____+_T

- -0 1 + 0 - -l

finite area

infinite

Therefore

ffi



430 CHAPTER 5 II{ITGRALS

EXAMPLE

SSLUTION

f*l
Evaluare | 4 a*.J-* | + x2'

convenient to choose a - 0 in Definition 1(c):

f*lf0
J-- 1a;dx:J-- #0.+ Il t#'.
evaluate the integrals on the right side separately:

#dx:lgl: #:lsran-''l;
: lim (tan-lr tan-r0) _ lim tan-rt -

,[T- L'3:,[T-tan-'*]:
lim (tan-r 0 tan-rr)

^-r ,) _no \-71 2

Since both of these integrals are convergent, the given integral is convergent and

lrrl-lr,IfnJ-.tlto':T*t:n

3l

It is

Wb must

L

J:

7r

T
I-- . dt:l+x'

:

FIGURE 6

Since l/ (l + *')
of the infinite region that lies under the curve y - ll 0 +
x-axis (see Figure 6).

EXAMPLE 4 I For what values of p

rom Example I that if p -- l, then the integral is divergent,

# 1. Then

r* I f'l
J, ,dx- l':J, jd*

: lim x-P+' l':'
t-.-+x -p + I l,:,

I [t 
-]:lg r-rL; tl

r- I I

J, 'dx: p-r if P

interpreted as the area

*') and above the
,ffi

is the integral

f*l
J, jd*

convergent?

SOLI TION We know f
so let's assume that p

lfp



and so the integral converges.

I

t^
and the integral diverges.
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But if p

- tl-P --+ oo as t ---> co

We summarrze the result of Example 4 for future reference:

t Type 2: Discontinuous Integrands

Suppose that/is a positive continuous function defined on a finite intervalla,b)
but has a vertical asymptote at b.Let S be the unbounded region under the graph of
/andabovethex-axisbetween aandb. (ForType I integrals,theregionsextended
indefinitely in a horizontal direction. Here the region is infinite in a vertical direc-
tion.) The area of the part of S between a and t (the shaded region in Figure 7) is

A(t) f (x) dx

If it happens that A(t) approaches a definite
that the area of the region S is A and we write

f(x) dx - lim
t-+b

number A as r -+ b- , then we say

f (x) dx

:jj

Tr
FIGURE 7

We use this equation to define an improper integral of Type 2 even when/is not a
positive function, no matter what type of discontinuity f has at b.

E Definition of an lmproper Integral of Type 2

(a) If f is continuous onfa,b) and is discontinuous at b, then

fb i'r

)" f(x) dx - ,tT ), f 
(*) a*

if this limit exists (as a finite number).
(b) It f is continuous on (a , bl and is discontinuous at a, then

t"b fb

J, fQ) dx : 
,tlT. J, f(x) dx

if this limit exists (as a finite number).

The improper integral I'" tf.l dx rs called convergent if the corresponding
limit exists and divergent if the limit does not exist.

(c) If f has a discontinuity at c, where a

I! f t*l dx are convergent, then we define

Ircn.-- Li radx + Ll rcdx

fxzl Jr
1

7d* is convergent if p

y : /(x)
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FIGURE IO

Parts (b) and

where f(x) > 0

(c) of Definition 3 are illustrated
and / has vertical asymptotes at a

in Figures 8 and 9 for the case

and c, respectively.

FIGURE 8

ExAMpLEs r Find I'LaJz Pax'

f rl2
I secxdx: lim

J0 1---,(t/21-

_ lim
1.__*(n12)-

- lim
1.--(n/7)-

a\nw

FIGURE 9

sec x dx

lsecx + tantl];

[ln(sec t + tan r) ln 1]

SOLUTION We note first of all that the given integral is improper because

f(x) : l/Jxl has the vertical asymptote x:2. Since the infinite disconti-
nuity occurs at the left endpoint of [2,5], we use part (b) of Definition 3:

f5dx| -------:--
Jz t/x 2

(r5 dxlim I --
t---z+ Jt Jx 2

riql 2.ffi1:
t -2+

rim 26f 'F=lt --2+

2JT

Thus, the given improper integral is convergent and, since the integrand is posi-

tive, we can interpret the value of the integral as the area of the shaded region
in Figure 10. I

EXAMPLE 6 I Determine whether f ̂ ''' sec x dx converges or diverges.
JO

SOIUTION Note that the given integral is improper because lim,-1,72y- sec,Y :
Using part (a) of Definition 3 and Formula 14 from the Table of Integrals, we

have

J;

ln

because sec t + oo and tant -+ oo as t -> (nlz)-. Thus, the given improper
integral is divergent.

I

J*-i

area - zJa

t
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EXAMPLE 7 r Evaluat . It d* . if possible.
Jo x - | -

SOLUTION Observe that the line x : I is a vertical asymptote of the integrand.
Since it occurs in the middle of the interval [0,3], we must use part (c) of
Definition3withc:l:

f' o* : f' dx r I' O*

Jo x I "lo -tr I ,l t -r I

where f' o*,- lim f' o*,:li1lnlx 
1l];Jo r I ;*f:Jo x l.-r

:,r+(rnlr-11-lnl-ll)

:,t+ ln(l - /) : -*

because 1- t ---> 0* as / -+ l-. Thus, JlaxlQ - l) is divergent. This implies
ttrat Jj dx/(x - 1) is divergent. [We do not need ro evaluate Il ax/G - t)] t:

@ Warning: If we had not noticed the asymptote x : I in Example 7 and had in-
stead confused the integral with an ordinary integral, then we might have made
the followins erroneous calculation:

tr3 Cx , ,a1l'
Ju *J: lnlx - l|l; :ln2 - lnl : ln2

This is wrong because the integral is improper and must be calculaterJ in terms of
limits.

From now on, whenever you meet the symbol Ii ft*ldxyou must decide, by
looking at the function f on la,b], whether it is an ordinary definite integral or an
improper integral.

EXAMPIES r Evaluate I lnxdx.
JO

SOLUTION We know that the function /("r) : ln x has a vertical asymptote at 0
since lim,-or ln x : -oo. Thus, the given integral is improper and we have

(.t fl

)o tnxdx:,t1T ), tnxdx

Now we integrate by parts with r.r : ln x, du : dx, du : dxfx, and a : x:

fl at fl

l, ln*dr: xlnxl, - ), d,

: llnl - llnt - (l - t)

:-tlnt-l+t
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FIGURE II

FIGURE 
'2

To find the limit of the first term we use l'Hospital's Rule:

ln r l/t
lim r ln t - lim lim --r.r-0+ r -,0- l/t r--0. - l/t-

= lim (-r) - 0
t *0*

Therefore

Figure 1l shows the

shaded region above

lnx dx - lim (-r lnr I + t)
I -0-

geometric interpretation of this result. The area of the

y - ln x and below the x-axis is 1.

.,['

ffi

Sometimes it is impossible to find the exact value of an improper integral and yet

it is important to know whether it is convergent or divergent. In such cases the fol-
lowing theorem is useful. Although we state it for Type I integrals, a similar theo-

rem is true for Type 2 integrals.

Comparison Theorem Suppose that / and g are continuous functions with

f(*) > s(x)

(a) If J; f k) dx rs convergent, then I" g@ dx rs convergent.

(b) If J; gU) dx ts divergent, then I; f U) dx rs divergent.

We omit the proof of the Comparison
plausible. If the area under the top curve y
der the bottom curve y : g(x). And if the

is the area under y - f (x).

EXAMPLE9 T Showthat

$S[-UT$SF{ We cannot evaluate the integral directly
e-"' is not an elementary function (as explained in

Theorem, but Figure 12 makes it seem
: f (x) is finite, then so is the area un-

area under y : g(x) is infinite, then so

because the antiderivative of
Section 5.7). We write

l'* 1

I e-'t- dx ts convergent.
J0

-*' dx -,' dx + [r* ,-'" dx

and observe that the first integral on the right-hand side is just an ordinary
definite integral. In the second integral .we use the fact that for x ;> I we have

,'> *, so --r'{ -r and therefore e-'" < e-'(see Figure l3). The integral of
e-'is easy to evaluate:

t'* ,L- rim f' ,-rdx:
J, e-.rd 

tnxJl

Thus, taking /(x) : e-x and g(x) - e-*' rn

that iT ,-*' dx is convergent. It follows that

I; , -.,[' e

lg (n-' e-') - e-l

the Comparison Theorem, we see
i x - 12]i e ^ dx ls convergent. ffi

A Comparison Test for lmproper lntegrals

FIGURE I3
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l' ,!,, r' t t 
r/-r

I

1
-)
1

-t

5

6

0.7-l6f{2-1 l32rr

0.tit{l0tt 1390t{

t).fit{(r1073+ti3

0.8n62269 I I 8
0.t{t{(rll(r9155
0 . 1{ t{ 61 16915 5
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1+e-x
dx is divergent by the Comparison

x

(b) Find the areas under the graphs of f and g from
x - I to J : r and evaluate for t - 10, 100, 104, 106

l0ro, and 10?0.

(c) Find the total area under each curve for x ) l, if it
exists.

5-32 r Determine whether each integral is convergent or
divergent. Evaluate those that are convergent.

r'l -f(c) | ^ dx
"ro .r' 5"r + 6

2. Which of the following
i'l I(a) | 

-d.r

.'l 2.t I

r''L sin r(c) | - r/.r
"l-* I + .tr.

3. Find the area under the curve -)' - ll*t from r : I to
r - r and evaluate it for r - 10, 100, ancl 1000. Then
find the total area under this curve for x ) l.

n= 4, (a) Graph the functions/(x) - l/*t r and g(x) - l/*'n
in the viewing rectangles [0, l0] by [0, 1] and

[0, 100] by [0, l].

TABLE I In Example 9 we showed ttrat Jf e-"'dx is convergent without computing its
value. In Exercise 56 we indicate how to show that its value is approximately
0.8862. In probability theory it is important to know the exact value of this im-
proper integral; using the methods of multivariable calculus it can be shown that

the exact value is G /2. Table I illustrates the definition"of an improper integral
by showing how the (computer-generated) values of l'o e-'' dx approach-y'2 /2 as t
becomes large. In fact, these values converge quite quickly because e-" --- 0 very
rapidly as r --> oo.

EXAMPLE l0 I The integral
Theorem because

l"
l+e-x I

xx

and l, (l/x) dx is divergent by Example 1 [or by (2) with p - 1].

Table 2 illustrates the divergence of the integral in Example 10. Notice that the
values do not approach any fixed number.

TABLE 2 I
I li[tt + (' ')/rl r/t

2

5

l0
l(x)

I(XX)

I(XXX)

0.t{636306()-11

l.t{2767355r:
1.521964ri70-t
,+.n24554 r20,1

7 .t27 l 392 r l-l
I.-12972,4306-1

Exercises

ffi

following integrals is improper.
tn rr/2(b) J,, secxdx

l. Explain why each

(a) .[* ro" -*o clx

of the

(d) f" -l-orr/-Lx-+)

integrals are improper? Why?

(b) l'' I 
,/.*

'!o 2"r I

f2(d) 
J,- ln(x t)dx

6. f.. ,lrz (x +3ydx
tn- I

8. | ,- d.r
''l r/x + 3

,ory

10. 
.l _." {2*' x + 3) dx

rt0
12. 

.l _* ,'^ dx

s. I; '-* tlx

7. f '

.!- - (2x 3).

lt v'

9' J -,. 
x' dx

If . f,"ru-"dx
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23.

l"

J,-

J*

,r

JJ,
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33-38 r Sketch the region and find its area (if the area

is fin ite) .

33. S - {(",y) lx < 1,0 { }
34. S - {(",y)lx > -2, O < y < e:xtz)

Ei rs. s - t(x,y) lx > 1, 0 < y

Elx. s - {(",y)lx> o, o < }
Elll. S - {(",y)lO < x s nO < y { tanxsecx}

Eirs.s-t(",y)l:<x{ 7,,0 <}< ll Fz}

(b) Use the Comparison Theorem with f(*) - 1/t/* to
show that J'I g(*)d; is divergent.

(c) Illustrate part (b) by graphing / and g on the same
screen for 2 < .r < 20. Use your graph to explain
intuitively why J; gk) dx is divergent.

4l-46 r Use the Comparison Theorem to determine
whether the integral is convergent or divergent.

fx costx
41. | " dx,rr I + x'

0

ne

f (x) dx

f nt2 dx
4s. r.. .du .tr sln ,T

47 . The integral

fxl

J, ,ff1t a *, a*

is improper for two reasons: the interval [0, m) is
infinite and the integrand has an infinite discontinuity
at 0. Evaluate it by expressing it as a sum of improper
integrals of Type 2 and Type I as follows:

l" - --J- .d.*rro ,'.,/x(l + x)

r'l I n* I: 
J;' Ji {t * *, 

a, - J,' vG(r + ") 
d'

48. Evaluate

l'* I

J. ,,m'l*
by the same method as in Exercise 47.

49. Find the values of p far which the integral il0/",) dx
converges and evaluate the integral for those values of p.

50. (a) Evaluate the integral J', "oe-'dx 
for n: 0,, 1,2,

and 3.

(b) Guess the value of J'ff "ne-xdx 
when n is an arbi-

trary positive integer.
(c) Prove your guess using mathematical induction.

5 !. (a) Show that Jl* r dx ts divergent.
(b) Show that

13.

15.

17.

19.

21.

i"

,["

cos x dx

5_dx
2x + 3

xe'* dx

lnx_dx
x

x
^dxl+ x'

I

-dx\/x

I
., dx

x-

I
^dxx

/l*I L 
" rt 

d*14. 
) _* *"-'

f6. f' -:-d*.t-* x- * 9

fx
I 8. J, xe-' dx

20. f | 
=d,J e x(ln x)'

rx lnx
22' J, ; dx

24. lt l- 
d*J0 x ,/x

26. f'Ja*.rr J,r _ g

2g. f' I 
a.r.ro 4x- 5

F 
-11| iltL

30. 
.l nt+ 

sec'x dx

r1 In x
32. 1 -dxJo Jx

t-

42. f- J' *-6 
o,JI t/x

44. f- La.r..rt Jxt + I

46. 1'' !) a.rJo Jx

fx dx
43. l-.lr x + er*

25.

27. f,
2s.l;'

3l ' Jr'

E1ts.(a)

El qo. (a)

(b)

(c)

If g(x) - (sin2x) l*', use your calculator or computer
to make a table of approximate values of J'i gQ) dx
for r :2,5, 10, 100, 1000, and 10,000. Does it
appear that J, g(") dx rs convergent?

Use the Comparison Theorem with f (*) - lfxz to
show that J, gtrl dx rs convergent.
Illustrate part (b) by graphing / and g on the same

screen for I ( x { 10. Use your graph to explain
intuitively why i, g("1 dx ts convergent.

If g(x) : llG/i - 1), use your calculator or
computer to make a table of approximate values of

Ii g@ dx for t - 5, 10, 100, 1000, and 10,000. Does

it appear that Ii g@ dx rs convergent or divergent?

rtl
lim I xdx:
t ''r J -t

ows that we can't defi

rtx ft
I f(x) dx - lim IJ-x " 

t-x J-I

This sh
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52. If ]:* .f(") dx is convergent and a and b are real
numbers, show that

53.

rr(r ,t t t"b !"

.l . /'(x) dx + J,, "fG) d.. : .l , /'(.r)r/.r + 
.ln J'(r\ d.r

A manufacturer of lightbulbs wants to produce bulbs
that last about 700 hours but, of course, some bulbs
burn out faster than others. Let f(r) be the fraction of
the company's bulbs that trurn out before t hours, so F(r)
always lies between 0 and 1.

(a) Make a rough sketch of what you think the graph of
tr might look like.

(b) What is the meaning of the derivative r(r) - F'(r)?
(c) What is the value of .J; r(r) ttrT Why?

The uverage speed.of molecules in an ideal gas is

r) _ :_ ( tw 
)Y'? l-* , rr-,vu2,,r=ort clu

,! , \zRr/ .'o

where M is the molecular weight of the gas,R is the gas

constant, T is the gas temperature, and u is the molec-
ular speed. Show that

,t) - . /**t
YnM

As we will see in Section J.5, a radioactive substance

decays exponentially: The mass at time / is
m(t)- m(0)e*',, where m(0) is the initial mass and ft is
a negative constant. The ftrean life M of an atom in the

54.

Chapter 5 Review

substance rs

M - -k f* ,ur'dt
JO

For the radioactive carbon isotope, tuC,, used in radio-
carbon dating, the value of ft is -0.000121. Find the
mean life of a 'uC atom.

56. Estimate the numerical value of .l; ,-." dx by writing it
as the sum of i,l e,-*' r/x and .|- u 

**'dx. 
Approximate the

first integral by using Simpson's Rule with n - 8 and
show that the second integral is smaller than .i.i u o' d*,
which is less than 0.0000001.

57. Show that .l',1 xre " dx : J .t. e " dx.

58. Show that .l ; " 
- 
" dx : J,] /- 1q)' dy by interpreting the

integrals as areas.

59. Determine how larse the number a has to be so that

f- "1 dxao.ool
*rrr -f- + I

50. Fincl the value of the constant C for which the integral

,"( .r C \l"( " - .lar.r() \x-+l 3r+l/

is convergent. Evaluate the integral for this value of C"

55,

O CONCEPT CHECK '

l. (a) Write an expression for a Riemann surn of a func-
tion / Explain the meaning of the notation that you

use.
(b) If /(x) > 0, what is the geometric interpretation of a

Riemann sum? Illustrate with a diagram.
(c) If /(x) takes on both positive and negative values.

what is the geometric interpretation of a Riemann
sum? Illustrate with a diagram.

7. (a) Write the definition of the definite integral of a con-
tinuous function from a to b.

(b) What is the geometric interpretation of J'!, f (x) clx

if /(x) > 0?
(c) What is the geometric interpretaion of lt: fk) ax

if /(x) takes on both positive and negative values?
Illustrate with a diagram.

3. (a) State the Evaluation Theorem.
(b) State the Total Change Theorem.

4. If r(r) is the rate at which water flows into a reservoir,
what does .!'ll r(rl dt represent?

5. Suppose a particle moves back and forth along a straight
line with velocity u(t), measured in feet per second, and
acceleration a(t\.
(a) What is the meaning of .iJfit u(r) dt?

(b) What is the meaning of j;3'l u(t)ldt?

(c) What is the meaning of JJSo o(t) dr?

6. (a) Explain the meaning of the indefinite integral

lfk)ax-
(b) What is the connection between the definite integral

Jj fCrl dx and the indefinite integrat j /(r) dx?
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7.

8.
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State both parts of the Fundamental Theorem of
Calculus.

(a) State the Substitution Rule. In practice, how do you
use it?

(b) State the rule for integration by parts. In practice,
how do you use it?

9. State the following rules for approximating the indefi-
nite integrat I!, ftl dx.
(a) The Midpoint Rule (b) The Trapezoidal Rule
(c) Simpson's Rule

10. Define the following improper integrals.
lt r tt lt lt ^r-

(a) J,, f(x) dx (b) 
_f ,. .f{") dx (c) .l _ ./(*) dx

I f . Define the improper integral )!, f (*) dx for each of the

following cases.

(a) /has an infinite discontinuity at a.
(b) /has an infinite discontinuity at h.
(c) / has an infinite discontinuity at c, where

a1c1b.
12. State the Comparison Theorem for improper integrals.

A rRUE-FALSE QUrz A

Determine whether the statement is true or false. If it is
true, explain why. If it is false, explain why or give an

example that disproves the statement.

t . If f and g arc continuous on lo, bl, then

f l, - - t'lt f b

J,; t/(x) + s(x)ldx - ),,, .f tr) d* + 
.1,,, oG) d,

2. If f and g are continuous on lo, bf, then

t'b' 
\ / \

J: t fl)g(x)l ttx - ( .1,: f(x) d-) ( .t,l' s(x) d-)
\r'tt / \.'({ /

3. If f is continuous on [a, b] and/(r) >- 0, then

Il cw dx:

4. Tf f is continuous on [1, 3], then

L' f'(r) du - /(:1 - /(l)

5. If f and s afe continuous and/(x) > g(x) for a {
then

)i,i tt't dx > 
,li,i tt*t dx

6. If f and g are differentiable and /(x) > g(x) for
a 4x ( b, then f'(x) > g'(x) for a { x ( h.

,tr / sinx \T. i', ( ,' 6ru + tj:t= | a* - or-t \ (l + x")./

B. fo -t dx:'ltnts
"r(l -ft | -

t'^n I9. 
f , ,T dr is convergent.

ajl 
"trn-

10. Ji tr - r') d* represents the area under the curve

")' - -r - x' from 0 to 2.

All continuous functions have derivatives.

All continuous functions have anticlerivatives.

-r<b,

ll.

12.

€ EXERCISES B

t. Use the given graph of 
"f 

to find the Riemann sum with
six subintervals. Take the sample points to be (a) left
endpoints and (b) midpoints. In each case draw a dia-
gram and explain what the Riemann sum represents.

2. (a) Evaluate the Riemann sum for

/(x)_ a2-x 0<x{2

with four sr-rbintervals, taking the sample points to
be right endpoints. Explain, with the aid of a dia-
gram, what the Riemann sum represents.

(b) [Jse the definition of a definite integral (with right
endpoints) to calculate the value of the integral

J,] Cr' - x) dx

Use the Evaluation Theorem to check your answer
to part (b).
Draw a diagram to explain the geometric meaning
of the integral in part (b).

(c)

(d)

f (x) dx



21 . I t' 
,l.r

't e'r+ I

P
23. J e.'cos xdx

r' e"tr
25. | -dxr'' \/ x

5 RTVIEW

n
l^

22. J x'e-''' dx

/a

24. J tan-'x dx

r cos(ln x)
26. J * d*
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3. Evaluate

fl /

J, (x + f,- .') a*

by interpreting it in terms of areas.

Express

lgf""xiAx
as a definite integral on the interval [0,rr] and then
evaluate the integral.

If .l'f f (*) dx : l0 and .fJ ft*l dx - 7, rind Jf f 6) dx.

(a) Write i3 ," dx as a limit of Riemann sums, taking
the sample points to be right endpoints. Use a
computer algebra system to evaluate the sum and
to compute the limit.

(b) Use the Evaluation Theorem to check your answer
to part (a).

The figure shows the graphs of f, f', and .l'i f@ dt.
Identify each graph, and explain your choices.

flZl-Zt r Evaluate the indefinite integral. Illustrate and

check that your answer is reasonable by graphing both
the function and its antiderivative (take C : 0).

35-38 I Use the Table of Integrals on the back endpapers to
evaluate the integral.

f cosr
27. i 

- 

tix
'r ../t + sinx

P J'
28. i ,- tixtt Jx= + I

EJZS. Use a graph to give a rough estimate of the area of the
region that lies under the curve y : * ..E,0 < x < 4.

Then find the exact area.

E! fO. Graph the function f(*) - cos2r sinrx and use the graph
to guess the value of the integral i3' f Q) dx.Then
evaluate the integral to confirm your guess.

3 l-34 I Find the derivative of the function.

31. F(x\ - l: ,- ,fr + to dt 32. g(x): l,.."-' Jt - r' at
., .- Jl

33. g(x) - j;" fi= a, tl..y - "|,:.' sin(ra) dr

4.

5.

EE6.

7.

8. Evaluate:

(a) 
Ir' *(garcran 

,) rt*

d
(c) t* L earctant dt

9-26 r Evaluate the integral.

frg. 
J.' 

(t x',) dx

ll. l' -* d*.fo x. + I

| 3. l,- ffifr r) dx

ru dx
IJo | 

-----:

'r3 t/Zx + 3

17. 
Iot 

t'' dt

I
19. .f x sec x tan x dx

(b) 
* Ir' earcranr dx

3s. ! t. rlt - t'' a*

tt. l'ffidx

,i

36. J tan'x dx

P COtx
JO. | 

- 

U-41r Jl + 2sinx

lo' 
Jr'

t2. J;'

14. J-

20. J

16.

18.

J,'

J,'

(1 x)e dx

I
^dxx'+1

x'-x*l
.dx{x

x'ln x dx

I_dx
23x

sin x cos(cos x) dx

39-40 I Use (a) the Trapezoidal Rule, (b) the Midpoint
Rule, and (c) Simpson's Rule with n : l0 to approximate
the given integral. Round your answers to six decimal
places. Can you say whether your answers are under-

estimates or overestimates?

3e. J;' ",8 + * a* 40. Ion' 
.r6in 

" a"

41 . Estimate the errors involved in Exercise 39, parts (a)

and (b).

42. Use Simpson's Rule with n - 6 to estimate the area

under the curve y - e'/x from r : I to x : 4.

@ 43. (a) If f (x) - sin(sin x), use a graph to find an upper
bound for l,f ,0,(*) 

I.

(b) Use Simpson's Rule with n : l0 to approximate

I{ ff*l dx and use part (a) to estimate the error.
(c) How large should n be to guarantee that the size of

the error in using Sn is less than 0.00001?
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Ef,E 44. (a) How would you evaluate J "tr 
-" dx by hand?

(Don't actually carry out the integration.)
(b) How would you evaluate I "tr 

-'"'dx using tables?
(Don't actually do it.)

(c) Use a CAS to evaluate I xte-" dx.

(d) Graph the integrand and the indefinite integral on

the same screen. Does your answer to part (c)

appear to be reasonable?

56. A population of honeybees increased at a rate of r(r)
bees per week, where the graph of r is as shown. Use
Simpson's Rule with six subintervals to estimate the
increase in the bee population during the first 24 weeks.

45-50 I Evaluate the

divergent.

45. l. --) - a.r.r() (;; + 2),

rt0
47. .l .u -'dx

i'e' dx
4e. | _

'rl x r/ln x

improper integral or show that it is

tn- ln x
46. I .., ,/,t

.l I -tr"

t'l I
48. I 

---= 
r/.r

.r- | 2.r + I

l'6 \'
50. 

f ., 

- 

r/.\' 57 .
ri VJ. /.

5l. Use the Comparison Theorem to determine whether the

integral

l-^'' 'f 
''

.1, *s*rdr

is convergent or divergent.

52. For what values of a is .|J ""'cos 
x dx convergent?

Evaluate the integral for those values of a.

53. A particle moves along a line with velocity function
u(t) - t2 r. Find (a) the displacement and (b) the

distance traveled by the particle during the time
interval [0, 5].

54. A radar gun was used to record the speed of a runner at

the times in the table. Use Simpson's Rule to estimate
the distance the runner covered durine those 5 seconds.

55. The table gives the rate of increase in the cost of
medical care in the United States (as a percentage). Use

Simpson's Rule to estimate the total percentage increase

in the cost of medical care from 1988 to L994.

Suppose that the temperature in a long, thin rod placed
along the x-axis is initially C/ (2u) if lx | < c and 0 if
lr | 7 a.It can be shown that if the heat diffusivity of
the rod is k, then the temperature of the rod at the point
x at time I is

r(x, r) : -+ 1,"' ,-('v-rr) 
?lt+t'tt 

4u
a { lnkf r'0

To find the temperature distribution that results from an

initial hot spot concentrated at the origin, wCI need to
compute

l,im i"(-r, l)

Use I'Hospital's Rule to find this limit.

The Fresnel function .!(x) : .i; sin(nr'/2) r/r was intro-
duced in Section 5.4. Fresnel also used the function
C(;) : J; cos(zrr'lD dt rn his theory of the diffraction
of light waves.
(a) On what intervals is C increasing?
(b) On what intervals is C concave upward?
(c) Use a graph to solve the following equation correct

to one decimal place:

It.r'

J, 
' cor (rrtz lz) dt : 0.7

(d) Plot the graphs of C and,S on the same screen. How
are these graphs related?

58.

@

@

59. If f is a continuous function such that

,t-\' - tl-l

J, /tr) dt - xe-' + 
.ln " 'f (r\ dr

for all x, find an explicit formula for/(r).

60. Find a function 
"f and a value of the constant a such that

21 t
(weeks)

/ {sl 0 ()i 1.0 ti Io li

{nrI il ir. I {_i HHT r).7 -l 1")l0

I {\) 10 1i -+.() I+" (l

l'{ll'l :} l0 5l l0 ft7 |0.7f) I0.s I l() r{ l

I l(lss l(J8q )90 I 
(")() 

| l 9ql lqq"l l()()J

I { 7.7 q0 Fi.7 7..+ -5.9 -+.8 z I'fHclt - 2sinx I
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64. The figure shows two regions in the first quadrant: A(t)
is the area under the curve y - sin(xz) from 0 to t, and

B(t) is the area of the triangle with vertices O, P, and
(r, 0). Find lim, *o+ A (t) I B(t).

continuous on lo, bl, show that

z I' f(x)f'(x) dx: I f(b))2 - [ f(o)]'

a positive integer, prove that

fr
J, (ln x)o dx : (-l)'nl

continuous on [0, *) and lim,-** /(x)

61. rf f is

62. If n is

63. If /' is

that

: 0, show

I, r'tn dx : -/(oy

P(t, sin ( 12 ) )

y = sin(xt)

P(r, sin(/t))



Before you look at the solution of the following example, cover it up and first try to
solve the problem yourself.

Exampre 1 Evaruate $ (- Ji + ")
Solution Let's start by having a preliminary
tion. What happens to the first factor, xf (x
numerator approaches 3 and the denominator

look at the ingredients of the func-
3), when -r approaches 3? The

approaches 0, so we have

-r --+ 3+

x --+ 3-and

AS

AS

The principles of problem solving are
discussed on page 87.

The second factor approaches Jj (sin t)/tdt, which is 0. It's not clear what hap-
pens to the function as a whole. (One factor is becoming large while the other
is becoming small.) So how do we proceed?

One of the principles of problem solving is recognizing something familiar. ls
there a part of the function that reminds us of something we've seen before?
Well, the integral

sln r_dt
t

has x as its upper limit of integration and that type of integral occurs in Part I
of the Fundamental Theorem of Calculus:

d c'
a* )" ff'l dt : f(x)

This suggests that differentiation might be involved.
Once we start thinking about differentiation, the denominator (x - 3)

reminds us of something else that should be familiar: One of the forms of the
definition of the derivative in Chapter 2 is

F'(,t)- lim 
F(x) - F(a)

ir--+r.r X A

and with a - 3 this becomes

F'(3) - lim 
r(x) - F(3)

-r-3 X 3

J
---) nx3

"{
-ocx3

sln r_dt
t

,[-

So what is the function F in our situation? Notice that if we define

- J,-
r(x)



then ll'(3) - 0. What about the factor x in the numerator? That's just a red

herring, so let's factor it out and put together the calculation:

f'r sin /

/ x f* sinr \ / \ .1, , d'

I'g \, - r J, t o'): (lg ") l':l ,r - 3

: 3 lim 
F(x) : r(3)_

x---+3 X 3

- 3F,(3)

sin 3:3_ rtj-l.cll
3

- sin3

Exarnple 2

(a) Prove that it f is a continuous function, then

f(x) dx f(a x) dx

(b) Use part (a) to show that

:l;
J;

P n/2

Jo

for all positive numbers n.

sinox

sinnx + cos "x
dx: +

Solution
(a) At first sight, the given equation may appear somewhat baffling. How is it
possible to connect the left side to the right side? Connections can often be made
through one of the principles of problem solving: Introduce something exta.
Here the extra ingredient is a new variable. We often think of introducing a new
variable when we use the Substitution Rule to integrate a specific function. But
that technique is still useful in the present circumstance in which we have a
general functionf

Once we think of making a substitution, the form of the right side suggests

thatitshouldbeu: a - x.Thendu: -dx. Whenx :0.u: a: when x: a.
a:0.So

f(a x) dx f (u) du f (u) du

But this integral on the right side is just another way of writing I3 t@d.r. So

the given equation is proved.

(b) If we let the given integral be land apply part (a) with a: tr/2, we get

- ,["
f0- J"J;

I: T,"
sinnx P n/2

dx: J,
srn"(nf 2 x)

sin"x + costl-tr srn"(nf 2 .r) + cos "(rr/2 .r)
dx



The computer graphs in Figure I make
it seem plausible that all of the integrals
in Example 2 have the same value. The
graph of each integrand is labeled with
the corresponding value of n.

Figure I

ProbIerns

zr - l""''
Jo

Therefore, / - rrl4.

r" trl7 Tftl-r: t d-r:= ^Ju2

A well-known trigonometric identity tells us that sin(n/Z "r) - cos r and
cos(zrf 2 x) - sin x, so we get

t'nlT

I - J,,

cos "Jr

cos"x + sin"x

Notice that the two expressions for l are very similar. In fact, the integrands
have the same denominator. This suggests that we should add the two expres-
sions. If we do so. we get

dx

sin",T + cos ",{

sin"J + cos "J

EZ l. Three mathematics students have ordered a l4-inch pizza. Instead of slicing it in the
traditional way, they decide to slice it by parallel cuts, as shown in the figure. Being
mathematics majors, they are able to determine where to slice so that each gets the
same amount of oizza. Where are the cuts made?

14 in ---------.1

2, In this problem we approximate the sine function on the interval [0,2] by three
quadratic functions, each of which has the same zeros as the sine function on this
interval.
(a) Find a quadratic function/such that/(0) : f(r): 0 and which has the same

maximum value as sin on [0,rr].
(b) Find a quadratic function g such that S(0) : S@) : 0 and which has the same

rate of change as the sine function at 0 and z'.

(c) Find a quadratic function ll such that h(0) : h(r): 0 and the area under ft
from 0 to z is the same as for the sine function.

EZ (d) Illustrate by graphingl g, h, and the sine function in the same viewing rect-
angle [0,2] bV [0, l]. Identify which graph belongs to each function.

^-23. If xsinzx : l" fttl dr, where/is a continuous function, find/(a).

EY c. fil Graph several members of the family of functions/(x) : (2cx - x')fct for
c ) 0 and look at the regions enclosed by these curves and the x-axis. Make
a conjecture about how the areas of these regions are related.

(b) Prove your conjecture in part (a).

&tw



6.

(c) Take another look at the graphs in part (a) and use them to sketch the curve

traced out by the vertices (highest points) of the family of functions. Can you

guess what kind of curve this is?

(d) Find the equation of the curve you sketched in part (c).

5. Suppose the curve y :. f (x) passes through the origin and the point (1 . l). Find the
value of the integral Ji, f'(x) dx.

A circular disk of radius r is used in an evaporator and is rotated in a vertical plane.

If it is to be partially submerged in the liquid so as to maximize the exposed wetted
area of the disk, show that the center of the disk should be positioned at a height

,l.r[ + nt above the surface of the liquid.

Evaluate lim f {,- (t tanzt)ti't d,t.
-r *0 

'f 
du

l"q(-r) I - , I'co\.(.-
If f(.r) : 1."' t_ r/t. where g(.r) : l^."'. [l + sin(/=)f dt. find f'hlT).Jo Jl + t3 " ''o

Findafunction/Suchthat/(1):-|',f(+)-7,,andf,(*)>
that such a function cannot exist.

10. The figure shows a region consisting of all points inside a square that are closer to
the center than to the sides of the square. Find the area ofthe region.

Find the interval lo,,bf for which the value of the integral f: (2 + .r xz) dx is a
maximum.

Suppose/is continuous,/(0) : 0,/(l) : l,,f'(") > 0, and .|'J /(") dx : {. rind ttre
value of the integrat J,] f -'( y) dy.

d2 f.r / ,',,nt r- \
Find ;, l' I f,-"" tfl + Lt' du l fu.

dX - .f () \.,' /
10000

Use an integral to estimate the sum
r:l

Evaluar" J,l (Yl - tr? - lr - .') a*.

The figure shows a semicircle with radius 1, horizontal diameter PQ., and tangent

lines at P and Q.At what height above the diameter should the horizontal line be

placed so as to minimize the shaded area?

Show that

f' 1-,r'\'dx- ??"(nl)z
.ro (2n + 1)!

Hint: Start by showing that if I, denotes the integral, then

I''*':ffi'r
For any number c, we let /.(;) be the smaller of the two numbers (x c)2 and

(; - c 2)2. Then we define

s(c) - [.' .,f,, 
(x) dx

.10 " '

Find the maximum and minimum values of g(c) if -2 < c { 2.

7.

8.

9.

Figure for Problem lO

P

Figure for Prohlem 16

ll.

12.

13.

14.

15.

16.

17.

0

18.

2

2
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A

A

#,

| . | . These photographs illustrate three uses of integrals

that wte (onsider in this chapter: cak:ulating the forr:e exertecl by

weter on e dant; cleciding w,here to sit in a movie theater;finding
the poirtt where a flat object balanc:es horizontally.

,es€@ ry *r * In this chapter we explore some of the applications of

the definite integral by using it to compute areas between

curves, volumes of solids, lengths of curves, the average value

of a function, the work done by a varying force, the center

of gravity of a plate, the force on a dam, as well as quantities

of interest in biology, economics, and statistics. The common

theme in most of these applications is the following general

method, which is similar to the one we used to find areas

under curves. We break up a quantity Q into a large number

of small parts. We then approximate each small part by a

quantity of the form f (xf) Lx and thus approximate Qby a

Riemann sum. Then we take the limit and express Q as an

integral. Finally we evaluate the integral by using the Evalua-

tion Theorem or Simpson's Rule.
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FIGURE I

S : {(r, l') la € x { b, g(tx) < }' < /(x)}

CHAPTER 6 APPLICATIONS OT IilTTGRATIOil

More about Areas

In Chapter 5 we defined and calculated areas ofregions that lie under the graphs of
functions. Here we use integrals to find areas of more general regions. First we

consider regions that lie between the graphs of two functions. Then we look at

regions enclosed by parametric curves.

H Areas between Curves

- Consider the region S that lies between two curves y : f(x) and y : g(x) and

between the vertical lines .r : a and x : b, where/and g are continuous functions
andf(x) > SG) for all.r inla,bf (see Figure 1).

Just as we did for areas under curves in Section 5.1, we divide S into n strips of
equal width and then we approximate the ith strip by a rectangle with base Ax and

height 7@!) - g(r,t). (See Figure 2. lf we like, we could take all of the sample
points to be right endpoints, in which case x,r : ri). The Riemann sum

;/(x,r) g(xf )l ax

is therefore an approximation to what we intuitively think of as the area of ,S.

r(,1) r('{1) - s(*l),t

0l a

--1-*

-l -l
l--- -/L/\ h 't

Ax

t1

T
,{-./
i: I

-s('l)
*ri

FIGURE 2 (a) Typical rectangle

This approximation appears to become
we define the area A of S as the limiting
approximating rectangles.

A: lim
n - ='a;

rT

TZ-/
i: I

17(x,*) s(x,r)l A"

We recognize the limit in (1) as the definite integral of/ g. Therefore:

(b) Approximating rectangles

better and better as n -+ oc. Therefore,
value of the sum of the areas of these

tr

) - f(r)

)' - g(r)

I

I

I
I

I

I

I

I

I
7

pfl
I

I

I

I

0l a
I
I

I

I
Ir h

E The area A of the region bounded by the curves y - ,f(x), _l' - g(x)'
and the lines J - a, x - b, where f and g are continuous and /(x) >-- g(x)
for all x in [a, b], is

A: Jl t re) sl)ldx



- )': f(x)/-1 r\/
5

y - s(x)

SECTION 6.I I'IORT ABOUT AREAS 449

Notice that in the special case where sG) : 0, s is the region under the graph of
/and our general definition of area (l) reduces to our previous definition (Defini-
tion 4 in Section 5.1).

In the case where both/andg are positive, you can see from Figure 3 why (2)
is true:

A- [area

fb
J"

[area under

I! rndx

) - f(x))

lnb

"1,, 
g(x) d rFIGURE 3

o-fn fgtdx- lirt'ta*

EXAMPLE I I Find the area of the region bounded above by y : e', bounded
below by y : x,and bounded on the sides by x : 0 andr : l.

S0IUTION The region is shown in Figure 4. The upper boundary curve is y : 
"'and the lower boundary curve is y : x. so we use the area formula (2) with

f(x) : "., 
g(*) : x, e: 0, and b : 1:

(e' .r) dx - et

| - e 1.5

In Figure 4 we drew a typical approximating rectangle with width Ax as a
reminder of the procedure by which the area is defined in (l). In general, when we
set up an integral for an area, it is helpful to sketch the region to identify the top
curve yr, the bottom curve yB, and a typical approximating rectangle as in
Figure 5. Then the area of a typical rectangle is (y. - yilLx and the equation

i "'lJ
A: 

J;'

ilI

-e i

I'o
.ln

,t

i:l

FIGURE 4

FIGURE 5

A: lim
n -t:f

( yr - )'r) ax (y. - yil dx

summarizes the procedure of adding (in a limiting sense) the areas of all the typi-
cal rectangles.

Notice that in Figure 5 the left-hand boundary reduces to a point, whereas in
Figure 3 the right-hand boundary reduces to a point. In the next example both of
the side boundaries reduce to a point, so the first step is to find a and b.

EXAMPIE 2 I Find the area of the region enclosed by the parabolas y : x2 and
y :2x - x2.

$#t[,$T$#ru We first find the points of intersection of the parabolas by solving
their equations simultaneously. This gives x2 - 2x J2, or 2x2: 2x. Thus,
x(x 1) - 0, so -r - 0 or l. The points of intersection are (0,0) and (1,1).

We see from Figure 6 that the top and bottom boundaries are

)'r : 2-r .tr:

The area of a typical rectangle is

-.2Ja - -L

-}r: 2-r - x?

FIGURE 6 ( y, - 1u") Ax - (2x x2 x2) Ar
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and the region lies between x - 0 and x - l. So the total area is

A- J;' (zx zxz) dx : , [r' (x x2) dx

[.r rrr / I l\ Izt rl :?( - l--12 3Jn -\2 3/ 3

This looks like a very difficult equation to solve exactly (in fact, it's impossible),

so instead we use a graphing device to draw the graphs of the two curves in

Figure 7. One intersection point is the origin. We zoom in toward the other point

of intersection and find that x : 1.18. (If greater accuracy is required, we could

use Newton's method or a root-finder, if available on our graphing device.) Thus,

an approximation to the area between the curves is

^,," F I
,q - | " l-+: - (ro - ila*Jo Lr/x'+ I I

To integrate the first term we use the substitution u: x'* 1. Then du:2xdx,
and when x : 1.18, we have u - 2.39. So

o:+f"n+- L"',"0 -x)dx
.) | t/U

-12.3s f "t "' l' 't,,/ult -l?- )l'Jo

: Jns _ , _ gS .,tg: 0.785 r
EXAMPLE 4 r Figure 8 shows velocity curves for two cars, A and B, that start

side by side and move along the same road. What does the area between the

curves represent? Use Simpson's Rule to estimate it.

SoLUTION We know from Section 5.3 that the area under the velocity curve A

represents the distance traveled by car A during the first 16 seconds. Similarly,

the area under curve B is the distance traveled by car B during that time period.

So the area between these curves, which is the difference of the areas under the

curves, is the distance between the cars after 16 seconds. We read the velocities

from the graph and convert them to feet per second (l mi/h : *'233 ftft)'

#

Sometimes it is difficult, or even impossible, to find the points of intersection

of two curves exactly. As shown in the following example, we can use a graphing

calculator or computer to find approximate values for the intersection points and

then proceed as before.

Ei rxluplr 3 r Find the approximatearea of the region bounded by the curves

y:*/G+t andy: xo-x.
9OLIJTION If we were to try to find the exact intersection points, we would have

to solve the equation

,F+ t

4:xx

FIGURE 7

60

50

40

30

20

l0

FIGURE 8
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distance

ft6
J,, (u u

:
iro + 4(13) + 2(20) + 4(23) +

367 ft

SECTION 6.I I'IORT AEOUT AREAS 451

2(2s) +4(28)+2(2e) + 4(2e) +301

I

Simpson's Rule with n : 8 intervals, so that Ar - 2, we estimate the
between the cars after 16 seconds:

ail dt

Some
bounded
and g are

regarding
: f(y),x
)forc<y

regions are best treated by
by curves with equations r
continuous and/( y) > g(y

A- f"

r as a function of _y. If a region is

- g(y), y - c, and y : d, where f

t /( y) s( y)l dy

FIGURE 9 FIGURE IO

If we write .rn for the right boundary and -r1 for the left boundary, then, as Fig-
ure 10 illustrates, we have

(t* x) dy

Here a typical approximating rectangle has dimensiors,rn - xyand Ly.

EXAMPLE 5 r Find the area enclosed by the liney : x - I and the parabola
Y2 :2x + 6.

soluTlol'l By solving the two equations we find that the points of intersection
are (- l, -2) and (5, a). We solve the equation of the parabola for _r and notice
from Figure ll that the left and right boundary curves are

A: t:

t 0 2 ,+ 6 tt I0 ll l-1 l6

U.,1 0 3-+ 5-t 67 76 rJ4 t{ c) r)2 e5

utt 0 2r 34 -1-t 5l 56 60 63 65

U1 Ur 0 l3 l0 33 l5 2rt 2L) l9 0

FIGURE I I xL: iy' 3 Jfi:y+l
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We must integrate between the appropriatey-values, y: -2 andy: 4. Thus

(x^ x) dy

s) :19

We could have found the area in Example 5 by integrating with respect to .I

instead of y, but the calculation is much more involved. It would have meant split-

ting the region in two and computing the areas labeled Ar and 42 in Figure 12. The

method we used in Example 5 is much easier.

Areas Enclosed by Parametric Curves

We know that the area under a curve y: f(x) from a to b is A: I: F\x)dx,

where F("r) > 0. If the curve is given by the parametric equations x : f(t) and

y : S(t), d < I < B, then we can calculate an area by using the Substitution Rule

for Definite Integrals as follows:

A : 
L',,' Y clx : 

.,f ,:

EXAMPLE 6 I Find the area under one arch of the cycloid

x - r(0 sin 0) 'ltr - r(l cos 0)

(See Figure 13.)

SOLUTfON One arch of the cycloid is given by 0 < 0 < 2tr. Using the Substitu-

tion Rule with v : r(l - cosO) and dx : r(l - cos9) d9,we have

A : J;:"' y dx :- f" r(r cos o)r(I - cos o) do

: rt {t' (l cos0)2 d0- 12 J,:" 
(l 2 cos0 + cos2 il d0

: rt J," [l 2cosg + iCr + cos2g))ao

A: f,

:f,t- iv'+v+ +)dv

:-lfI)+r:+0,,-loz\3I 2 "l_,
: -*to+) + 8 + t6 (i + 2 ffi

FIGURE I2

The limits of integration for t are found

as usual with the Substitution Rule.

When x : a, I is either a or B. When

-\ : b, t is the remaining value.

FIGURE I3

The result of Example 6 says that the
area under one arch of the cycloid is

three times the area of the rolling circle

that generates the cycloid (see Example 6

in Section 1.4). Galileo guessed this result

but it was first proved by the French

mathematician Roberval and the ltalian

mathematician Torricelli.

g(t)f '(r) dr 
[", I, n|)f'(r) d,]

: ,'lle 2sino + | sin 20)1"

- ,'(1 . zn) : 3rrz

EXAMPLET I Estimatethe
metric equations

1x:t-+t

area enclosed by the loop of the curve with para-

+l Y:3ta 8r3 1812+25

I

)'- V2x * 6

r
ru

-1/2;+6)':

(-1, -2;

ffi
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FIGURE I4
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SOLUTION The curve is shown in Figure 14. (We graphed it in Example 6 in
Section 4.4.) To find the loop we need to know the parameter values that corre-
spond to the rightmost point P on the loop, where the curve crosses itself.
zooming in toward P and using the cursor, we find that its coordinates are
approximately Q.a97,22.2).The corresponding parameter values are the solu-
tions of the equation

x(t):t2+r+1:1.491

The quadratic formula gives / : -1.36 and 0.36. The leftmost point e, where
the tangent is vertical, corresponds to the parameter value / : -0.-5.

we find the area of the loop by subtracting the area under the bottom part of
the loop from the area under the top part of the loop. so the approximate area of
the loop is

A : J'i': (3r" 8rr l8r2 + zs) (zt + t) rtr

1" - I ..16

J_,, , (3r' 8r3 1gr2 + 25) (2r + t) ctr

Combining these two integrals, we get

f 0.36
A --: 

J_, .o 
(3ro 8rr lSrr + 25) (2t + l) tlt : 3.6

EXefCiSeS r . . . . . | . | . . | | r , . . . . r . . . . r . . . . . .

a-4 I Find the area of the shaded resion.

*'

2.

5-16 r Sketch the region enclosed by the given curves.
Decide whether to integrate with respect to x or'\r. Draw
a typical approximating rectangle and label its height ancl
width. Then find the area of the resion.

5.):-f,, .)o:J2

6. .)' - l/x, -), - ll*t, r : l. .r : 2

7. ), : g't, -), 
: g-t-t, J : I

8.y_ x2

+3

?

-I- : J

), : J2

")

J-

ll. .)'2 : X, J

12. J + yt: 2,

)':1-x2
2r--3
-r*)'-0

13..r-1-.)ot, J-)'2 I

14. _)'-cos,y, y-sec2,t, J- -rr/1, J- Tr/4

f 5. .)' : x2, y : 2/(x2 + l)
f6.- -l/x, fr'-0, .y':1, 1'-2
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EE l7-20 I Use a graph to find approximate x-coordinates
of the points of intersection of the given curves. Then find
(approximately) the area of the region enclosed by the

curves.

17. !: x2, -y:2cosx
18. -y 

: xo - l, .y : x sin(x')
| 9' )' : -tr2, y : Xe-'r/z

20' )': x'_ 5, )t:lnr

21. Racing cars driven by Chris and Kelly are side by side

at the start of a race. The table shows the velocities of
each car (in rniles per hour) during the first ten seconds

of the race. Use Simpson's Rule to estimate how much

farther Kelly travels than Chris does during the first ten

sec onds.

I Ltr lrn

h

l
l{

I
l0

6tJ

75

til
t{6
r)( )

l{0

li fr

e3

9t{

I0l

22. Two cars, A and B, start side by side and accelerate

from rest. The figure shows the graphs of their velocity

f unction s.

(a) Which car is ahead aftcr one minute? Explain.
(b) What is the tneaning of the area of the shaded

reg ion?
(c) Which car is ahead after two minutes? Explain.
(d) Estimate the time at which the cars are again side

bv side.

73. The widths (in rneters) of a kidney-shaped swimming
pool were measured at 2-meter intervals as indicated in

the figure. use Simpson's Rule to estimate the area of
the pool.

24. The figure shows graphs of the marginal revenue func-

tion R' and the marginal cost function C' for a manu-

facturer. [Recall from Section 4] that R(x) and C(*)
represent the revenue and cost when J units are manu-

factured. Assume that R and C are measured in thou-

sands of dollars.l What is the meaning of the area of the

shaded region? Use the Midpoint Rule to estimate the

value of this quantity.

25. Sketch the region that lies between the curves.y: cos.r

and y : sin 2; and between ,t : 0 and J : rr/2. Notice

that the region consists of two separate parts. Find the

area of this region.

E[zt. Graph the curves ),' - xt * x and ) : .trr 4x2 + 3x

on a common screen and observe that the region

between them consists of two parts. Find the area of
this region.

27. Use the parametric equations of an ellipse, J - (t cos 9,

), : b sin 0, 0 < 0 < 2rr, to find the area that it
enclo se s .

EE Zg. Graph the parametric curve,Y : / - llt, .r'- t + Ut.
Fincl the area enclosed between this curve and the line
y : 2.5.

EIE 29. Graph the region bounded by the curve x : cos /,

]n: er,O < /< rrl2, andthelinesy: I andx-0.
Set up an integral that represents the area of this region.

Then use a computer algebra system to evaluate the

integral.

EIE 30. Graph the astroid x - gcost 0, y : a sin'10 and set up

an integral for the area that it encloses. Then use a com-

puter algebra system to evaluate the integral.

31. Find the area enclosecl by the loop of the curve with
parametric equations J : t2, )': 13 3t.

Ellt.Estimate the area of the region enclosed by the loop of
the curve -r : t3 12t,, y - 3t? + 2t + 5.

33. Find the values of c such that the area of the region

enclosecl by the parabolas.)': xt - c2 and.I : c2 xt
is 516.

I L t

0

I

;
-')

I

-+

i
I

o

l0
a1
-t_

-+6

-i.+

hl

o

tl
37

5l
6l
7l

s.o 5'o +.a6.8-r | 'i"+.s
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34. Find the area of the region bounded by the

.y : x2, the tangent line to this parabola at
x-ax is.

35. Find the number b such that the line y - b
region bounded by the curves y - .r2 and v
two regions with equal area.

36. (a) Find the number a such that the line x
the area under the curve y - l/*', I <

(b) Find the number b such thar the line v
the area in part (a).

37. Find a positive continuous function / such that the
area under the graph of/from 0 to r is A(r) - 13 for
allr>0.

38. Suppose that 0 < c ( n/2.For what value of c is the
area of the region enclosed by the curves y - cos r,
y - cos(x c), and x - 0 equal to the area of the
region enclosed by the curves y - cos(x c), x: T,
andy:0?

39. For what values of m do the line .)' : mx and the curve
.)'- x/(xz + l) enclose a region? Find the area of the
region.

parabola
( I , l), and the

divides the

- 4 into

: ct bisects

x{4.
- b bisects

(a) Cylinder
V: Ah

(b) Circular cylinder
V - rrr2h

Volumes

In trying to find the volume of a solid we face the same type of problem as in find-
ing areas. we have an intuitive idea of what volume means, but we must make this
idea precise by using calculus to give an exact definition of volume.

We start with a simple type of solid called a cylinder (or, more precisely, a right
cylinder). As illustrated in Figure 1(a), a cylinder is bounded by a plane region 81,
called the base, and a congruent region 82ina parallel plane. The cylinder con-
sists of all points on line segments perpendicularto the base that join 81 to Bz. lf
the area of the base is A and the height of the cylinder (the distance from .8, to Br)
is ft, then the volume V of the cylinder is defined as

V:Ah

In particular, if the base is a circle with radius r, then the cylinder is a circular cyl-
inder with volume V : rrr2h [see Figure l(b)], and if the base is a rectangle with
length I and width w, then the cylinder is a rectangular box (also called a rectangu-
lar parallelepiped) with volume V : lwh [see Figure l(c)].

Now let S be any solid. The intersection
is called a cross-section of .S. Let A(x) be
plane P* perpendicular to the x-axis and

(c) Rectangular box
V: lwh

of S with a plane is a plane region that
the area of the cross-section of ,S in a

passing through the point x, where

FIGURE I
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a

ing the area of this slice.)
from a to b.

Think of slicing S with a
The cross-sectional area

knife through x and comput-
A(x) will vary as -r increases

FIGURE 2

*,1,',n \,

Let's divide S into n "slabs" of equal width Ax by using the planes P'r, P,r, ...
to slice the solid. (Think of slicing a loaf of bread.) If we choose sample points xf
in [;rr-r,xi], we can approximate the ith slab Si (the part of S that lies between the

planes &, , and P,,) by a cylinder with base area A(x!) and height Ax (see

Figure 3).

The volume of this cylinder is A(xf) Ax, so an

conception of the volume of the ith slab Si is
approximation to our intuitive

V(Si) : A(xf) Ax

FIGURE 3

Adding the volumes of these slabs, we

(that is, what we think of intuitively as

get an approximation to the total volume

the volume):

A(xf ) AxV:j
i: I

This approximation appears to become better and better as n ---> @. (Think of the

slices as becoming thinner and thinner.) Therefore, we define the volume as the

limit of these sums as t? --+ oo. But we recognize the limit of Riemann sums as a

definite integral and so we have the following definition.
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When we use the volume formula V : l: A(x) dx it is important to remember
that A(.r) is the area of a moving cross-section obtained by slicing through .r per-
pendicular to the r-axis.

EXAMPLE I r Show that the volume of a sphere of radius r is

Y : lrrr'
SOLUTIO|I If we place the sphere so that its center is at the origin (see Figure 4),
then the plane P, intersects the sphere in a circle whose radius (from the Pythag-
orean Theorem) is y : t/r'- x2. So the cross-sectional area is

r, we have

+)

Figure 5 illustrates the definition of volume when the solid is a sphere with
radius r : l. From the result of Example l, we know that the volume of the sphere
is \n - 4.18879. Here the slabs are circular cylinders and the three parts of

(b) Using l0 cylinders, Y - /,.2097

of a sphere with radius I

A(x)-rry?:rr(r?_ x')

Using the definition of volume with a - - r and b -

v - I_, o(x) dx: I:, n?2 - x\ dx

: zn[,t' x\dx

: znlr'* +l: : ,r(r'
41: TTfr- il

FIGURE 4

(a) Using 5 cylinders, V : 4.2726

FIGURE 5 Approximating the volume

Definition of Volume Let S be a solidthat lies betweenx- a andx- h.
If the cross-sectional area of ,S in the plane &, through .r and perpendi-
cular to the -r-axis, is A(x), where A is a continuous function, then the
volume of S is

V-lim
ll --+e

:I:
i: I

A(xI) Ax A(x) dx

(c) Usin g 20 cylinders, V : 4.1940
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Did we get a reasonable answer in

Example 2? As a check on our work,
let's replace the given region by " rect-
angle with base [0, 2] and height 8. lf we

rotate this rectangle, we get a cylinder
with radius 2, height 8, and volume
r ' ?2 ' 8 : 3?r. We computed that the
given solid has a little more than half this

volume (19.2n). That seems about right.

Figure 5 show the geometric interpretations of the Riemann sums

A(xr) Ax n(12 - t,3) Ax

when n : 5, 10, and2O if we choose the sample points x,r to be the midpoints i;.
Notice that as we increase the number of approximating cylinders, the correspond-
ing Riemann sums become closer to the true volume.

EXAMPLE 2 r Find the volume of the solid obtained by rotating the region
bounded by y : x3, ! : 8, and .r : 0 about the y-axis.

SOtUTlOtl The region is shown in Figure 6(a) and the resulting solid is shown in
Figure 6(b). Because the region is rotated about the y-axis, it makes sense to
slice the solid perpendicular to the_y-axis. If we slice at height y, we get a circu-
lar disk with radius r, where x : Xy. So the area of a cross-section through

vis

A(y) - nx?- ,GF )t : ny4t

and the volume of the approximating cylinder pictured in Figure 6(b) is

e(Y) AY : nYut LY

Since the solid lies between y - 0 and y : 8, its volume is

: t[i]v']8 96n

i
t:l

n\L
i: I

v - f a(fldy: J: nr-'t'dy

ffi

EXAMPLE3I Theregion
about the x-axis. Find the

SOLUTION The curves y -
The region between them,

9t enclosed by the curves y - x and y - x2 is rotated
volume of the resulting solid.

x and y - x? intersect at the points (0,0) and (1,1).

the solid of rotation, and a cross-section perpendicular

FIGURE 6
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(1, I )

'y:x?

EI.

(0, 0)

(a) (b) (c)

to the .r-axis are shown in Figure 7. A cross-section in the plane & has the shape
of an annulus (a ring) with inner radius .r2 and outer radius .r, so the cross-
sectional area is

A(x) : nxz nU')' : n(x' xo)

Therefore, we have

FIGURE 7

x4) dx

EXAMPLE

Example

s*LuTf ffiru

section is

is2 x'

4 r Find the volume of the solid obtained bv
3 about the line y - 2.

ffi

rotating the region in

The solid and a cross-section are shown in Figure 8. Again a cross-
an annulus, but this time the inner radius is 2 x and the outer radius

. The cross-sectional area is

A(x)

FIGURE 8
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(a) The solid

(b) Its base

vv
(c) A cross-section

FIGURE 9

and so the volume of S rs

v -.,[' A(x) dx - n 
Iu' lQ x')' (z x)2ldx

("0 5x? + 4x) dx
'['

ffi
+ 

^tli,,
:"[+ Ix-5_

J.,

J

8rr

15

EXAMPLE 5 r A solid has a circular base of radius l. Parallel cross-sections

perpendicular to the base are equilateral triangles. Find the volume of the solid.

soLUTloN Let's take the circle to be x2 * y' :1, The solid, its base, and a

typical cross-section at a distance x from the origin are shown in Figure 9.

Since B lies on the circle, we have y : "rfr -T and so the base of the triangle

ABC is I enl : 2$ - 7' Since the triangle is equilateral, we see from
Figure 9(c) that its height it ../3 y : J, JT -7. The cross-sectional area is

therefore

A(x) : zffi.6[_ f :,/To x,)

and the volume of the solid is

A(x) dx _ ,E o xz) dx

fl: z )n Ji rr - x') dx : ,JTl,- +l' : +L 31. : *
EXAMPLE 6 r Find the volume of a pyramid whose base is a square with side L
and whose height is lr.

SoLuTfoN We place the origin O at the vertex of the pyramid and the x-axis
along its central axis as in Figure 10. Any plane P, that passes through x and is

perpendicular to the x-axis intersects the pyramid in a square with side of length

s, say. We can express s in terms of x by observing from the similar triangles in
Figure 1l that

v-1, f,

* __s/2 _t
hL/2L

B(x, y)

FIGURE IO FIGURE I I
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and so .s - Lx lh. [Another method is to observe that the line OP has slope
L/(2h) and so its equation is y == LxlQh).1 Thus, the cross-sectional area is

A(x) - s' - 4*t/ 
hl

The pyramid lies between x - 0 and x - h, so its volume is

L7-
^ J'dx

h"
v -.1;,'o(r) dx - J;,'

L2 tt l' L2h

hz 3 J. 3 ffi

NOTE . It was unnecessary to place the vertex of the pyramid at the origin in
Example 6. We did so merely to make the equations simple. If, instead, we had
placed the center of the base at the origin and the vertex on the positive y-axis, as
in Figure 12,you can verify that we would have obtained the integral

L7h
.t
J

EXAMPLE 7 r Find the volume of the solid obtained by rotating about the y-axis
the region bounded by the curve ! : 2x2 - x3 and the x-axis.

S0LUTION The region is shown in Figure 13. If we try to find the volume using
the method of Example 2, then we run into a severe problem. To compute the
inner radius and the outer radius of a cross-section, we would have to solve the
cubic equation! : 2x2 - x3 for.r in terms of y; that's not easy.

Instead of slicing, we use a different method, called cylindrical shells, to
solve this problem. Figure 14 shows a typical approximating rectangle with
width Ax. If we rotate this rectangle about the y-axis, we get a cylindrical shell
whose average radius is i;, the midpoint of the ith subinterval.

-?_J;

Trri, Ax

FfGURE | 4 A cvlindrical shell FIGU RE | 5 The flattened shell

Imagine this shell to be cut and flattened, as in Figure 15. The resulting
rectangular slab has dimensions 2ni;, A,x, and 2i? - 7,1, so the volume of the
shell is

v-L#* n,dy

FIGURE I2

FIGURE I3

#:
f-:

V:',LTi
F:il

t$i

!:2r2 - ',3

ZniiQi? t") Ax
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If we do this for every subinterval and then add the results, we get an approxi-
mation to the volume of the solid:

r/ : u 2niiQi?

This approximation improves as n increases, so it

t,3) Ax

seems plausible that

Notice from Figure 14 that we obtain all

shells if we let x increase from 0 to 2.

It can be verified

Figure 16 shows a computer-generated
picture of the solid whose volume we

computed in Example 7.

l-10 I Find the volume of the solid obtained by rotating
the region bounded by the given curves about the specified
axis. Sketch the region, the solid, and a typical approxi-
mating cylinder.

l. !: x2, x:1, ) : 0; about the x-axis

2. ! : e.',.), : 0, x : 0, x: l; about the x-axis

3. !:x2,y-4, r:0, x-2; aboutthey-axis

4. x - y !', x - 0; about they-axis

5. ! : x2, Y' : x; about the x-axis

6. y : cosJ, .y : sinx, r : 0, x : n/4; about the x-axis

7. y2 : x, * : 2y; about the y-axis

@ 8. !:e', y-1, x: l; aboutthey-axis

g.y:x4,):l; abouty- 2

slicing. t

I | . The region enclosed by the curves -r - 4y and y - :[x
in the first quadrant is rotated about the line x - 8.

Find the volume of the resulting solid.

12. Find the volume of the solid obtained by rotating the
region in Exercise 1l about the line y - 2.

@ l3-14 r Use a graph to find approximate x-coordinates of
the points of intersection of the given curves. Then find
(approximately) the volume of the solid obtained by rotating
about the x-axis the region bounded by these curves.

f3.!:x2, y:ln(,r+l)
14. .y : 3sin(x2), y : €xlz + e-'''

| 5. A CAT scan produces equally spaced cross-sectional
views of a human organ that provide information about

v : lT: : 2niiQi? t,') Ax

fZ . ^ ., 1"2 1

- ), znx(2xz - x3) dx : 2, ), (2*t xo) dx

: znli*o l"l3 : 2n(8 ?) - En
that the method of shells gives the same answer as

FIGURE I6

Exercises

f0. !:x,.I:0, x-2,x-4; aboutx- I



the organ otherwise obtained only by surgery. Suppose

that a CAT scan of a human liver shows cross-sections
spaced 1.5 cm apart. The liver is 15 cm long and the

cross-sectional areas, in square centimeters, are 0, 18,

58,,79,94,106, ll7, 128,63, 39, and 0. Use Simpson's
Rule to estimate the volume of the liver.

A log l0 m long is cut at l-meter intervals and its cross-
sectional areas A (at a distance x from the end of the

lng) are listed in the table. Use the Midpoint Rule with
n - 5 to estimate the volume of the log.
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22.

A pyramid with height h and rectangular base with
dimensions b and 2b

A pyramid with height h and base an equilateral tri-
angle with side a (a tetrahedron)

23. A tetrahedron with three mutually perpendicular faces

and three mutually perpendicular edges with lengths
3 cm, 4 cm, and 5 cm

24. The base of S is a circular disk with radius r. Parallel
cross-sections perpendicular to the base are squares.

25. The base of 
^S 

is an elliptical region with boundary
curve 9x2 + 4y' - 36. Cross-sections perpendicular to
the x-axis are isosceles right triangles with hypotenuse
in the base.

26. The base of S is the parabolic region

{(r, y) | "n = .y < 1}. Cross-sections perpendicular to
the y-axis are equilateral triangles.

27. S has the same base as in Exercise 26, but cross-
sections perpendicular to the y-axis are squares.

28. The base of S is the triangular region with vertices
(0,0) , (2,0), and (0, 1). Cross-sections perpendicular to
the x-axis are semicircles.

29. S has the same base as in Exercise 28, but cross-
sections perpendicular to the x-axis are isosceles tri-
angles with height equal to the base.

30. The base of S is a circular disk with radius r. Parallel
cross-sections perpendicular to the base are isosceles

triangles with height /r and unequal side in the base.
(a) Set up an integral for the volume of S.

(b) By interpreting the integral as an area, find the

volume of S.

3 | . (a) Set up an integral for the volume of a solid torus
(the donut-shaped solid shown in the figure) with
radii r and R.

(b) By interpreting the integral as an area, find the
volume of the torus.

21.

t6.

\ (rrr ) ,.1 (nr )

0

I

l
-l

-1

5

). (r fi

).(r5

). (r-tr

).6 l

).5 ti

).5q

I (rl 
) I ( ttr )

6

l
ti

9

l0

0.5-i

0. -)5

0.52

0.5 0

0.+ti

17-29 I Find the volume of the described solid S.

17 . A right circular cone with height h and base radius r

18. A frustum of a right circular cone with height ft,
lower base radius R, and top radius r

19. A cap of a sphere with radius r and height /z

20.

-T-
I

I

I

h

Y

A frustum
square top

of a pyramid with square base of side b,

of side A, and height ft



32.

33.

C}IAPTER 6 APPLICATIOITIS OI IilTEGRATION

A wedge is cut out of a circular cylinder of radius 4 by
two planes. One plane is perpendicular to the axis of the
cylinder. The other intersects the first at an angle of 30'
along a diameter of the cylinder. Find the volume of the
wedge.

(a) Cavalieri's Principle states that if a family of paral-
lel planes gives equal cross-sectional areas for two
solids Sr and 52, then the volumes of St and Sr are

equal. Prove this principle.
(b) Use Cavalieri's Principle to find the volume of the

oblique cylinder shown in the figure.

bowl and water is poured into the bowl to a depth of
/r centimeters. Find the volume of water in the bowl.

37. A hole of radius r is bored through a cylinder of radius
R > r at right angles to the axis of the cylinder. Set up,
but do not evaluate, &r integral for the volume cut out.

38. A hole of radius r is bored through the center of a

sphere of radius R ) r. Find the volume of the remain-
ing portion of the sphere.

39. Let S be the solid obtained by rotating about the l'-axis
the region bounded by )' - x(x - 1)2 and y - 0.
Explain why it is awkward to use slicing to find the
volume V of S. Then find V using cylindrical shells.

40. Let V be the volume of the solid obtained by rotating
about the y-axis the region bounded by )' : r and

-)' - xt. Find y both by slicing and by cylindrical shells.
In both cases draw a diagram to explain your method.

41. Use cylindrical shells to find the volume of the solid
obtained by rotating the region bounded by )' - ,t - x'
and J' - 0 about the line r - 2. Sketch the region and a

typical shell. Explain why this method is preferable to
slicing.

42. Suppose you make napkin rings by drilling holes with
different diameters through two wooclen balls (which
also have different diameters). You discover that both
rings have the same height /2, as shown in the figure.
(a) Guess which ring has more wood in it.
(b) Check your guess: Use cylindrical shells to compute

the volume of a napkin ring created by drilling a

hole with radius r through the center of a sphere of
radius ft and express the answer in terms of /2.

-r
I

I

h

t4. Find
with
right

the volume common to two circular cylinders, each
radius r,, rf the axes of the cylinders intersect at

angles.

35. Find the volume common to two spheres, each with
radius r, if the center of each sphere lies on the surface
of the other sphere.

36. A bowl is shaped like a hemisphere with diameter
30 cm. A ball with diameter 10 cm is placed in the

T
I

h

Arc Length

What do we mean by the length of a curve? We might think of fitting a piece of
string to the curve in Figure I and then measuring the string against a ruler. But
that might be difficult to do with much accuracy if we have a complicated curve.

It's easy to find the length of a polygon; we just add the lengths of the line seg-

ments that form the polygon. We are going to define the length of a curve by first
approximating it by a polygon and then taking a limit. This process is familiar for
the case of a circle, where the circumference is the limit of lengths of inscribed
polygons (see Figure 2).FIGURE I
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Suppose that a curve C is described by the parametric equations

x:f(t) y:sU) a<t<b
Let's assume that C is smooth in the sense that the derivatives/'(r) and g'(t) are
continuous and not simultaneously zero for a 1 t < b. (This ensures that C has no
sudden change in direction.) We divide the parameter interval [a, b] into z sub-
intervals of equal width At. lf to, tr, tz, . . . , tn are the endpoints of these subinter-
vals, then n: f(t) and y; : g(t) are the coordinates of points P,(x,,y,) that lie
on C and the polygon with vertices Po, Pt, ..., Pn approximates C (see Figure 3).
The length L of C is approximately the length of this polygon and the approxima-
tion gets better as we let n increase (see Figure 4). Therefore, we define the length
of C to be the limit of the lengths of these inscribed polygons:

L : lim 2lp,-,p,|
n-6 i-l

Notice that the procedure for defining arc length is very similar to the proce-
dure we used for defining area and volume. We divided the curve into a large num-
ber of small parts. We then found the approximate lengths of the small parts and
added them. Finally, we took the limit as n---> @.

For computational purposes we need a more convenient expression for l. If we
let Axi : xi -r;-y ard Ly,: y, - !i-t, then the length of the ith line segment of
the polygon is

lP, ,P,l : /axJt+llrL),
But from the definition of a derivative we know that

f '(r,) : 1"'
Ar

small. (We could have used any sample point

FIGURE 3

P,_,

P,*,

P,:,

P,_,

FIGURE 4

in place of /,.) Therefore

Axr : f'(tr) Ar Ay, : g'(t) Lt

l P,-r Pil 

: 
J

,ll f' (t,)l' + ls' (t,)l' Ar

tr

sum for the functio" tl and so our argument

tfif Ar is

and so

Thus

This is a Riemann
suggests that

L-i
i: I

L: T: at
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In fact, our reasoning
we rule out situations

can be made precise; this formula is correct, provided that
where a portion of the curve is traced out more than once.

EXAMPLE I r Find the length of the arc of the curve x
between the points (1, 1) and (4,8) (see Figure 5).

$OLUTION First we notice from the equations x - tz and
of the curve between (1,1) and (4,8) corresponds to the
1<t

- t2, y _ 13 that lies

y : 13 that the portion
parameter interval

L- l,'

I,'

(#)'*(*)'
FIGURE 5

As a check on our answer to Example l,

notice from Figure 5 that it ought to be

slightly larger than the distance from (l,l)
to (4, 8), which is

/58 : 7.6rs773
According to our calculation in Example l,

we have

L - *(so/to - nJn) - 7.6t370s

Sure enough, this is a bit greater than
the length of the line segment.

,/+r, + gto at: L' ,tM dt

If we substitute u- 4 + 9t', then d,u - l8t dt. When r - l, u- 13; when
t-2,u:40.Therefore

,E a": I
18

L_*l,i'

- +rf4ott, t3t/r)-

If we are given a curve with equation y -
-r as a parameter. Then parametric equations
becomes

tr"t''l1i

#(sofro :nrE ) re

f (x), a
are.r - x, ! : f(x), and Formula 1

E

E

L: T: ffi0.
Similarly, if a curve has the equation x : f(y), o < y s b, we regard y as the

parameter and the length is

Because of the presence of the square root sign in Formulas 1,2, and 3, the cal-
culation of an arc length often leads to an integral that is very difficult or even

impossible to evaluate explicitly. Thus, we often have to be content with finding an

approximation to the length of a curve as in the following example.

tr nrc Length Formula If a

x - f (t), .) : g(t), a
a to b, then its length is

smooth curve with parametric equations
b, is traversed exactly once as r increases from

L- I: (#)'*(#)' dt

L- I:
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EXAMPLE 2 I Estimate the length of the portion of the hyperbola xy : I
the point (1, 1) to the point (2,+).

SOLUTION We have

ldyl :Yxdxx'

and so, from Formula 2, the length is

467

from

L:l'ffin.:!,'
It is impossible to evaluate this integral exactly, so let's use Simprq4's Rule (see

Section 5.8) with a : l, b : 2, n : lO,Ax : 0.1, and/(x) :'/t + l/x4. Thus

F2r:1./t* ^a,.tt y .I

- Ttl(r) + 4f(1.D + 2f(r.2) + 4f(r.3) + ... + 2f(1.8) + 4f(r.s) + f(2)lJ

- l.l32l

Checking the value of the definite integral with a more accurate approximation
produced by a computer algebra system, we see that the approximation using
Simpson's Rule is accurate to four decimal places. I
EXAMPLE 3 r Find the length of the arc of the parabola y2 : .r from (0,0)
to (1,1).

SOLUTfOil Since.r : y2, wehave dxfdy : 2y, and, Formula 3 gives

M
V(A) +tdy:.[' ,E+ray
lgebra system or the Table of Integrals (use Formula 2l
, we find that

, ,E,ln(.,6+z)
LJ:l 24ffi

fl
L- |

Jtr

Using either a computer a

after substituting a - 2y)

Figure 6 shows the arc of the parabola
whose length is computed in Example 3,

together with polygonal approximations
having n : I and n : 2 line segments,
respectively. For n : I the approximate
length is Lr - t/r, the diagonal of a

square. The table shows the approxima-
tions L,, that we get by dividing [0, l]
into n equal subintervals. Notice that
each time we double the number of sides

of the polygon, we get closer to the
exact length, which is

. Ji tn(.,/i + z)L_
24

n L,,

I

2

1

8

l6
32

64

I

I

I

414
115

464
472

476

478

419

I

I

I

I

FIGURE 6
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The result of Example 4 says that the
length of one arch of a cycloid is eight
times the radius of the generating circle
(see Figure 7). This was first proved in

1658 by Sir Christopher Wren, who
later became the architect of St. Paul's

and d)' 
- r sin g

d0

do: .f;" r aB

EXAMPLE 4 r Find the length of one arch of the cycloid x : r(0 - sin0),
y : ,(l - cos 0).

SOLUTIOH From Example 6 in Section 1.4 we see that one arch is described by
the parameter interval 0 < I < 22. Since

dx

- - r(1 cos 0)
d0

we have

L: I'"

- .,[t"
(to-r.l;" ffiao

further trigonometric identities.

(#)'* (#)=

FIGURE 7

| . [Jse the arc length formula (2) to find the length of the

curve -lt' 
: 2x + 1, -1 < tr

noting that the curve is a line segment and calculating
its length by the distance forrnula.

2. (a) In Example 2 in Section 1.4 we showed that the

parametric equations ,r -_ cos l, y : sin l,
0 < t 4 2n, represent the unit circle. LJse these

equations to show that the length of the unit circle
has the expected value.

(b) In Example 3 in Section 1.4 we showed that the

equatiolls J : sinZt, -)' : cos2f, 0 < f < 2zl, also
represent the unit circle. What value does the inte-
gral in Formula 1 give? How do you explain the

d i sc rep anc y?

EE lO r Graph the curve and find its exact length.

3. J: etcosro .)': e'sin/, 0 < / ( n'

4.x* 3t tt,y-3t?,0</<2
5.-r-)ot'lt, 0<)1 <l
6. r: a(cos0 + Osing), .y - a(sin0 Ocosd),

0<0< n

7-9 r Use Simpson's Rule with n - l0 to estimate the
length of the curve.

7. )': 13, 0 < -r < I

This integral could be evaluated after using
lnstead we use a computer algebra system:

E= t2.

L- r.l;" @ ao:8r
ffi

-y:tanx, 0< x<nl1

-)': sinr, 0 < x { n'

In Exercise 31 in Section 1.4 you were asked to derive
the parametric equations ,{ - 2a cot 0, )' : 2a sinr0 for
the curve called the witch of Maria Agnesi. Use Sirnp-
son's Rule with n - 4 to estimate the length of the
arc of this curve given by the parameter interval
nll <d< n/2.

(a) Graph the curve J, * x {{ .t, 0 < x { 4.

(b) Compute the lengths of inscribed polygons with
tx - 1,2, and 4 sides. (Divide the interval into equal
subintervals.) Illustrate by sketching these polygons
(as in Figure 6).

(c) Set up an integral for the length of the curve.
(d) [f your calculator (or CAS) evaluates definite inte-

grals, use it to find the length of the curve to four
deeimal places. If not, use Simpson's Rule. Com-
pare with the approximations in part (b).

Repeat E,xercise 11 for the curve

Exercises

8.

9.

10.

n= n.

y-.tr+sinx 0< x{2n

l3-15 I Use either a CAS or a table of inteqrals to find
I

exact length of the curve.

13.i[:13,]:t0,0<r<1

Cathedral in London.

2cos] cos20 sin 2 g)

@ the



f4. x: ln(l -y'), 0<y
15. y : ln(cosx), 0 < x {

EE 16. Use either a computer algebra system or a table of inte-
grals to find the exact length of the arc of the exponen-
tial curve _y 

: e'' that lies between the points (0, l) and
(1, e). If your CAS has trouble evaluating the integral,
make a substitution that changes the integral into one

that the CAS can evaluate.

17. A manufacturer of corrugated metal roofing wants to
produce panels that are 28 in. wide and 2 rn thick by
processing flat sheets of metal as shown in the figure.
The profile of the roofing takes the shape of a sine

wave. Verify that the sine curve has equation

)' - srn(rrxf7) and find the width w sf a flat metal
sheet that is needed to make a 28-inch panel. (If your
calculator or CAS evaluates definite integrals, use it.
Otherwise, use Simpson's Rule.)

28 in

Find the total length of the astroid x : a cos3g,

-y - a sin3g.

19. Show that the total length of the ellipse r : a sin 0,

y-bcos0,a>b)0,is
I iii - r-'-------------

L - oo 
Ju"'- ,t1 - ez sir:f o do
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where e is the eccentricity of the ellipse (, - c/a,
where c : ,/il - U, ).

EIZO. The curves with equations.tr" * yn : l, fr :4, 6, 8,

..., are called fat circles. Graph the curves with
n - 2, 4,6, 8, and 10 to see why. Set up an integral for
the length Lzk of the fat circle with n:2k. Without
attempting to evaluate this integral, state the value of

'*t: 
t'o

EIE Z l. (a) Graph the epitrochoid with equations

x - llcosr - 4cos(lltlz)

y - llsinr - 4sin(lItlz)

What parameter interval gives the complete curve?
(b) Use your CAS to find the approximate length of

this curve.

EE 22. A curve called Cornu's spiral is defined by the para-
metric equations

.r : C(r) : [' .o* (O!\ ,,
"r0 \2/

Zin / r\
),- s(r): 

"l;i 
,in( +)0,\-/

where C and S are the Fresnel functions that were intro-
duced in Section 5.4.
(a) Graph this curve. What happens as t --> * and

as / ---+ -ooJ
(b) Find the length of Cornu's spiral from the origin to

the point with parameter value /.

=+
n/4

t8.

Average Value of a Function

It is easy to calculate the average value of finitely many numbers y t, !2, ), I

)aue
),''r * Jllz * ...* y"

n

But how do we compute the average temperature during a day if infinitely many
temperature readings are possible? Figure I shows the graph of a temperature
function I(r) (where / is measured in hours, Z in 'C) and a guess at the average

temperature, ["".
In general, let's try to compute the average value of a function y: f(*),

a < x { b. We startby dividing the interval la,blinton equal subintervals, each
with length Ax : (b - o)/n. Then we choose points xf, ..., xI in successive
subintervals and calculate the average of the numbers /(xik), . . . , f (xtr):

FIGURE I
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(For example, if /represents a temperature function and n : 24, this means that
we take temperature readings every hour and then average them.) Because

Ax: (b - a)/n, we can write n : (b - a)/A,x and the average value becomes

y(xf) + + yQI)
ba

Ax

I:-
ba

If we let n increase, we would be computing the average value of a large number of
closely spaced values. (For example, we would be averaging temperature readings
taken every minute or even every second.) The limiting value is

:tf-lf(*f)A"+ + yQI)A"l
DA

I tt I ru

lg, _ rI rt",t)A" : b:; )"' ft') a*

by the definition of a definite integral.
Therefore, we define the average value of f on the interval lo, b] as

f,, rt.I) A'
i: I

EXAMPLE I r Find
interval [- 1,2f.

SOLUTION With a -

the average value of the function/(.r) - 1 + x2 on the

-l andh-2we have

The question arises: Is there a number c at which
to the average value of the function, that is, /(c) :
savs that this is true for continuous functions.

Jl, (r + x') dx

ilffi

the value of / is exactly equal

f^,,? The following theorem

fu,"-; 
I 

f"y1*1 a*
D a .t(t

I I x.I'
--l.r-r | -3 L 3 l_,

I
-2L-D

2

The Mean Value Theorem for Integrals is
Theorem for derivatives and the Fundamental
outlined in Exercise 17,

a consequence of the Mean Value
Theorem of Calculus. The proof is

I ru
-- I

b a ntu
f (x) dxfu,"

Mean Yalue Theorem for Integrals It f is continuous on [c , bf, then there

exists a number c in lo, bf such that

f rtodx: f(c)(b a)
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The geometric interpretation of the Mean Value Theorem for Integrals is that,
for positive functions/, there is a number c such that the rectangle with base [4, b]
and height/(c) has the same area as the region under the graph of/from a to D (see

Figure 2 and the more picturesque interpretation in the margin note).

You can always chop off the top of a

(two-dimensional) mountain at a certain
height and use it to fill in the valleys

so that the mountain becomes com-
pletely flat.

FIGURE 2

FIGURE 3

EXAMPLE2 T Sincef(x)
Mean Value Theorem for

-- I + -r2 is continuous
Integrals says there is a

on the interval [ - 1, 2], the

number c in [-1,2] such that

(- 1)l(1 + xz)dx - f(t)12

In this particular case we can find c explicitly. From Example I we know that

fu," : 2, so the value of c satisfies

Therefore

Thus, in this case there

[ - 1, 2] that work in the

f(r): f^,,- 2

I + c?-2 so c2: I

f,

happen to be two numbers c - +1 in the interval
Mean Value Theorem for Integrals. ffi

Examples I and 2 are illustrated by Figure 3.

EXAMPTE 3 r Show that the average velocity of a car over a time interval [t1, t2]

is the same as the average of its velocities during the trip.

SOLUTIOII If s(t) is the displacement of the car at time r, then, by definition, the

average velocity of the car over the interval is

As

Lt tz t1

On the other hand. the averaqe value of the velocity function on the interval is

s(r2) s(/r )

I r'r, I frtt)u,": l-u(t)dt: l-s'(t)dttz t1 Jtt tz tt rtr

- 
s(rz) - s(rr) 

- average velocity
t2 11

( by the Total Change Theorcm )

y : /(x)

ffi
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Exercises

l-4 I Find the average value of f on the

f . ,f(x) : x2 - 2x, [0, 3] 2. f (*) -
3. f(x) - e '*, [0,2] 4. ,f(x) -

5-8 r
(a) Find the average value of f on the given interval.
(b) Find c such that.fuu* : f (r).
(c) Sketch the graph of / and a rectangle whose area is the
same as the area under the graph of /
5. .f(") - 1 x2,, [0, 2]

6. f (x) - 4x - x2, [0, 3]

/(*) :,t3 - x + l, [0,2]

f(x) - rsin(r2), lO,,tlil

9. If /is continuous and jiftrl dx - 8, show rhar/takes
on the value 4 at least once on the interval [1,3].

10. Find the numbers & such that the average value of

/(") - 2 + 6x - 3x2 on the interval [0, b] is equal to 3.

I l . In a certain city the temperature (in 'F) r hours after
9 e.M. was approximated by the function

f(/) -50 + l4si n''
l2

Find the average temperature during the period from
9 e.N'{. to 9 p.rrl.

12. The temperature of a metal rod, 5 m long, is 4x (in "C)
at a distance x meters from one end of the rod. What is
the average temperature of the rod?

13. The linear density in a rod 8 m long is l2l \E + |
kg/*, where x is measured in meters from one end of
the rod. Find the average density of the rod.

14. If a freely falling body starts from rest, then its dis-
placement is given by s - igtt. Let the velocity after a

time f be 47. Show that if we compute the average of
the velocities with respect to r we get uu"r: ior, but if
we compute the average of the velocities with respect to
s we get ?/a'e : iar.

15. Use the result of Exercise 65 in Section 5.5 to compute
the average volume of inhaled air in the lungs in one
respiratory cycle

f 6. The velocity u of blood that flows in a blood vessel with
radius R and length I at a distance r from the central
axis is

u (r) - -L qat r')
4nl

where P is the pressure difference between the ends of
the vessel and T is the viscosity of the blood (see

Example I in Section 3.3). Find the average velocity
(with respect to r) over the interval 0 < r < R. Com-
pare the average velocity with the maximum velocity.

17. Prove the Mean Value Theorem for Integrals by apply-
ing the Mean Value Theorem for derivatives (see Sec-
tion 4.3) ro rhe function F(x) : .i:; f (t) dt.

18. If ,f,,*ln, bl denotes the average value of 
"f 

on the interval
lo,bl and a { cr < b, show that

given interval.

sin x, [0, "r]
l/x, [], 4]

fiJ,
'll t.

n= s.

fu,l,,. bl : 

=,f",,*[o, 

.] . 

=,f,,,"[c., 

b]

Movies

A movie theater has a screen that is positioned 10 ft off the floor and is 25 ft high.
The first row of seats is placed 9 ft from the screen and the rows are set 3 ft apart.
The floor of the seating area is inclined at an angle of a : 20" above the horizontal
and the distance up the incline that you sit is -r. The theater has 21 rows of seats, so
0 < r < 60. Suppose you decide that the best place to sit is in the row where the angle
0 subtended by the screen at your eyes is a maximum. Let's also suppose that your
eyes are 4 ft above the floor, as shown in the figure. (In Exercise 32 in Section 4.6 we
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looked
project

-::1

T
i

i

I

I

:5 ft
I

I

I

I

I

10 fl

at a simpler ver
involves a more

ol
rp

F,.

il f this problem, where
rlicated situation and

the floor is horizontal, but this
requires technology.)

2

4fr
f

il

l. Show that

where

and

o -arccos(o'+ 
u= - azs\

\Zab/
,t? - (9 * xcosa)? + (31 * -rsina)z

b' : tg * xcosa)2 + (xsina - 6)t

2. Use a graph of 0 as a function of x to estimate the value of x that maximizes 0.

In which row should you sit? What is the viewing angle 0 in this row?

3. Use your computer algebra system to differentiate 0 and find a numerical value
for the root of the equation dil/dx - 0. Does this value confirm your result in
Problem 2?

4. Use the graph of 0 to estimate the average value of 0 on the interval 0 < x < 60.
Then use your CAS to compute the average value. Compare with the maximum
and minimum values of 0.

0

9ft

As a consequence of a calculation of
work, you will be able to compute the
velocity needed for a rocket to escape

Earth's gravitational field. (See Exer-
cise lB.)

Applications to Physics and Engineering

Among the many applications of integral calculus to physics and engineering, we
consider three: work, force due to water pressure, and centers of mass. As with
our previous applications to geometry (areas, volumes, and lengths), our strategy
is to break up the physical quantity into a large number of small parts, approxi-
mate each small part, add the results, take the limit, and then evaluate the result-
ing integral.

E Work

The term work is used in everyday language to mean the total amount of effort
required to perform a task. In physics it has a technical meaning that depends on
the idea of aforce. Intuitively, you can think of a force as describing a push or pull
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on an object-for example, a horizontal push of a book across a table or the down-
ward pull of Earth's gravity on a ball. In general, if an object moves along a

straight line with position function s(r), then the force F on the object (in the same
direction) is defined by Newton's Second Law of Motion as the product of its mass

n and its acceleration:

d2s
F-ffl ^dt'

In the SI metric system, the mass is measured in kilograms (kg), the displacement
in meters (m), the time in seconds (s), and the force in newtons (N : kg.m/s'?).
Thus, a force of I N acting on a mass of I kg produces an acceleration of 1 m/s2. In
the U.S. Customary system the fundamental unit is chosen to be the unit of force,
which is the pound.

In the case of constant acceleration, the force F is also constant and the work
done is defined to be the product of the force F and the distance d that the object
moves:

W- Fd work-forceXdistance

If F is measured in newtons and d in meters, then the unit for W is a newton-meter,
which is called a joule (J). If F is measured in pounds and d in feet, then the unit
for lV is a foot-pound (ft-lb), which is about 1.36 J.

For instance, suppose you lift a | .2-kg book off the floor to put it on a desk that
is 0.7 m high. The force you exert is equal and opposite to that exerted by gravity,
so Equation I gives

F: mg - (1.2)(9.S;: ll.76N

and then Equation 2 gives the work done as

W - Fd : (11.76) (0.7) :8.2J

But if a 20-lb weight is lifted 6 ft off the ground, then the force is given as

F : 20 lb, so the work done is

W - Fd:20 '6- 120 ft-lb

given the weight (a force) and notHere we didn't multiply by g because we were
the mass.

Equation 2 defines work as long as the force is constant, but what happens if the
force is variable? Let's suppose that the object moves along the .r-axis in the posi-
tive direction, from r : a to x : b, and at each point r between a and b a force

/(-r) acts on the object, where / is a continuous function. We divide the interval

[a,b] into n subintervals with endpoints xo, xt,..., x, and equal width Ax. We

choose a sample point xf in the ith subinterval lx, t,x,l. Then the force at that
point is/(x,f). If n is large, then Ax is small, and since/is continuous, the values

of/don't change very much over the interval lx,-t,x,f. In other words,/is almost
constant on the interval and so the work Wi that is done in moving the particle
from x; r to r; is approximately given by Equation 2:

n

B

Itr/ : f(x,l)Ax
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we can approximate the total work by

n

g,/: )/(rf)A"
;-t
t-l
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It seems that this approximation becomes better as we make n larger. Therefore,
we define the work done in moving the object from a to D as the limit of this
quantity as r? --) m. Since the right side of (3) is a Riemann sum, we recognize its
limit as being a definite integral and so

Thus,

E

EXAMPLE I r When a particle is located
force of x' + 2x pounds acts on it. How
x- I tox-3?

w - l,' (*' + 2x) dx

at a distance x feet from the origin, a

much work is done in moving it from

x3 "lt 50
:T /-l:3 l, 3

SOLUTION

The work done is 161 ft-lb.

In the next example we
force required to maintain
proportional to x:

ffi

use a law from physics: Hooke's Law states that the
a spring stretched x units beyond its natural length is

has been

How much work

the spring
the spring is

0.05 m. This

frictionless 0 x

surface

(a) Natural position of spring

(b) Stretched position of spring

FIGURE I

Hooke's Law

f(x): kx

where k is a positive constant (called the spring constant). Hooke's Law holds
provided that "r is not too large (see Figure l).

EXAMPLE 2 t A force of 40 N is required to hold a spring that
stretched from its natural length of 10 cm to a length of 15 cm.
is done in stretching the spring from 15 cm to 18 cm?

SOLUTIOI,I According to Hooke's Law, the force required to hold
stretched x meters beyond its natural length is /(x) - kx. When
stretched from l0 cm to 15 cffi, the amount stretched is 5 cm-
means that f(0.05) - 40, so

o.osk -- 40 k: #& : 8oo

Thus, f(x)- 800x and the work done in stretching the spring from 15 cm to
l8 cm is

800x dx - "t lo 
o*

800' 
I- J 0.05

f 0.08w- |
.'/ 0.0-5

t'I

! rtr,*) A" : I:
l: l

f (x) dxW-lim
11 --'ttx

: 4oo[(0.08)2 (0.05)'?] : 1.56 J T
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FIGURE 2

FIGURE 3

Thus, &r approximation to the volume of the ith layer of water is

4

10

-T_ T2,m 
IYI

10m

II

EXAMPLE 3 r A tank has the shape of an inverted circular cone with height
l0 m and base radius 4 m. It is filled with water to a height of 8 m. Find the
work required to empty the tank by pumping all of the water to the top of the
tank. (The density of water is 1000 kg/rn'.)

S0LUTION Let's measure depths from the top of the tank by introducing a verti-
cal coordinate line as in Figure 2. The water extends from a depth of 2 m to a
depth of 10 m and so we divide the interval [2, l0] into n subintervals with end-
points x6, xr, ..., x, and choose xI in the fth subinterval. This divides the water
into n layers. The ith layer is approximated by a circular cylinder with radius r;
and height Ax. We can compute r; from similar triangles, using Figure 3, as

follows:

fi

10 xf f i :3 tto xr)

I
,,f", 

I

4

U
H

\

vi : nr?Ax: #Uo xf)2Ax

and so its mass is

tni: density X volume

: 1000 . * OO x,*)2 Ax - 160rr(10 x,r)2 Ax25\

2oxt xo I'o-rl3 4J,
: 3.4 x 106 J

The force required to raise this layer must overcome the force of gravity and so

Fi: mig - (9.8)160rr(10 - rl)'zAr

- 1570r(10 - xf)2 Lx

Each particle in the layer must travel a distance of approximately .rI. The work
I/i done to raise this layer to the top is approximately the product of the force F,
and the distance .rI:

Wi: Fix! - l570rrxf(10 - .rf)'zAx

To find the total work done in emptying the entire tank, we add the contribu-
tions of each of the n lavers and then take the limit as n ---> ':".i

W - ]'g 3 1s70n.r,r(10 xf)2Ax

/.l0

- t " l570rrx(10 x)2 dx
la

atL

- 1570 n 
|rto 

(loox zox' + x3) dx

t-

tsionl5ox2
L

ls70r(T) n

l-4m-l
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E Hydrostatic Pressure and Force

Deep-sea divers realize that water pressure increases as they dive deeper. This is
because the weight of the water above them increases.

In general, suppose that a thin horizontal plate with areaA square meters is sub-
merged in a fluid of density p kilograms per cubic meter at a depth d meters below
the surface of the fluid as in Figure 4. The fluid directly above the plate has vol-
ume V : Ad, so its mass is m : pV : pAd. The force exerted by the fluid on the
plate is therefore

F:mg:pgAd
where g is the acceleration due to gravity. The pressure P on the plate is defined to
be the force per unit area:

F
Dt-

A
psd

FIGURE 4

When using U.S. Customary units, we
write P - pgd - 6d, where 6 : pg ts

the weight density (as opposed to p,

which is the mass density). For instance,

the weight density of water is

6 : 62.5 lblft3.

surface of fluid

The SI unit for measuring pressure is newtons per square meter, which is called a

pascal (abbreviation: I N/m2 : I Pa). Since this is a small unit, the kilopascal
(kPa) is often used. For instance, because the density of water is p : 1000 kg/m',
the pressure at the bottom of a swimming pool 2 m deep is

' 
::':,:,;i:"j*ii:';i a m/s'? X 2 m

An important principle of fluid pressure is the experimentally verified fact that
at any point in a liquid the pressure is the same in all directions. (A diver feels the
same pressure on nose and both ears.) Thus, the pressure in any direction at a
depth d in a fluid with mass density p is given by

A P: pgd:6d
This helps us determine the hydrostatic force against a vertical plate or wall or
dam in a fluid. This is not a straightforward problem, because the pressure is not
constant but increases as the depth increases.

EXAMPTE 4 r A dam has the shape of the trapezoid shown in Figure 5. The
height is 20 m, and the width is 50 m at the top and 30 m at the bottom. Find
the force on the dam due to hydrostatic pressure if the water level is 4 m from
the top of the dam.

50m

30mFIGURE 5
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,u_"r{

(b)

FIGURE 6

SOLUTIOII We choose a vertical r-axis with origin at the surface of the water as

in Figure 6(a). The depth of the water is 16 m, so we divide the interval [0, 16]

into subintervals with endpoints.rr and we choose x! €lxi-t,xr]. The ith hori-
zontal strip of the dam is approximated by a rectangle with height A-r and width
rri, where, from similar triangles in Figure 6(b),

(a)

a 10 16 "{f .r,t

16-xI:20 a: z 
:6 

z

/ -.* \
wi:z(r5+a)-2(15+8 +) :46 xf

\ 2/
the area of the ith strip, then

Ai : tili Lx- (46 x,r) Ar

small, then the pressure P, on the ith strip is almost constant and we

Equation 4 to write

and so

If Ai is

If Ax is
can use

Pi - l000gxf

The hydrostatic force Fi acting on the ith strip is the product of the pressure and
the area:

Fi: PiAi - l000SxI(46 - x!)L'x

Adding these forces and taking the limit as /, --) m, we obtain the total hydro-
static force on the dam:

(46x xz) dx

E Moments and Centers of Mass

Our main objective is to find the point P on which a thin plate of any given shape

balances horizontally as in Figure 7. This point is called the center of mass (or

center of gravity) of the plate.
We first consider the simpler situation illustrated in Figure 8, where two masses

mr and tfl2 &te attached to a rod of negligible mass on opposite sides of a fulcrum
and at distances dr and dzfrom the fulcrum. The rod will balance if

E mrdr: mzdz

This is an experimental fact discovered by Archimedes and called the Law of the

F - l'11 3 1000 sxf (16 x,t) Ax

fl6
- J,, 10009x (46 x) dx

: looo(e.*) l,'u

t-

- 9800 | zzxr -
L

:; 1.43 x 107 N

+t:'
ffi
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10Va
V

T
20

I

FIGURE 7
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Lever. (Think of a lighter person balancing a heavier one on a seesaw by sitting
farther away from the center.)

Now suppose that the rod lies along the x-axis with mr at x 1 and fi2 &t x2 and the
center of mass at i. If we compare Figures 8 and 9, we see that dr: i - xr and
dz : xz - x and so Equation 5 gives

FIGURE 8 6

The numbers wtrxr end tftzxz are
(with respect to the origin), and
obtained by adding the moments
m : //11 + //12.

mt(V xr) - mz(xz t)
mri + mzi:tnrxl + tnzxz

tTttXl + lTtzXz
t"-

tTtl + /TI2

called the moments of the masses tTtl and rfl2
Equation 6 says that the center of mass i is
of the masses and dividing by the total mass

system of n particles with masses //tt, trrz, rn,,

.., xo on the x-axis, it can be shown similarly that the
is located at

i:

x

FIGURE 9

In general, if we have a

located at the points xt, xz, .

center of mass of the system

n

nn

i:l _ i:l
n

5m.L mi
t: I

where m : 2 mi is the total mass of the system, and the sum of the individual
moments

lTl iX i

is called the moment of the system with respect to the origin. Then Equation 7
could be rewritten as mi : M, which says that if the total mass were considered as
being concentrated at the center of mass .r, then its moment would be the same as
the moment of the system.

Now we consider a system of n particles with masses rnt, rltz, . . , , ffio located at
thepoints(xr,y'),(xz,yz),...,(x,,y,) inthexy-planeasshowninFigurel0.By
analogy with the one-dimensional case, we define the moment of the system
about the v-axis to be

M-
i: I

ns.2
i: I

M*:
i: I

g

E M,, //IiX i

and the moment of the svstem about the x-axis as

fulcrum

FIGURE IO

mi ji
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Then M, measures the tendency of the system to rotate about the y-axis and M,
measures the tendency to rotate about the x-axis.

As in the one-dimensional case, the coordinates (i, y) of the center of mass are
given in terms of the moments by the formulas

m

where m:)rn;isthe
mass (*,t) is the point
moments as the svstem.

_ M*

m

total mass. Since mi: M j, and m, - M*, the center of
where a single particle of mass m would have the same

M,,x-
m

EXAMPLE 5 r Find the moments and center of mass of the system of objects that
have masses 3,4, and 8 at the points (- l,l), (2, -l), and (3,2).

SOIUTION We use Equations 8 and 9 to compute the moments:

My : 3(-r) + 4(2) + 8(3) : 2e

M,:3(t) + 4(-r) + 8(2): ls

Since m : 3 + 4 + 8 : 15, we use Equations l0 to obtain

= M' 29
h m15

M,_15-l
m15V:

FIGURE I I Thus, the center of mass is (t j*,1) (see Figure ll).

Next we consider a flat plate (called a lamina) with uniform density p that
occupies a region 9l of the plane. We wish to locate the center of mass of the plate,
which is called the centroid of 91. In doing so we use the following physical prin-
ciples: The symmetry principle says that if fr is symmetric about a line /, then
the centroid of 9i lies on /. (If 9t is reflected about I, then 9l remains the same so

its centroid remains fixed. But the only fixed points lie on l.) Thus, the centroid of
a rectangle is its center. Moments should be defined so that if the entire mass of a

region is concentrated at the center of mass, then its moments remain unchanged.
Also, the moment of the union of two nonoverlapping regions should be the sum of
the moments of the individual regions.

Suppose that the region 9l is of the type shown in Figure l2(a); that is, 91. lies

between the lines x: a andx: b, above the x-axis, and beneath the graph of/,

ffi

(a)

("-,'/(",))
y : f (xl

FIGURE I2
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where/is a continuous function. we divide the interval la,bf into n subintervals
with endpoints,rs, x1, ..., x, and equal width A-r. We choose the sample point _rf
to be the midpoint.rr of the ith subinterval, that is, ii : (x, , * "r;)/2. This deter-
mines the polygonal approximation to gt shown in Figure 12(b). The centroid of
the fth approximating rectangle Rl is its center C,(1,,trfGil. Irs area is/(i;)A"r,
so its mass is

pf(i) L,x

The moment of R1 about the y-axis is the product of its mass and the distance from
Ci to the y-axis, which is i;. Thus

M ,(R ,) - yrf(i ) Axl xi : pi, f (i,) Ax

Adding these moments, we obtain the moment of the polygonal approximation to
91, and then by taking the limit as n ---> 6 we obtain the moment of gt itself about
the y-axis:

In a similar fashion we compute the moment of R; about the x-axis as the prod-
uct of its mass and the distance from C; to the x-axis:

M,(R,) : lpf(it) Lx)tfz) : p . +lf7)1, Ax

Again we add these moments and take the limit to obtain the moment of gl about
the .r-axis:

M*: lim
n---+x

n
\--'rLP
,'- |,- |

il f k,)r' A" : , J::i t rt"l f' d*

Just as for systems of particles, the center of mass of the plate is defined so that
mi : M, and my : M,. Blt the mass of the plate is the product of its density and
its area:

m: pA: , I: f!)dx

and so

fbp | *f(*)dx
M)' ' Ja r xf (x) dx

i-
p t
r

I! rcdx

r
Il t.to.,t

f (x) dx

il tc*lf' d* i t rt*r' d*
M*y:
m

lim t pi,f(ii)Ax- pl'''
n-x i-l .r (t

Mr.- xf (x) dx

f (x) dx
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FIGURE I3

Notice the cancellation of the p's. The location of the center of mass is independent

of the density.
In summary, the center of mass of the plate (or the centroid of 9t) is located at

the point (-r,y), where

EXAMPLE 6 I Find the center of mass of a semicircular plate of radius r.

SOLUTION In order to use (11) we place the semicircle as in Figure 13 so that

f(r) : J;' -7 and a : -r, b : r. Here there is no need to use the formula

to calculate x because, by the symmetry principle, the center of mass must lie on

the v-axis. so .r : 0. The area of the semicircle is A : rrr'f 2, so

i t rc"lf' d*

[-r r:il:

y: * J-,

I .f 1". / 11

nr? f 2 r J- ,G/'2 - x? )2 dx

4 ['(r2 -.Yz)d.r: +[r',
Trr- jiO Trr- L

2 2r3

*3 3n

The center of mass is located at the point (0,4r1(3"')).

4r

ffi

xf (x) dr

Exercises

| . A particle is moved along the x-axis by a force that

measures 5x? * I pounds at a point x feet from the ori-
gin.Find the work done in moving the particle from the

origin to a distance of l0 ft.

2. When a particle is located at a distance .r meters from
the origin, a force of cos(nx/3) newtons acts on it. How

much work is done in moving the particle from,rr : I to
-tr : 2? Interpret your answer by considering the work

done from r : I to x - 1.5 and from r : 1.5 to x - 2.

3. A force of l0 lb is required to hold a spring stretched

4 in. beyond its natural length. How much work is done

in stretching it from its natural length to 6 in. beyond

its natural length?

4. A spring has a natural length of 20 cm. If a 25-N force

is required to keep it stretched to a length of 30 cm,

how much work is required to stretch it from 20 cm to

25 cm?

5. Suppose that 2 J of work is needed to stretch a spring

from its natural length of 30 cm to a length of 42 cm.
(a) How much work is needed to stretch it from 35 cm

to 40 cm?
(b) How far beyond its natural length will a force of

30 N keep the spring stretched?

6. If 6 J of work is needed to stretch a spring from l0 cm

to 12 cm and another l0 J is needed to stretch it from
12 cm to 14 cm, what is the natural length of the

spring?

7-12 t Show how to approximate the required work by a
Riemann sum. Then express the work as an integral and

evaluate it.

7. A heavy rope,50 ft long, weighs 0.5 lb/ft and hangs

over the edge of a building 120 ft high. How much work
is done in pulling the rope to the top of the building?



8. A uniform cable hanging over the edge of a tall building
is 40 ft long and weighs 60 lb. How much work is

required to pull 10 ft of the cable ro rhe top?

9. A cable that weighs 2lb/ft is used to lift 800 lb of coal
up a mineshaft 500 ft deep. Find the work done.

10. A bucket that weighs 4 lb and a rope of negligible
weight are used to draw water from a well that is 80 ft
deep. The bucket starts with 40 lb of water and is
pulled up at a rate of 2 ft/s, but water leaks out of a hole
in the bucket at a rate of 0.2 lbls. Find the work done in
pulling the bucket to the top of the well.

I l. An aquarium 2 m long, I m wide, and I m deep is full
of water. Find the work needed to pump half of the
water out of the aquarium. (Use the fact that the density
of water is 1000 kg/*'.)

12. A circular swimming pool has a diameter of 24 ft, the
sides are 5 ft high, and the depth of the water is 4 ft.
How much work is required to pump all of the water
out over the side? (Use the fact that water weighs
62.5 lblft3.)

13. The tank shown is full of water.
(a) Find the work required to pump the water out of the

outlet.
(b) Suppose that the pump breaks down after

4.7 X 105 J of work has been done. What is the
depth of the water remaining in the tank?
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when the volume expands from volume V, to volume V2

is

x

In a steam engine the pressure P and volume V of steam
satisfy the equation PVt'4 - k, where ft is a constant.
(This is true for adiabatic expansion, that is, expansion
in which there is no heat transfer between the cylinder
and its surroundings.) Use Exercise 15 to calculate the
work done by the engine during a cycle when the steam
starts at a pressure of L60 lb/in2 and a volume of 100 in3

and expands to a volume of 800 in3.

17. (a) Newton's Law of Gravitation states that two bodies
with masses rnl &nd m2 atttact each other with a force

F - G 
,,",:,,

r"

where r is the distance between the bodies and G is
the gravitational constant. If one of the bodies is
fixed, find the work needed to move the other from
r - a to r - b.

(b) Compute the work required to launch a 1000-kg satel-
lite vertically to an orbit 1000 km high. You may
assume that Earth's mass is 5.98 X 1024 kg and is

concentrated at its center. Take the radius of Earth to
be 6.37 x 106 m and G - 6.6i x l0-r' N.-t/kg'.

18. (a) Use an improper integral and information from Exer-
cise 17 to find the work needed to propel a 1000-kg
satellite out of Earth's gravitational field.

(b) Find the esc ape velocity o0 that is needed to propel a

rocket of mass m out of the gravitational field of a

planet with mass M and radius R. (Use the fact that
the initial kinetic energy of i*rl supplies rhe
needed work.)

19-22 r The end of a tank containing water is vertical and
has the indicated shape. Explain how to approximate the
hydrostatic force against the end of the tank by a Riemann
sum. Then express the force as an integral and evaluate it.

w - Ji" 
,au

,Piston 

head

16.

wII

-f-
2m

+

T
I

3m

I

-L

14. The tank shown is half full of oil that has a

920 kg/-t. Find the work required ro pump
of the outlet.

density of
the oil out

t9.

15.

1.5 m

When gas expands in a cylinder with radius r, the pres-
sure at any given time is a function of the volume:
P - P(V). The force exerted by the gas on the piston
(see the figure) is the product of the pressure and the
area: F - rr'P. Show that the work done by the gas

f--3 mJ

Frornl F- ro m --|

20.
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23. A swimming pool is 20 ft wide and 40 ft long and its
bottom is an inclined plane, the shallow end having a

depth of 3 ft and the deep end,9 ft. If the pool is full of
water, find the hydrostatic force on (a) the shallow end,
(b) the deep end, (c) one of the sides, and (d) the bottom
of the pool.

24. A vertical dam has a semicircular gate as shown in the

figure. Find the hydrostatic force against the gate.

l2m
water level

3l-32 I Calculate the mornents M,. and M.,, and the center

of mass of a lamina with the given density and shape.

3f . p: I 32. p-2

33. (a) Let 91. be the region that lies between two curves

J : /(r) and t' : g(x), where/(x) > g(x) and

a { x s b. By using the same sort of reasoning that

led to the formulas in ( I 1 ), show that the centroid of
,ft is (;, i). where

(b) Find the centroid of ttre region bounded by the line

)' : r and the parabola -)' - Jt.

34. Let ?/t be the region that lies between the curves ] - xtlt

and y : d"' 0 { x s 1, where nz and t?. are integers with
0<n
(a) Sketch the region 91.

(b) Find the coordinates of the centroid of $,.

(c) Try to find values of m and rz such that the centroid
lies oul side W.

that the demand function p(x) is the price that a company

sell x units of a commodity. Usually, selling larger quan-

prices, so the demand function is a decreasing function.

T
I

I

h

_t_

28..)n-1-*t,
29. ) : cos2x,

30. -)' - "f, )'

,r : -TTl4, J - rr/4

-4

)n:0

.)' - 0,

:0, x

-I-

I

I

12m

I

25-26 r The masses

the moments M' and

system.

25. ttxt : 4, rfl7 : 8i

26. trll _- 3, /TI2:3,
Pr (0, o), Pr(1, 8),

4m

ffi; flre located at the points Pi. Find
M.,, and the center of mass of the

P, (-1,2),, P?(2,4)

D?3 : 8, ffia:6,
P,(3, -4) , Po(-0, -5)

27-30 I Find the centroid of the region bounded by the

given curves. Sketch the region and plot the centroid to see

if your answer is reasonable.

27. !: €t, .)' :0, J : 0, .tr - 1

Applications to Economics and Biology

In this section we consider some applications of integration to economics (con-

sumer surplus) and biology (blood flow, cardiac output). Others are found in the

exercises.

Recall from Section 4.7

has to charge in order to

tities requires lowering

quarter-circle

Consumer Surplus
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FIGURE I

A typical demand curve

FIGURE 2

FIGURE 3
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The graph of a typical demand function, called a demand curve, is shown in
Figure 1. If x is the amount of the commodity that is currently available, then
P : p(X) is the current selling price.

We divide the interval [0, X] into n subintervals, each of length L,x : Xf n, and
let rf : -r; be the right endpoint of the lth subinterval, as in Figure 2. If , after the
first x;-1 units were sold, a total of only x; units had been available and the price
per unit had been set at p(.v;) dollars, then the additional Ax units could have been
sold (but no more). The consumers who would have paid p(x) dollars placed a high
value on the product; they would have paid what it was worth to them. So, in pay-
ing only P dollars they have saved an amount of

(savings per unit) (number of units) : lp(*,) - plL,x

Considering similar groups of willing consumers for each of the subintervals and
adding the savings, we get the total savings:

I p(r') P] Ar

If we let n --+ n

n

this Riemann sum approaches the integral

I p(r) P] dx

which economists call the consumer surplus for the commodity.
The consumer surplus represents the amount of money saved by consumers in

purchasing the commodity at price P, corresponding to an amount demanded of X.
Figure 3 shows the interpretation of the consumer surplus as the area under the
demand curve and above the line p : P.

EXAMPLE I r The demand for a product, in dollars, is

p : l2O0 - 0.2x - 0.0001"12

Find the consumer surplus when the sales level is 500.

SOIUTIOI{ Since the number of products sold is X : 500, the corresponding
price is

p : 1200 - (0.2) (s00) - (0.0001) (s00), : l07s

Therefore, from Definition 1, the consumer surplus is

0.0001x2 1075\ dx

f s00

- 1.. (125 0.2x 0.0001 xz) dx
Jo

_, I25x 0.1x2 - (0.0001)

: (tzs) (500) (0.1) (s00),

- $33,333.33

i
i: I

Ji

l'500 r'.5(J0

.f ,, I p(*) - P) dx - .ln ( I 2oo o.Zx

(+) l:"
(0.000

rc

p - p(xl

Consumer
surplus

1) (soo)3
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FIGURE 4

FIGURE 5

In Example 7 in Section 3.3 we discussed the law of laminar flow:

P
a(r) -- M G' - r')

which gives the velocity a of blood that flows along a blood vessel with radius R

and length / at a distance r from the central axis, where P is the pressure difference

between the ends of the vessel and 4 is the viscosity of the blood. Now, in order to

compute the flux (volume per unit time) we consider smaller, equally spaced radii

rr, rz, .. .. The approximate area of the annulus with inner radius r;-1 and outer

radius ri is

2rrri A,r where Ar : r; - ri 1

(See Figure 4.)If L,r is small, then the velocity is almost constant throughout this
annulus and can be approximated by u(r;). Thus, the volume of blood per unit time

that flows across the annulus is approximately

(2nri Lr)a(r,) : 2trrlu(r1) L,r

and the total volume of blood that flows across a cross-section per unit time is
approximately

Trria(ri) At

This approximation is illustrated in Figure 5. Notice that the velocity (and hence

the volume per unit time) increases toward the center of the blood vessel. The

approximation gets better as n increases. When we take the limit we get the exact

value of the flux (or discharge), which is the volume of blood that passes a cross-

section per unit time:

F - lim > Znriulr) Ar
S1 

_,_+._c. i:l

2rr u(r) dr

i
i: I

:J;
fRP

-lZnrJ o 4rll

TfP r"R . 1

- I (R'r
Znl Jrt \

nP In': zdl,
The resulting equation

a

(Rn rz) dr

ri)dr: +l o= |ZqtL 2

R- 
-l 

nPR4
t-1l 9qt

rrPR4r:
8nl

+],:

is called Poiseuille's Law; it shows that the flux is proportional to the fourth

power of the radius of the blood vessel.
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M Cardiac Output

Figure 6 shows the human cardiovascular system. Blood returns from the body
through the veins, enters the right atrium of the heart, and is pumped to the lungs
through the pulmonary arteries for oxygenation. It then flows back into the left
atrium through the pulmonary veins and then out to the rest of the body through
the aorta. The cardiac output of the heart is the volume of blood pumped by the
heart per unit time, that is, the rate of flow into the aorta.

The dye dilution method is used to measure the cardiac output. Dye is injected
into the right atrium and flows through the heart into the aorta. A probe inserted
into the aorta measures the concentration of the dye leaving the heart at equally
spaced times over a time interval [0, I] until the dye has cleared. Let c(t) be the
concentration of the dye at time r. If we partition [0, Z] into subintervals of equal
length Ar, then the amount of dye that flows past the measuring point during the
subinterval from / : /'-r to t : ti is approximately

sEcTtoN 6.6 AppUCATt0t{5 T0 tt0t{0iltcs A}tD Bl0L0Gy 447

(concentration) (volume) : c(tt)@ L,t)

where F is the rate of flow that we are trying to determine. Thus, the total amount
of dye is approximately

c(t i)F L,t c(t i) Ar

and, letting n -+ ffi, we find that the amount of dye is

right ---**:
atnum

pulmonary
VClnS

tt' 
t''

.t"
vern"

FIGURE 6

left
atrium

n

_ eSa Z-J
j:1i: I

Thus, the cardiac output

=;--:-

'E:.}l

A: r J; cG) dt

is given by

Ar
fTI c(t) dr

.,1 0

where the amount of dye A is known and the integral can be approximated from
the concentration readinss.

EXAMPLE 2 r A 5-mg bolus of dye is injected into a right atrium. The concen-
tration of the dye (in milligrams per liter) is measured in the aorta at one-second
intervals as shown in the chart. Estimate the cardiac output.

SOLUTI0I{ Here A : 5, L,t: l, and f : 10. We use Simpson's Rule to approxi-
mate the intesral of the concentration:

c(r) at : tr10 + 4(0.4) + 2(2.8) + 4(6.s) + 2(e.8) + 4(8.e)

+ 2(6.1) + 4(4.0) + 2(2.3) + 4(1.1) + 0l

: 41.87

I''

pulmonary
velns ,

('(l )

0

I

2

3

,t|.f

5

()

0.,+

l.t{
6.5

9. tt

8.9

t r'(/ )

6

7

I
I

10

6. I

-1. ()

1-)
i. -)

l"l
0
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Thus, Formula 3 gives the cardiac output to be

A5F_ --i'lo 4L87I c(r) dt
JO

: 0.12 L/s : 7.2 Llmin ffi

Exercises

l. The marginal cost function C'(x) was defined to be the

derivative of the cost function. (See Sections 3.3 and

4.7.) If the rnarginal cost of manufacturing x units of
a proiCuct is C'(r-) - 0.006;2 - 1.5; + 8 (measured

in dollars per unit) and the fixed start-up cost is

C(0) - $1,500.000, use the Total Change Theorem
to find the cost of producing the first 2000 units.

7. The marginal revenue from selling r items is
90 0.02.r. The revenue from the sale of the first 100

items is $8800. What is the rer,'enue from the sale of the

first 200 items?

3. The marginal cost of producing r Llnits of a certain
procluct is 140 0.5x + 0.012,12 (in clollars per unit).
Find the increase in cost if the production level is raised

from 3000 units to 5000 units.

4. The demand function for a certerin cotnmoclity is
p - 5 xll0. Fincl the consumer surplus when the

sales level is 30. Illustrate by' clrawing the demand curve
and iclentifying the consun-ler surplus as an area.

5. A demand curve is given by p - 1000/(x + 20).Find
the consumer surplus when the selling price is $20.

6. The supply function 7:.s(r) for a commodity gives the

relation between the selling price and the number of
units thtrt manufacturers will produce at that price. For
ar higher price. ntanufacturers will produce Inore units,
so ps is an increasing function of x. Let X be the amount

of the commodity currently produced and let P : ps(X)
be the c'urrent price. Some producers would be willing
to make and sell the commodity tor a lower selling
price and are therefore receiving more than their mini-
mal price. The excess is called the producer surplus.
An argument sirnilar to that for consumer surplus shows

that the surplus is given by the integral

,iY

J,, lP ps(;)l dr

Calculate the producer surplus for the supply function
ps(x) - 3 + 0.01x2 at the sales level X: 10. Illustrate
by drawing the supply curve and identifying the pro-
ducer surplus as an area.

Deduce that if the radius of an artery is reduced to
three-fourths of its former value, then the pressure is

more than tripled.

9.

7.

8.

ll.

12.

A supply curve is given by p - 5 + # "[ 
Find the pro-

ducer surplus when the selling price is $10.

For a given commodity and pure competition, the num-
ber of units produced and the price per unit are deter-
mined as the coordirrates of the point of intersection of
the supply and demand curves. Given the demand curve
p - 50 x/20 and the supply curve p - 20 + xf lO,
find the consumer surplus and the producer surplus.
Illustrate by sketching the supply and demand curves
and identifying the surpluses as areas.

A manufacturer has been selling 1000 television sets a

week at $450 each. A market survey indicates that for
every $10 that the price is reduced, the numtrer of sets

sold will increase by 100 a week. Find the demand func-
tion and calculate the consumer surplus when the selling
price is set at $400.

If the amount of capital that a company has at time r is
f(t), then the derivative,f'(t), is called the net invest-
ment flow,. Suppose that the net investment flow it tf
million dollars per year (where f is measured in years).
Find the increase in capital (the capital formation) from
the fourth year to the eighth year.

Use Poiseuille's Law to caleulate the rate of flow in a

small human artery where we can take n : 0.027 ,

R : 0.008 cffi, I :2 cm, and P - 4000 dynes/cmz.

High blood pressure results from constriction of the
arteries. To maintain a normal flow rate (flux), the
heart has to pump harder, thus increasing the blood
pressure. Use Poiseuille's Law to show that if R0 and
Ps are normal values of the radius and pressure in an

artery and the constricted values are R and P, then for
the flux to remain constant. P and R are related bv the

equation

p /no\*
PO \R /

10.



| 3. The dye dilution method is used to measure cardiac out-
put with I mg of dye. The dye concentrations, in mg/L,
are modeled by c(r) - lt(12 t),0 < r < 12, where / is
measured in seconds. Find the cardiac output.

14. After a 6-mg injection of dye, the readings of dye con-
centrations at two-second intervals are as shown in the
table at the right. Use Simpson's Rule to estimate the
cardiac output.

IIGURE I

Probability density function
for the height of an adult female
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I r'(r )

2
A+

6

I
tl

2"8

1.4

t).6

0.2
t)

Probability

calculus plays a role in the analysis of random behavior. Suppose we consider the
cholesterol level of a person chosen at random from a certain age group, or the
height of an adult female chosen at random, or the lifetime of a randomly chosen
battery of a certain type. Statisticians call such quantities continuous random
variables because their values actually range over an interval of real numbers,
although they might be measured or recorded only to the nearest integer. We might
want to know the probability that a blood cholesterol level is greater than 250, or
the probability that the height of an adult female lies between 60 and 70 inches, or
the probability that the battery we are buying lasts between 100 and 200 hours. If
X represents the lifetime of that type of battery, we denote this last probability
as follows:

P(100<x<200)

According to the frequency interpretation of probability, this number is the long-
run proportion of all batteries of the specified type whose lifetimes lie between
100 and 200 hours. Since it represents a proportion, the probability naturally falls
between 0 and l.

Every continuous random variable X has a probability density functionl This
means that the probability that X lies between a and b is found by integrating /
from a to b:

P(a f (x) dx

For example, Figure I shows the graph of a model of the probability density func-
tion/for a random variable X defined to be the height in inches of an adult female

area - probability that the
height of a woman
is between 60 ancl
70 inches

n :I:

I c(/)

0

2

4

6

I
l0

0

2.1

'1..5
,1 "1

5.8

3.6

t' : /(x)
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FIGURE 2

An exponential density function

in the United States (according to data from the National Health Survey). The
probability that the height of a woman chosen at random from this population is
between 60 and 70 inches is equal to the area under the graph of/from 60 to 70.

In general, the probability density function / of a random variable X satisfies

f(") > 0 for all x. Because probabilities are measured on a scale from 0 to l, it fol-
lows that

J* rt")dx: I

EXAMPTE I r Phenomena such as waiting times and equipment failure times are

commonly modeled by exponentially decreasing probability density functions.

Find the exact form of such a function.

SOLUTION Think of the random variable as being the time you wait on hold

before an agent of a company you're telephoning answers your call. So instead

of .r, let's use tto represent time, in minutes. If/is the probability density
function and you call at time / : 0, then, from Definition l, Ju2 /(r)dt represents

the probability that an agent answers within the first two minutes ana tl 71) at

is the probability that your call is answered during the fifth minute.
It's clear that/(t) : 0 for t < 0 (the agent can't answer before you place the

call). For I ) 0 we are told to use an exponentially decreasing function, that is,

a function of the form /(t) : Ae-", where A and c are positive constants. Thus

B

f (r)

We use Condition 2 to determine the value of A:

:fo ir

LAn 
-., if

J;

t < 0

t>0

Ae-''' dt

- lim 
o (l - e-'*)

r - J:" r@dt:
It-

f(t)dt + l f(t)dtv\/ J0

: f ae-'''dt

Jj"

l-A
- lim | --e

-r'+:c L C

A

C

:IT
l"-ct 

I

lo

Therefore, Alc : 1 and so A : c. Thus, every exponential density function has

the form

f(r): t < 0

t>0{:"-., ll
A typical graph is shown in Figure 2.

Suppose you're waiting for a company to answer your phone call and you wonder

how long, on the average, you could expect to wait. Let/(r) be the corresponding

density function, where t is measured in minutes, and think of a sample of N people

ffi

Average Values



FIGURE 3

It is traditional to denote the mean

the Greek letter g, (mu).

FIGURE 4

9I balances at a point on the line x : p
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who have called this company. Most likely, none of them had to wait more than an
hour, so let's restrict our attention to the interval 0 < r < 60. Let's divide that
interval into n intervals of length Al and endpoints 0, t1, t2,.... (Think of Ar as
lasting a minute, or half a minute, or 10 seconds, or even a second.) The probabil-
ity that somebody's call gets answered during the time period from /;_1 to ri is the
area under the curve y : f(t) from /;-1 to t;, which is approximately equal to
f(T) A,t. (This is the area of the approximating recrangle in Figure 3, where 7; is
the midpoint of the interval.)

Since the long-run proportion of calls that get answered in the time period from
ti 1 to t; is /(ir) Ar, we expect that, out of our sample of N callers, the number
whose call was answered in that time period is approximately N/(7,) Ar and the
time that each waited is about 4. Therefore, the total time they waited is the prod-
uct of these numbers: approximately TtLNf(T) Ar]. Adding over all such intervals,
we get the approximate total of everybody's waiting times:

Nitfj) Lt

If we now divide by the number of callers N, we get the approximate average wait-
ing time:

7,f(7,) Ar

We recognize this as a Riemann sum for the function t/(4. As the time interval
shrinks (that is, Ar -+ 0 and n ---> co), this Riemann sum approaches the integral

/.60

J,, rf u) at

This integral is called the tnean waiting time.
In general, the mean of any probability density function / is defined to be

tL: ),-xf(x)dx

The mean can be interpreted as the long-run average value of the random variable
X. It can also be interpreted as a measure of centrality of the probability density
function.

The expression for the mean resembles an integral we have seen before. If gt is
the region that lies under the graph ofl we know from Formula 11 in Section 6.5
that the x-coordinate of the centroid of 9t is

t1\,a
i: I

t
i: I

by

f- xf(xl dx
J-- " F6;:-: I xf(x)dx: P'Pr ., -€

) -- f{") a'

because of Equation 2. So a thin plate in the shape of 9t balances at a point on the
vertical line r : p (see Figure 4).



EXAMPLE 2 r Find the mean of the exponential distribution of Example 1:

f(t): {:, ., 
,,1,,:3

$SLLTIOH According to the definition of a mean, we have

fx fx
tL: J_,. tf(t) dt - ,lo tce-" dt

To evaluate this integral we use integration by parts, with u - 1 and

dI) - ce-" dt:

The mean is p : l/c, so we can rewrite the probability density function as

fo ifr<o
f(r) :l -1 -i/.,r \.' 

l{-,e-,ru if t > o I

EXAMPLE 3 r Suppose the average waiting time for a customer's call to be

answered by a company representative is five minutes.
(a) Find the probability that a call is answered during the first minute.
(b) Find the probability that a customer waits more than five minutes to be

answered.

s0LuTroll
(a) We are given that the mean of the exponential distribution is ;.r, 

: 5 min and

so, from the result of Example 2, we know that the probability density function is

[o ifr<o
J\t):\O.rr_,,, if t>o

Thus, the probability that a call is answered during the first minute is

492 I CHAPTER 6 APPTICATIOI{S OF II{TEGRATIOt{

The limit of the first term is 0 by

I'Hospital's Rule.

!* ,rn-" dt: 
l11 !' ,rr-" dt

: lT (-"-"1; + I: '-"0')

:lim (-*r-'.+ I e-'")
x---+* \ c c /

_1

P(0

- 0.2(- 5) ,-'ltfto - I e-tls : 0. 1813

So about lSVo of customers' calls are answered during the first minute.
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(b) The probability that a customer waits more than five minutes is

PQ 0.2e-t/s dt,["

- lim
-tr -)ac

I

I- o.ze-tls dt - lim (t-t e-*/s)

0.368
e

About3TVo of customers wait more than five minutes before their calls are
answered. I

Notice the result of Example 3(b): Even though the mean waiting time is
5 minutes, only 37Vo of callers wait more than 5 minutes. The reason is that some
callers have to wait much longer (maybe 10 or 15 minutes), and they bring up
the average.

Another measure of centrality of a probability density function is the median.
That is a number rn such that half the callers have a waiting time less than m and
the other callers have a waiting time longer than m. In general, the median of a
probability density function is the number rr such that

ff ltdx
This means that half the area under the graph of/lies to the right of zr. In Exer-
cise 5 you are asked to show that the median waiting time for the company
described in Example 3 is approximately 3.5 minutes.

Z Normal Distributions

Many important random phenomena-such as test scores on aptitude tests, heights
and weights of individuals from a homogeneous population, annual rainfall in a

given location-are modeled by a normal distribution. That means that the
probability density function of the random variable X is a member of the family of
functions

JU) -(x- p)2 /(z,r2l

You can verify that the mean for this function is p. The positive constant o is
called the standard deviation; it measures how spread out the values of X are.
From the bell-shaped graphs of members of the family in Figure 5, we see that for

I

2

I
:-P

v

o JZrr
E

The standard deviation is denoted by

the lowercase Greek letter a (sigma).

FIGURE 5

Normal distributions



494 CHAPTER 6 APPLICATlONS OI Il.lTEGRATION

FIGURE 6

Distribution of IQ scores

l. If f (t) is the probability clensity function for the lifetime
of a type of battery, where r is measured in hours, what
is the msaning of each intesral?

l' l( l0 t' t.

( a ) 
"f ,nn J'(t\ ctr (b) 

.1,,,, f t t) rlt

2. If /(x) is the probability density function f-or the blood
cholesterol level of men over the age of 40, where x is

small values of othe values of X are clustered about the mean, whereas for larger
values of o the values of X are more spread out. Statisticians have methods for
using sets of data to estimate p, and c.

The factor tl@JZn ) is needed to make/a probability density function. In
fact, it can be verified using the methods of multivariable calculus that

f-
ut-aE

e -(-r* dz l(.2t7) ,r* - I

EXAMPTE 4 r Intelligence Quotient (IQ) scores are distributed normally with
mean 100 and standard deviation 15. (Figure 6 shows the corresponding proba-
bility density function.)
(a) What percentage of the population has an IQ score between 85 and 115?

(b) What percentage of the population has an IQ above 140?

SOLUTIOH

(a) Since IQ scores are normally distributed, we use the probability density
function given by Equation 3 with p, : 100 and o : 15:

P(85 < X < ll5) : f:'t -_J--: e-(x-toot2/\2't52)dxJ8s 15,/277

Recall from Section 5.7 that the function y : e-" doesn't have an elementary
antiderivative, so we can't evaluate the integral exactly. But we can use the
numerical integration capability of a calculator or computer (or the Midpoint
Rule or Simpson's Rule) to estimate the integral. Doing so, we find that

P(85<X<ll5):0.68
So about 68Vo of the population has an IQ between 85 and l15, that is, within
one standard deviation of the mean.

(b) The probability that the IQ score of a person chosen at random is more than
140 is

P(X > 140) : f' -L-=: e-(x too)z/4so dx
r t4o l5 J2T

To avoid the improper integral we could approximate it by the integral from 140

to 200. (It's quite safe to say that people with an IQ over 200 are extremely
rare.) Then

I/-
u iLn

P(X

Therefore, about 0 .4To of the population has an IQ over 140. ffi

Exercises

rleasured in rrrilligrams per deciliter, express the tol-
lowing probabilities as integrals.
(a) The probability that the cholesterol level of such a

nran lies between 180 ancl 244
(b) The probability that the cholesterol level of such a

man is less than 200

3. A spinner from a board game randomly indicates a real
number between 0 and 10. The spinner is fair in the



sense that it indicates a number in a given interval with
the same probability as it indicates a number in any
other interval of the same length.
(a) Explain why the function

/(x):{:t Tu{x{10l0 if x < 0 or x ) 10

is a probability density function for the spinner's
values.

(b) What does your intuition tell you about the value
of the mean? Check your guess by evaluating an

integral.

(a) Explain why the function whose graph is shown is a

probability density function.
(b) Use the graph to find the following probabilities.

(i) P(x < 3) (ii) P(3 < x < 8)

(c) Calculate the mean.

Show that the median waiting time for a phone call
to the company described in Exarnple 3 is about
3.5 minutes.

(a) A type of lightbulb is labeled as having an average

lifetime of 1000 hours. It's reasonable to model the
probability of failure of these bulbs by an exponen-
tial density function with mean p : 1000. use this
model to find the probability that a bulb
(i) fails within the first 200 hours,
(ii) burns for more than 800 hours.

(b) What is the median lifetime of these lightbulbs?

The manager of a fast-food restaurant determines that
the average time that her customers wait for service is

2.5 minutes.
(a) Find the probability that a customer has to wait for

more than 4 minutes.
(b) Find the probability that a customer is served within

the first 2 minutes.
(c) The manager wants to advertise that anybody who

isn't served within a certain number of minutes gets

a free hamburger. But she doesn't want to give away
free hamburgers to more than ZVo of her customers.
What should the advertisement say?

According to the National Health Survey, the heights
of adult males in the United States are normally dis-
tributed with mean 69.0 inches and standard deviation
2.8 inches.
(a) What is the probability that an adult male chosen at

random is between 65 inches and 73 inches tall?
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(b) What percentage of the adult male population rs

more than 6 feet tall?

The "Garbage Project" at the University of Arizona
reports that the amount of paper discarded by house-

holds per week is normally distributed with mean 9.4 lb
and standard deviation 1.2 Ib. What percentage of
households throw out at least 10 lb of paper a week?

Boxes are labeled as containing 500 g of cereal. The
machine filling the boxes produces weights that are nor-
rnally distributed with standard deviation l2 g.

(a) If the target weight is 500 g, what is the probability
that the machine produces a box with less than
480 g of cereal?

(b) Suppose a law states that no more than 57o of a
manufacturer's cereal boxes can contain less than
the stated weight of 500 g. At what target weight
should the manufacturer set its filling machine?

For any normal distribution, find the probability that
the random variable lies within two standard deviations
of the mean.

with
defined by

(x

Find the standard deviation for an exponential density
function with mean F".

In a famous lSth-century probleffi, known as Buffon's
needle problem, a needle of length /r is dropped onto a

flat surface (for example, a table) on which parallel
lines L units apart, L >-- /r, have been drawn. The prob-
lem is to determine the probability that the needle will
come to rest intersecting one of the lines. Assume that
the lines run east-west, parallel to the x-axis in a rect-
angular coordinate system (as in the figure). Let )' be

9.

10.

4.

ll.

5.

12. The standard deviatio
probability density fu

l-,^-
a- | | _

L!/

n for a random variable
nction / and lrlean p is

I 'l'
p)=f (x) d* 

|I

6.
r3.

7.

L

hsrn0



496 CHAPTER 6 APPLICATIONs OF INTEGRATIOll

the distance from the "southern" end of the needle to
the nearest line to the north. (If the needle's southern
end lies on a line, let.)' - 0. If the needle happens to lie
east-west, let the "western" end be the "southern" end.)
Let 0 be the angle that the needle makes with a ray
extending eastward from the '-southern" end. Then
0 < .), < L and 0 < 0 < n'. I'.lote that the needle inter-
sects one of the lines only when ), < /r sin 0. Now, the
total set of possibilities for the needle can be identified
with the rectangular region 0 < ]r < L, 0 < 0 < n and

the proportion of times that the needle intersects a line
is the ratio

area under )o : lz sin B

area of rectangle

This ratio is the probability that the needle intersects a

line. Find the probability that the needle will intersee t a
line if /r - L What if lr - L/2?

14. The hyclrogen atom is composed of one proton in the
nucleus and one electron, which rnoves about the
nucleus. In the quantum theory of atomic structure, it is
assumed that the electron cloes not move in a well-
definecl orbit. Instead, it occupies a state known as an

orbital., which malr be thought of as a "cloud" of nega-
tive charge surrouncling the nucleus. At the state of low-

est energy, called the ground state, or 1s - orbital, the
shape of this cloud is assumed to be a sphere centered
at the nucleus. This sphere is described in terms of the
probability density function

1a
P(r)-+r2r-)r'tu(t r>0

00

rn,here cr6 is the Bohr radius (an:5.59 X l0-1' m). The
inteqral

gives the probability that the electron will be found
within the sphere of radius r meters centered at the
nucleus.
(a) Verify that p(r) is a probability density function.
(b) Find lim,. -.* p(r'). For what value of r does p(r) have

its maximum value?

n= (c) Graph the rCensity function.
(d) Find the probability that the electron will be within

the sphere of radius 4do ce fltered at the nucleus.
(e) Calculate the rrean distance of the electron from

the nucleus in the ground state of the hydrogen
atom.

Chapter 6 Review
O CONCEPT CHECK O

l. (a) Draw two typical curves J' - /(r1 and tr : g(x),
where I (x) > li'; ]t for n < r < b. Show how to
approximate the area between these curves by a

Riemann sum and sketch the corresponding approxi-
mating rectangles. Then write an expression for the
exact area.

(b) Expltrin how the situation changes if the curves
have equations r - f (y) ancl r : g( f'), where

/( -l') > g( l') for c € l' < r/'

Suppose that Sue leads Kathy throughout a 1500-meter
race. What is the physical meaning of the area between
their velocity curves for the first minute of the race?

Suppose ,S is a solid with known cross-sectional areas.

E,xplain how to approximate the volume of S by a

Riemann sum. Then write an expression for the exact
volume.

(a) How is the length of a curve defined?
(b) Write an expression for the length of tr srnooth

curve with parametric equations r - ,f(r), .v : gU),,

n<r<b.
(c) How does the expression in part (b) simplify if the

curve is clescribecl by giving .y terms of r, that is.

)' : f(x), a < r < b? What if r is given as a func-
tion of y?

(a) What is the average value of a function / on an
interval la.b)'!

(b) What does the Mean Value Theorem for Integrals
say? What is its geometric interpretation?

Suppose that you push a book across a 6-meter-long
table by exerting a force /(") at each point from r : 0

to x - 6. What does l3 ftrl dx represent? If /(x) is mea-
sured in newtons. what are the units for the inteeral?

4.

7.

5.

6.3.

. f, 1
P(r) _: l^' , ttur u Qtl



7. (a) What is the physical significance of the center of
mass of a thin plate?

(b) If the plate lies between y - /(x) and y : 0, where
a < x < b, write expressions for the coordinates of
the center of mass.

8. Given a demand function p(x), explain what is meant by
the consumer surplus when the amount of a commodity
currently available is X and the current selling price is

P. Illustrate with a sketch.

CHAPITR 6 REl,IIW 497

9. (a) What is the cardiac output of the heart?
(b) Explain how the cardiac output can be measured by

the dye dilution method.

10. Suppose /(x) is the probability density function for the
weight of female college students, where x is measured

in pounds.
(a) What is the meaning of the integral l,lnn /(*) dx?
(b) Write an expression for the mean of this density

function.

+ EXERCISES B

l-2 I Find
curves.

l. )t :,T2

the area of the region bounded by the given

6x, y-llx 2x2

ference at its widest point to be 53

ence 7 cm from each end is 45 cm.

to make your estimate.

cm. The circumfer-
Use Simpson's Rule

l*- 28 cm 

-l
The base of a solid is a circular disk with radius 3. Find
the volume of the solid if parallel cross-sections perpen-
dicular to the base are isosceles right triangles with
hypotenuse lying along the base.

The base of a solid is the region bounded by the parab-
olas ), - x2 and )' : 2 xt. Find the volume of the

solid if the cross-sections perpendicular to the r-axis
are squares with one side lying along the base.

The height of a monument is 20 m. A horizontal cross-
section at a distance x meters from the top is an equi-
lateral triangle with side xf4 meters. Find the volume
of the monument.

(a) The base of a solid is a square with vertices at (1,0),
(0, 1), (- 1, 0), and (0, - 1). Each cross-section per-
pendicular to the x-axis is a semicircle. Find the

volume of the solid.
(b) Show that by cutting the solid of part (a), we can

rearrange it to form a cone. Thus compute its vol-
ume more simply.

13. Find the length of the curve with parametric equations
x- 3rt,y _ 2t3,0

14. Use Simpson's Rule with n - l0 to estimate the length
of the arc of the curve )' - U*'from (1, 1) to (Z,i).

2.x-2), +7:0, y' 6y x:0

3. Let 9t, be the region bounded by the curves y - tan(x2),
x - l, and y : 0. Use the Midpoint Rule with n - 4 to
estimate the following:
(a) The area of '7t,

(b) The volume obtained by rotating gt about the x-axis

4. Let 9t be the region in the first quadrant bounded by the

curves )'- x'and y - 2x x'. Calculate the following
quantitie s:

(a) The area of 9l
(b) The volume obtained by rotating 91, about the x-axis

5. Find the volumes of the solids obtained by rotating the
region bounded by the curves y : J anA r,,: J2 about l0'

the following lines:
(a) The x-axis (b) The y-axis (c) .)' : 2

9.

n= 6.

nga
'L r.

Let 9l be the region bounded by the curves y - I - x'
and y : xu - x + 1. Estimate the following:
(a) The r-coordinates of the points of intersection of

the curves
(b) The area of 9t
(c) The volume generated when 9t is rotated about the

x-axis

Use a graph to find the coordinates of the point where
the curve with parametric equations

-rr: t3 3t y: t2 + t+ 1

intersects itself. Then find the area enclosed by the loop
of this curve.

Suppose you are asked to estimate the volume of a foot-
ball. You measure and find that a football is 28 cm
long. You use a piece of string and measure the circum-

il.

17,

8.
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15. A force of 30 N is required to maintain a spring
stretched from its natural length of 12 cm to a length of
l5 cm. How much work is done in stretching the spring
from 12 cm to 20 cm?

16. A 1600-lb elevator is suspended by a 200-ft cable that
weighs 10 lb/ft. How much work is required to raise the
elevator from the basement to the third floor. a distance
of 30 ft?

17. A tank full of water has the shape of a paraboloid of
revolution as in the figure; that is, its shape is obtained
by rotating a parabola about a vertical axis.
(a) If its height is 4 ft and the radius at the top is 4 ft,

find the work required to pump the water out of the
tank.

n= (b) After 4000 ft-lb of work has been done, what is the
depth of the water remaining in the tank?

A trough is filled with water and its vertical ends have

the shape of the parabolic region in the figure. Find the
hydrostatic force on one end of the trough.

g fr 
-=-r

21.

19. A gate in an irrigation canal is in the form of a trape-
zoid 3 ft wide at the bottom,5 ft wide at the top, and
2 ft high. It is placed vertically in the canal, with the
water extending to its top. Find the hydrostatic force on
one side of the gate.

20. Find the centroid of the region shown.

The demand function for a commodity is given by
p : 2000 0.1r 0.01,12. Find the consumer surplus
when the sales level is 100.

22. Find the average value of the function /(;) - x3 on the
interval 12, 41.

23. If / is a continuous function, what is the limit as h --+ 0
of the average value of /on the interval [x, x + h]7

Lengths of human pregnancies are normally distributed
with mean 268 days and standard deviation 15 days.
What percentage of pregnancies last between 250 and
280 days?

The length of time spent waiting in line at a certain
bank is modeled by an exponential density function
with mean 8 minutes.
(a) What is the probability that a customer is served in

the first 3 minutes?
(b) What is the probability that a customer has to wait

more than l0 minutes?
(c) What is the median waiting time?

24.

25.

t8.

T
I

I

4ft



l. A solid is generated by rotating about the x-axis the region bounded by the x-axis,

the y-axis, and the curve y - f(x), where/is a positive function and -r > 0. The
volume generatedbythepartofthecurvefromx:0tox: bis b2 for allD > 0.

Find the functionl,

2. A cylindrical glass of radius r and height L is filled with water and then tilted until
the water remaining in the glass exactly covers its base.
(a) Determine a way to "slice" the water into parallel rectangular cross-sections

and then set up a definite integral for the volume of the water in the glass.

(b) Determine a way to "slice" the water into parallel cross-sections that are trape-

zoids and then set up a definite integral for the volume of the water.
(c) Find the volume of water in the glass by evaluating one of the integrals in

part (a) or part (b).
(d) Find the volume of the water in the glass from purely geometric considerations.
(e) Suppose the glass is tilted until the water exactly covers half the base. In what

direction can you "slice" the water into triangular cross-sections? Rectangular

cross-sections? Cross-sections that are segments of circles? Find the volume of
water in the slass.

3. (a)

(b)

Show that the volume of a segment of height h of a sphere of radius r is

v:Inh'(3,-h)
Show that if a sphere of radius I is sliced by a plane at a distance x from the

center in such a way that the volume of one segment is twice the volume of the

other, then x is a solution of the equation

Figure for Problem 3

3x3 9x + 2 - 0

where 0 < x 11. Use Newton's method to find.r accurate to four decimal

places.
(c) Using the formula for the volume of a segment of a sphere, it can be shown that

the depth x to which a floating sphere of radius r sinks in water is a root of the

equation

Jt 3rxz + 4r3s : o

where s is the specific gravity of the sphere. Suppose a wooden sphere of radius

0.5 m has specific gravity 0.75. Calculate, to four-decimal-place accuracy, the

depth to which the sphere will sink.
(d) A hemispherical bowl has radius 5 in. and water is running into the bowl at the

rate of 0.2 in3/s.
(i) How fast is the water level in the bowl rising at the instant the water is 3 in.

deep?
(ii) At a certain instant, the water is 4 in. deep. How long will it take to fill the

bowl?
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4. Archimedes' Principle states that the buoyant force on an object partially or fully
submerged in a fluid is equal to the weight of the fluid that the object displaces.
Thus, for an object of density pq floating partly submerged in a fluid of density pr,
the buoyant force is given by F : fuglo,,,A(y)dy, where g is rhe acceleration due to
gravity andA(y) is the area ofa typical cross-section of the object. The weight of
the object is given by

w : pog .l'',," A(.1,) r/),

(a) Show that the percentage of the volume of the object above the surface of the
liquid is

tOU Pr - Pn

Pr

The density of ice is 917 kg/mr and the density of seawater is 1030 kg/mr.
What percentage of the volume of an iceberg is above water?
An ice cube floats in a glass filled to the brim with water. Does ttre water over-
flow when the ice melts?

(d) A sphere of radius 0.4 m and having negligible weight is floating in a large
freshwater lake. How mLlch work is required to completely submerge the sphere?
The density of the water is 1000 kg/-t.

Water in an open bowl evaporates at a rate proportional to the area of the surface of
the water. (This means that the rate of decrease of the volume is proportional to the
area of the surface.) Show that the depth of the water decreases at a constant rate.,
regardless of the shape of the bowl.

A sphere of radius I overlaps a smaller sphere of radius r in such a way that their
intersection is a circle of radius r. (ln other worcls, they intersect in a great circle of
the small sphere.) Find r so that the volume inside the small sphere and outside the
large sphere is as large as possible.

Suppose that the density of seawater, p : p(:), varies with the depth z Lrelow the
surface.
(a) Show that the hydrostatic pressure is governed by the differential equation

dP

*: P\z)g

where g is the acceleration due to gravity. Let fl, and p0 be the pressure and
density at z : O. Express the pressure at depth ? as an integral.

(b) Suppose the density of seawater at depth z is given by p : pse'/tr, where H is a
positive constant. Find the total force, expressed as an integral, exerted on a

vertical circular porthole of radius r whose center is located at a distance a > r
below the surface.

8. A paper drinking cup filled with water has the shape of a cone wirh heighr ft and
semivertical angle 0 (see the figure). A ball is placed carefully in the cup, thereby
displacing some of the water and making it overflow. What is the radius of the ball
that causes the greatest volume of water to spill out of the cup?

9. A string is wound around a circle and then unwound while being held taut. The
curve traced by the point P at the end of the string is called the involute of the
circle. If the circle has radius rand center O and the initial position of P is (a0),

Figure for Problem 4,

(b)

(c)

5.

6.

7.

Figure for Problem B



and if the parameter 0 is chosen as in the figure, show that parametric equations of
the involute are

x - r(cos0 + 0sin0) y - r(sin 0 - 0cos0)

Na
o

/

10.

il.

A cow is tied to a silo of radius r by a rope just long enough to reach the opposite
side of the silo. Find the area available for grazing by the cow.

A curve is defined by the parametric equations

fr COSII Pr Sin #x: ),-du t: ),-au

Find the length of the arc of the curve from the origin to the nearest point where
there is a vertical tangent line.

Let Cbe the arc of the curve y: f(x) between the points p(p, f(p)) andQk, f@))
and fet 9l be the region bounded by C, by the line y -- mx + D (which lies entirely
on one side of C), and by the. perpendiculars to the line from P and Q.
(a) Show that the area of 9?, is

-+-- ln tf.j;l - mx - bllr + mf'(x)]dx
lim-rP

(b) Find a formula similar to the one in part (a) for the volume of the solid obtained
by rotating 9l about the line y: mx + b.

IHint: The formula in part (a) can be verified by subtracting areas, but it is more
instructive to derive it by first approximating the area using rectangles perpendicu-
lar to the line, as shown in the figure. This will also help in finding the formula for
part (b). Use the figure to help express Ar in terms of Ax.l

12.

Figure for Problern 1O

y : /(r)

t-: nlx + h

tangent to c
at (r,, /(r,))

Figure for Protrlem 12
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in this chapter: growth of fish populations ;

interaction of Canada lynr and s/?ou"shoe

hare populations; positioning a baseball

infielder to relay a throw to home plate.
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'ffi"'.. =;'. Perhaps the most important of all the applications of

calculus is to differential equations. When physical scientists

or social scientists use calculus, more often than not it is to

analyze a differential equation that has arisen in the process

of modeling some phenomenon that they are studying. Although

it is often impossible to find an explicit formula for the solution

of a differential equation, we will see that graphical and numerical

approaches provide the needed information.
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Modeling with

Now is a good time to read (or reread)
the discussion of mathematical modeling
on page 75.

Differential Equations

In describing the process of modeling in Section 1.7, we talked about formulating
a mathematical model of a real-world problem either through intuitive reasoning
about the phenomenon or from a physical law based on evidence from experi-
ments. The mathematical model often takes the form of a differential equation,
that is, an equation that contains an unknown function and some of its derivatives.
This is not surprising because in a real-world problem we often notice that changes
occur and we want to predict future behavior on the basis of how current values
change. Let's begin by examining several examples of how differential equations
arise when we model physical phenomena.

@ naoa"lr olPopulation Growth

One model for the growth of a population is based on the assumption that the
population grows at a rate proportional to the size of the population. That is a rea-
sonable assumption for a population of bacteria or animals under ideal conditions
(unlimited environment, adequate nutrition, absence of predators, immunity from
disease).

Let's identify and name the variables in this model:

/ : time (the independent variable)

P : the number of individuals in the population (the dependent variable)

The rate of growth of the population is

the rate of growth of the population is
ten as the equation

the derivative dPldt. So our assumption that
proportional to the population size is writ-

dP
KP

dt

where lc is the proportionality constant.
tion growth; it is a differential equation
P and its derivative dP/dt.

Having formulated a model, let's look at its consequences. If we rule out a
population of 0, then P(t) > 0 for all r. So, if k > 0, then Equation I shows that
P'(t) > 0 for all t. This means that the population is always increasing. In fact, as
P(r) increases, Equation I shows that dP/dt becomes larger. In other words, the
growth rate increases as the population increases.

Let's try to think of a solution of Equation 1. This equation asks us to find a
function whose derivative is a constant multiple of itself. We know that exponential
functions have that property. In fact, if we let P(t) : Cer', then

P'(t) : C(kek') : k(Cek') : kP(t)

Thus, any exponential function of the form P(t) : Ce*' is a solution of Equation l.
When we study this equation in detail in Section 7.5,we will see that there is no
other solution.

Allowing C to vary through all the real numbers, we get the family of solutions
P(t) : Ce" whose graphs are shown in Figure 1. But populations have only posi-

n

Equation 1 is our first model for popula-
because it contains an unknown function

FIGURE I

The family of solutions of dPldt - kP



FIGURE 2

The family of solutions P( t) - Cek'

withC>0and t>0
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tive values and so we are interested only in the solutions with C > 0. And we are

probably concerned only with values of / greater than the initial time r : 0.

Figure 2 shows the physically meaningful solutions. Putting t : 0, we get

P(0) : Cek(o) : C, so the constant C turns out to be the initial population, P(0).
Equation I is appropriate for modeling population growth under ideal condi-

tions, but we have to recognize that a more realistic model must reflect the fact that
a given environment has limited resources. Many populations start by increasing
in an exponential manner, but the population levels off when it approaches its car-
rying capacity K (or decreases toward K if it ever exceeds K). For a model to take

into account both trends, we make two assumptions:
SD

. ? : kP if P is small (Initially, the growth rate is proportional to P.)
dt
)D

. + < 0 if P > K (P decreases if it ever exceeds K.)
dt

A simple expression that incorporates both assumptions is given by the equation

a ll:tp(r-l\
dt \ ,K/

Notice that if P is small compared with K, then P/K is close to 0 and so

dP/dt - kP.lt P ) K, then | - P/K is negative and so dP/dr < 0.

Equation 2 is called the logistic differential equation and was proposed by the

Dutch mathematical biologist Verhulst in the 1840s as a model for world population
growth. We will develop techniques that enable us to find explicit solutions of the

logistic equation in Section 7.6, but for now we can deduce qualitative characteris-
tics of the solutions directly from Equation 2. We first observe that the constant

functions P(t) : 0 and P(t) : K are solutions because, in either case, one of the

factors on the right side of Equation 2 is zero. (This certainly makes physical

sense: If the population is ever either 0 or at the carrying capacity, it stays that
way.) These two constant solutions are called equilibrium solutions.

If the initial population P(0) lies between 0 and K, then the right side of Equa-

tion 2 is positive, so dPldt > 0 and the population increases. But if the population

exceeds the carrying capacity (P > ,K), then 1 - P/K is negative, so dP/dt < 0

and the population decreases. Notice that, in either case, if the population
approaches the carrying capacity (P ---> K), then dP/dt + 0, which means the

population levels off. So we expect that the solutions of the logistic differential
equation have graphs that look something like the ones in Figure 3. Notice that the

graphs move away from the equilibrium solution P : 0 and move toward the equi-
libriumsolutionP:K.

FIGURE 3

Solutions of the logistic equation

P:K \,, 't--'-"-

Equilibrium
solutions
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FIGURE 4

Equilibrium
position
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Let's now look at an example of a model from the physical sciences. We consider
the motion of an object with mass m at the end of a vertical spring (as in Figure 4).
In Section 6.5 we discussed Hooke's Law, which says that if the spring is stretched
(or compressed) x units from its natural length, then it exerts a force that is propor-
tional to x:

restoring force : -kx
where ft is a positive constant (called the spring constant).If we ignore any exter-
nal resisting forces (due to air resistance or friction) then, by Newton's Second
Law (force equals mass times acceleration), we have

E ^{:: -kxdt'

This is an example of what is called a second-order differential equation because
it involves second derivatives. Let's see what we can guess about the form of the
solution directly from the equation. We can rewrite Equation 3 in the form

d7x

df

which says that the second derivative of .r is proportional to x but has the opposite
sign. We know two functions with this property, the sine and cosine functions. In
fact, it turns out that all solutions of Equation 3 can be written as combinations of
certain sine and cosine functions. (See Exercise 3.) This is not surprising; we
expect the spring to oscillate about its equilibrium position and so it is natural to
think that trigonometric functions are involved.

E General Differential Equations

In general, a differential equation is an equation that contains an unknown func-
tion and one or more of its derivatives. The order of a differential equation is the
order of the highest derivative that occurs in the equation. Thus, Equations I and,2
are first-order equations and Equation 3 is a second-order equation. In all three of
those equations the independent variable is called I and represents time, but in gen-
eral the independent variable doesn't have to represent time. For example, when we
consider the differential equation

_)' - r-y

it is understood that y is an unknown function of x.
A function / is called a solution of a differential equation if the equation is sat-

isfied when y : f(x) and its derivatives are substituted into the equation. Thus,/is
a solution of Equation 4 if

f'(x) : xf(x)

for all values of x in some interval.
When we are asked to solve a differential equation we are expected to find all

possible solutions of the equation. We have already solved some particularly simple

k:
tn

E

Motion Spring
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differential equations, namely, those of the form

y' : f(x)

For instance, we know that the general solution of the differential equation

r3v:x-

is given by

4xr:v+c
where C is an arbitrary constant.

But, in general, solving a differential equation is not an easy matter. There is no
systematic technique that enables us to solve all differential equations. But in
Section 7.2 we will see how to draw rough graphs of solutions even when we have
no explicit formula. And the methods of Section 7.3 will enable us to find numeri-
cal approximations to solutions.

EXAMPLE I r Show that every member of the family of functions

l*ce'
i:-t l-ce'

is a solution of the differential equation y' : L0' - t).

SOLUTION We use the Quotient Rule to differentiate the expression for y:

v
(l - ce') (ce') - (l + ce') (- ce')

(l ce' )'

cet c?ez' + cet + c2e2'

Figure 5 shows graphs of seven members

of the family in Example l. The differen-
tial equation shows that if .y : +1, then

-y' : 0. That is borne out by the flatness

of the graphs near -).' 
: I and 1' : - l.

FIGURE 5

( I ce')z

The right side of the differential equation becomes

1)

2ce'

U-rlf

+ ce')' (1 ce')z(l;II

2

1

2

L(v'

4ce' Zce'

U -;7f 
: 

0 - ce'Y

Therefore, for every value of c, the given function is a solution of the differential
equation. f

When applying differential equations we are usually not as interested in finding
a family of solutions (the general solution) as we are in finding a solution that sat-
isfies some additional requirement. In many physical problems we need to find the
particular solution that satisfies a condition of the form y(to) : yp. This is called
an initial condition, and the problem of finding a solution of the differential equa-
tion that satisfies the initial condition is called an initial-value problem.

Geometrically, when we impose an initial condition, we look at the family of
solution curves and pick the one that passes through the point (ro,yo).Physically,
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this corresponds to measuring the state of a system at time /0 and using the solution
of the initial-value problem to predict the future behavior of the system.

EXAMPLE 2 r Find a solution of the differential equation y' : i0' - 1) that
satisfies the initial condition y(0) : 2.

SOtUTl0if Substituting the values r : 0 and I : 2 into the formula

llce'
!- l-ce'

from Example l, we get

2: I 
* 

'nli
t-ce

Solving this equation for c, we get 2 2c
solution of the initial-value problem is

I + \'')-,' I - lt'

l+c
1-c

: I + c, which gives c - +. So the

3+et
3_ e'

Find rl solution of the differential equation _y' - *.)'
that satisfies the initial condition y(0) : 5.

Find a solution of the differential equation y' - x_y

that satisfies the initial condition .)'(1) - 2.

What can you say about a solution of the equation

)' : -]'2 just by looking at the differential
equation?

Verify that all members of the family

--!' - U (* + C) are solutions of the equation in
part (a).

Can you think of a solution of the differential equa-
tion )' : -_)'2 that is not a member of the family in
part (b)?

Find a solution of the initial-value problem

.),' - - )'t )(0) : 0.5

What can you say about the graph of a solution of
the equ&tion y'-,{),r when x is close to 0? What if
x is large?

Verify that all members of the family
_), - (c- *n) - "t are solutions of the differential
equation )," : t-)'"t.

Graph several members of the family of solutions on
a common screen. Do the graphs confirm what you
predicted in part (a)?

Find a solution of the initial-value problem

r

Exercises

l. Show that j, : 2 + e " is a solution of the differential
equation r" + 3xt-)' - 6-tr1.

2. Verify that -)' - (2 + ln.r) /x is a solution of the initial-
value problem

'rt.),'*J'f,:l l'(l) - 2

3. (a) For what nonzero values of ft does the function
.)' - sin ftr satisfy the differential equation

)" + $';r - Q?

(b) For those values of k, verify that every member of
the familv of functions

.)'- Asinkr + Bcoskr

is also a solution.

4. For what values of r does the function y : e" satisfy
the clifferential equation r," + .)" 61, - Q?

5. Which of the tollowing functions are solutions of the
differential equotion y" + 2y' + .)' : 0?

(c)

(d)

6.

(a) .)' - e'
(c) .)' - te-.'

(b) ), : e-'
(d) !:tze t

7. (a)

(b)

(c)

(d)

8. (a)

(b)

nJ /^\'ll \L /

(d)

(a) Show thSt every member of the family of functions

.), - Ce'"tz is a solution of the differential equation

.)" - xy'
(b) Illustrate part (a) by graphing several members of

the familv of solutions on a common screen.

NJ
'll

J" - -x}l -)'(o) - 2



9. A population is modeled by the differential equation

dP ( P \
d, 

: l.2P\l - 4r(r0)

(a) For what values of P is the population ine reasing?
(b) For what values of P is the population decreasing?
(c) What are the equilibrium solutions?

A function y'(r) satisfies the differential equation

dl,ir

d, - )'* 6r'' + 5-r'-

(a) What are the constant solutions of the equation?
(b) For what values of .)' is -)' increasing?
(c) For what values of .)' is ]' decreasing?

Psychologists interested in learning theory study learn-
ing curves. A learning curve is the graph of a function
P(r), the performane e of someone learning a skill as a
function of the training time r. The derivative dPldt rep-
resents the rate at which perf-ormance improves.
(a) When do you think P increases most rapidly? What

happens to dPldt as r increases? E,xplain.
(b) If M is the maximum level of perforfflance of which

the learner is capable, explain why the diff.erential

FIGURE I

A solution of )": -r * 'y

is a reasonable model for learning.
(c) Make a rough sketch of a possible solution of this

differential equation.

12. Suppose you have just poured a cLlp of freshlv brew,ecl
coffee with temperature 95 "C in a room w,here ttre tem-
perature is 20 'C.
(a) When do you think the coffee cools most quic-k11,'i

What happens to tl-re rate of coolin_g as tirne goe s
by? E,xplain.

(b) Newton's Law of Cooling states that the rate of
cooling of an object is proportional to the tempern-
ture clifference tretween the oLrject and its surround-
ings, providecl that this difference is not too large.
Write a differential equation that expresses New-
ton's Law of Cooling for this pnrticular sitr_ration.
What is the initial condition'J In view of yoLlr

answer to part (a), do 1'ou think this differential
equation is an appl'opriate lnoclel for cooling?

(c) Make a rough sketch of the graph of the solution of
the initial-value protrlem in part ( b).

equatron

dP--r:k(M-P)
dr
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ft er positive cclnstnnt

(0' l)

t0.

ll,

Direction Fields

Suppose we are asked to sketch the graph ofthe solution ofthe initial-value problem

y':x-|y y(0) :1

We don't know a formula for the solution, so how can we possibly sketch its graph?
Let's think about what the differential equation means. The equation y' - x I y
tells us that the slope at any point (.r, l) on the graph (called the soLution curve) is
equal to the sum of thex- andy-coordinates of the point. (See Figrrre l.) In par-
ticular, because the curve passes through the point (0, l), its slope there must be
0 + I : 1. So a small portion of the solution curve near the point (0, 1) looks tike
a short line segment through (0, 1) with slope l. (See Figure 2.)

slope at (0, l1
is0*l:l

FIGURE 2

The beginning of the solution curve
through (0, 1)

Jrrlr

slope at
(rr, )',) is
J., * )r"
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As a guide to sketching the rest of the curve, let's draw short line segments at a

number of points (.r, y) with slope x * y. The result is called a direction field and

is shown in Figure 3. For instance, the line segment at the point (1,2) has slope

| + 2 : 3. The direction field allows us to visualize the general shape of the solu-

tion curves by indicating the direction in which the curves proceed at each point.

ltt
tlt
/ll
// /
// /

I

ll
ll

,2

\\
\\

'2 I\ \\
\\\
\\ \

\\\
\\\

\ \\
\ \\
\ \\
\ \\
\\\

FIGURE 3

Direction field for 1" - r * )'

IIG['RE 4

The solution curve through (0' 1)

I I l'z
ll/
/ / '-l

/

ttl
/tt
--/ /
\-z /

Now we can sketch the solution curve through the point (0, 1) by following the

direction field as in Figure 4. Notice that we have drawn the curve so that it is par-

allel to nearby line segments.
In general, suppose we have a first-order differential equation of the form

Y' : F(x,Y)

where F(x, y) is some expression in .r and y. The differential equation says that the

slope of a solution curve at a point (x,y) on the curve is F(.r,y). If we draw short

line segments with slope F(x, y) at several points (x, y), the result is called a direc'
tion field (or slope field). These line.segments indicate the direction in which a

solution curve is heading, so the direction field helps us visualize the general shape

of these curves.

EXAMPLE I T
(a) Sketch the direction field for the clifferential equation -y' - xz + r*' 1.

(b) Use part (a) to sketch the solution curve that passes through the origin.

5CILUTtSru

(a) We start by computing the slope at several points in the following chart:

Now we draw short line segments with these slopes at these points. The result is
the direction field shown in Figure 5.

(b) We start at the origin and move to the right in the direction of the line

segment (which has slope -l). We continue to draw the solution curve so that it

I

/

t/
ll

tt

\-! /
-// /
//t
ttl

-l

l-z

,/

to/rt

t n -t 0 I 1 ") -l 0 2

\ 0 0 0 0 0 I I I I

\" : -tl + \ I
1
J t) -l 0 -J 4 I o I -t

FIGURE 5
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FIGURE 6

FIGURE 9

I
I tl

t!
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moves parallel to the nearby line segments. The resulting solution curve is
shown in Figure 6. Returning to the origin, we draw the solution curve to the
left as well. m

The more line segments we draw in a direction field, the clearer the picture
becomes. Of course, it's tedious to compute slopes and draw line segments for a
huge number of points by hand, but computers are well suited for this task.
Figure 7 shows a more detailed, computer-drawn direction field for the differential
equation in Example l. It enables us to draw, with reasonable accuracy, the solution
curves shown in Figure 8 with y-intercepts -2, -1,0, l, and 2.

-3

FIGURE 7 FIGURE 8

Now let's see how direction fields give insight into physical situations. The
simple electric circuit shown in Figure 9 contains an electromotive force (usually a

battery or generator) that produces a voltage of E(t) volts (V) and a current of /(t)
amperes (A) at time t. The circuit also contains a resistor with a resistance of R
ohms (O) and an inductor with an inductance of t henries (H).

Ohm's Law gives the drop in voltage due to the resistor as RL The voltage drop
due to the inductor is L(dl/dt). One of Kirchhoff 's laws says that the sum of the
voltage drops is equal to the supplied voltage E(t). Thus, we have

tt
tt

7x
I

-T

I

r

/
\\\

-*-- / I
--" /,/ 

'i
//li,i
ll

lr

tr
dIL+ + RI: E(r)
dt

which is a first-order differential equation that models the current I attime t.

EXAMPLE 2 r Suppose that in the simple circuit of Figure 9 the resistance is
12 O, the inductance is 4 H, and a battery gives a constant voltage of 60 V.
(a) Draw a direction field for Equation I with these values.
(b) What can you say about the limiting value of the current?
(c) Identify any equilibrium solutions.
(d) If the switch is closed when t : 0 so the current starts with /(0) : 0, use
the direction field to sketch the solution curve.

$stuTrfH
(a) If we put L : 4, R : 12, and E(t) : 60 in Equation 1, we get

dI
O * + l2I:60 dI-;:15 3l

dt

l,1i
{/t

/

/

1..

Tl

/
I

_-.L,

7/

I
l---J:

ttt,t
tl

t, rf" ,

Iufr/
;.{- -.1."--l*

I
I

J

Switch
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FIGURE IO

(ll
(ll

FIGURE II

The direction field for this differential equation is shown in Figure 10.

\\\\\\\- -\.-

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
--\ t-\_ tt-\ 

---_ --\ .--\ t-.\ 
-.r_ ---\ ---\

,/ ,///////
l///
tt
tt

-/ -.//,/

ll
tl
ll

--/ --/./ ./////
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t/
ll

,/ ,/,////
,/ ./
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tl

t2t
ttt

ttSt
ttt

1.5

(b) It appears from the direction field that all solutions approach the value 5 A,
that is.

lim 1(r) : 5

(c) It appears that the constant function 1(t : 5 is an equilibrium solution.
Indeed, we can verify this directly from the differential equation. If I(t) : 5,
then the left side is dl/dt : 0 and the right side is 15 - 3(5) : 0.

(d) We use the direction field to sketch the solution curve that passes through
(0,0), as shown in red in Figure 11.

\\\\\\\\\\\\\\\'\\ ---\ '\- -'\- ---\

Notice from Figure l0 that the line
allel. That is because the independent
the equation /' - 15 3l.In general,

,y

\\\\\\\\\\\\\\\\\\\\\
---_ --\ ---\ ---\ 

t\_ --\_

// "/'
,/,-= ,/ ,///

n/ 
/ ,/

ll,////
//t///
l//
ttt

-..t -.,- 
-/

,/ 1/,/i ,/
/ .,r'' / /
/,,t / /;'///

1/ / ///////
ttt

,l

segments along any horizontal line are par-
variable r does not occur on the right side of
a differential equation of the form

: f(y)

il

in which the independent variable is missing from the right side, is called autono-
mous. For such an equation, the slopes corresponding to two different points with
the same y-coordinate must be equal. This means that if we know one solution to
an autonomous differential equation, then we can obtain infinitely many others
just by shifting the graph of the known solution to the right or left. In Figure I I we

have shown the solutions that result from shifting the solution curve of Example 2

./z
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one and two units to the right. They correspond to closing the switch when t : I
and r : 2. Notice that the system behaves the same at any time.

Exercises

l. A direction field for the differenrial equation
y' - y e-' is shown. Sketch the graphs of the
solutions that satisfy the given initial conditions.
(a) y(0) - 0 (b) y(0) : I (c) y(0) : -1

It
tt
tt
tl
tt
tt

v
t I rt t2
Ittttt
ttttlt
I///t/
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2. (a) A direction field for the differential equation
y' : zy(y - 2) is shown. Sketch rhe graphs of rhe
solutions that satisfy the given initial conditions.
(i) y(0) : I (ii) y(0) : 2.5 (iii) )'(0) : - I
Suppose the initial condition is y(0) : c. For what
values of c is lim t--* y(t) finite? What are the equi-
librium solutions?

-lt/ /zt/ / / / /1/ / / / 7 
*

--\\\\\lJ:\\\\
/z---\\\
//l.z--\\
| / / /,/z-\

ll l// /z-

-r?rr\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\\\r+l

\\\\\\\lr\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

(b) 7 . Use the direction
sketch the graphs
initial conditions.
(a) y(o) : I

8. Repeat Exercise 7

field labeled I (for Exercises 3-6) to
of the solutions that satisfy the given

nlt
lt

y
l

'tr'*t

I

I

I

I

tl
tt
lt

I
n
tt

\\\\\\\\
\\\\\\\\
\ \\ \ \\ \ \
\ \\ \ \\ \ \\\\\\\\\\\\\\\\\

\\\\\\\\
\\\\\\\\
\\\\\\\\
\ \ \\ \ \\ \\\\\\\\\\\\\\\\\

(b) y(0) - 0 (c) y(o): -l
for the direction field labeled III.

9-10 r Sketch a direction field for the differential equation.
Then use it to sketch three solution curves.

9' !' : x - Y t0.y':xy*y2

I l- | 4 r Sketch the direction field of the given differential
equation. Then use it to sketch a solution curve that passes
through the given point.

?
I
I
I

l,_
I

I

t_

I

l

/u/n/ I t. Y' : Y', (0, 1)

t 3. Y' : x2 + i',, (0, 0)

12. y' -- x2 * y, (1, l)

14. y' : y(4 - y), (0, 1)

3-6 r Match the differential equation with its direction
field (labeled I-IV). Give reasons for your answer.

3.y':y I 4..y':y x

5.y':yt-x' 6.y,:yt x3

![g l5-16 r use a computer algebra system to draw a direction
field for the given differential equation. Get a printout and
sketch on it the solution curve that passes through (0, l).
Then use the CAS to draw the solution curve and compare
it with your sketch.

\
\
\
$

F

f 5. y': ysin2x f 6. y' : sin(x + y)
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Use a computer algebra system to draw a direction field
for the differential equation y' : yt 4y. Get a print-
out and sketch on it solutions that satisfy the initial
condition y(0) - c for various values of c. For what
values of c does lim,-,* y(r) exist? What are the possible

values for this limit?

Make a rough sketch of a direction field for the autono-

mous differential equation y' : f(y), where the graph

of f is as shown. How does the limiting behavior of
solutions depend on the value of y(0)?

The figure shows a circuit containing an electromotive
force, a capacitor with a capacitance of C farads (F),
and a resistor with a resistance of R ohms (O). The

voltage drop across the capacitor is QlC, where O is

the charge (in coulombs), so in this case Kirchhoff 's

Law gives

o
RI - a: EU)

L

But I - dQldt, so we have

dol .R;*ZQ-E\t)

Suppose the resistance is 5 O, the capacitance is 0.05 F,

and a battery gives a constant voltage of 60 V.

(a) Draw a direction field for this differential equation.
(b) What is the limiting value of the charge?
(c) Is there an equilibrium solution?
(d) If the initial charge is 8(0) - 0 C, use the direction

field to sketch the solution curve.

20. In Exercise 12 in Section 7.1 we considered a 95 "C cup

of coffee in a20oC room. Suppose it is known that the

coffee cools at a rate of l oC per minute when its tem-

perature is 70'C.
(a) What does the differential equation become in this

case?

(b) Sketch a direction field and use it to sketch the solu-

tion curve for the initial-value problem. What is the

limiting value of the temPerature?

18,

C

19.

FIGURE I

First Euler approximation

Euler's Method

The basic idea behind direction fields can be used to find numerical approxima-

tions to solutions of differential equations. We illustrate the method on the initial-
value problem that we used to introduce direction fields in Section 7.2:

Y'- x +Y y(0) : 1

The differential equation tells us that y'(0) : 0 + I : 1, so the solution curve has

slope I at the point (0, 1). As a first approximation to the solution we could use the

linear approximation L(x) : x * l. In other words, we could use the tangent line

at (0, l) as a rough approximation to the solution curve (see Figure 1).

Euler's idea was to improve on this approximation by proceeding only a short

distance along this tangent line and then making a midcourse correction by chang-

ing direction as indicated by the direction field. Figure 2 shows what happens if we

start out along the tangent line but stop when x : 0.5. (This horizontal distance

traveled is called the step size.) Since f(0.5) : 1.5, we have y(0.5) - 1.5 and we

take (0.5, 1.5) as the starting point for a new line segment. The differential equa-

Solution curve

Y: L(x)



tion tells us that y'(0.5) : 0,5 + 1.5 - 2, so we use the linear function

y : 1.5 + 2(x - 0.5) : 2x * 0.5

as an approximation to the solution for x > 0.5 (the gold-colored segment in Fig-
ure 2). If we decrease the step size from 0.5 to 0.25, we get the better Euler ap-
proximation shown in Figure 3.

In general, Euler's method says to start at the point given by the initial value
and proceed in the direction indicated by the direction field. Stop after a short
time, look at the slope at the new location, and proceed in that direction. Keep
stopping and changing direction according to the direction field. Euler's method
does not produce the exact solution to an initial-value problem-it gives approxi-
mations. But by decreasing the step size (and therefore increasing the number of
midcourse corrections), we obtain successively better approximations to the exact
solution. (Compare Figures 1,2, and 3.)

For the general first-order initial-value problem y' : F(x,y), y(xi: )0, our
aim is to find approximate values for the solution at equally spaced numbers xs,
xr -- xo ! h,x2:.{r * h, ..., where ft is the step size. The differential equation
tells us that the slope at (ro,yo) is y': F(xo,yi, so Figure 4 shows that the
approximate value of the solution when x : .r; is

.)ir : yo + hF(xo,)n)

lz: Yt + hF(xr ,.Yr)

FIGURE 2

Euler approximation with step size 0.5

Similarly,

In general,

EXAMPLE I r UseEuler's
approximate values for the

)r : )o + hF(xo,)o) -
!z- )r + hF(xr , )/r) -
lt : lz + hF(xz, l!,,2) -

This means that if y(x) is the exact

SECTION 7.3 IlJLIR'S NETl{OD 5t5

FIGURE 3

Euler approximation with step size 0.25

ln: !n-r + hF(x^-r,1,'n-r)

method with step size 0.1 to construct a table
solution of the initial-value problem

of

FIGURE 4

y':x*y y(0):1

SOLUTION We are given that h : 0.1, ro : 0, h: l, and F(x,y): .r * y. So
we have

1+0.1(0+l):1.1
1.1 + 0.1(0.1 + 1.1) - t.22

1.22 + 0.1(0.2 + T.22):1.362

solution, then y(0.3) : 1.362.

Slope : F(xo, yo)

(xr,yr)

h F (xr, yo)
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FIGURE 5

Euler approximations
approaching the exact solution

Proceeding with similar calculations, we get the values in the table:

n \ \

I

+

-5

0.t
0.l
0..1

0.-+

{)5

I(XXXX)

]](XXX)
l6l(xx)
5lril(x)
7l l 0l0

n I \

6

7

fi

9

l0

06
0.1

08
0.9

1.0

l.()+-llll
l. le7+.11

l.+lJ7l7s
l.ti I .5s()5

-t.ls7-ll{5
=

For a more accurate table of values in Example I we could decrease the step

size. But for a large number of small steps the amount of computation is consider-

able and so we need to program a calculator or computer to carry out these calcu-

lations. The following table shows the results of applying Euler's method with

decreasing step size to the initial-value problem of Example I'
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Notice that the Euler estimates in the table seem to be approaching limits,

namely, the true values of y(0.5) and y(1). Figure 5 shows graphs of the Euler

approximations with step sizes 0.5,0.25,0.1,0.05,0.02,0.01' and 0.005' They are

approaching the exact solution curve as the step size lr approaches 0.
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EXAMPLE 2 r In Example 2 in Section'l.2we discussed a simple electric circuit
with resistance 12 A, inductance 4 H, and a battery with voltage 60 V. If the
switch is closed when / : 0, we modeled the current 1 at time r bv the initial-
value problem

dI 15 3r
dt

1(0) - 0

Estimate the current in the circuit half a second after

$#tLj'{"$ffifl{ We use Euler's method with F(t,l) - 15

step srze h - 0.1 second:

switch is closed.

tg:0, 19-0,and

gin. Use step sizes ft : I and h - 0.5. Will the Euler
estimates be underestimates or overestirnates? Explain.

the

31,

It:0+0.1(15 3.0) -1.5
12: 1.5 + 0.1(15 3. 1.5) - 2.55

13-2.55 + 0.1(15 3-2.55) - 3.295

14: 3.295 + 0.1(15 3. 3.295) - 3.7995

rs- 3.7995 + 0.1(15 3 3.7995) - 4.15965

So the current after 0.5 s is

1(0.5) : 4.16 A

EXgfGiSeS I o o . I r . . . o . . . o . . . o . . o . . . . . . . o . r . .

t. (a) Use Euler's method with each of the following
step sizes to estimate the value of "y(0.4), where -y

is the solution of the initial-value problem ),' : ),,

)'(0) : 1.

(i) h : 0.4

(iii) h : 0.1

(ii) h : 0.2

(b) we know that the exact solution of the initial-value
problem in part (a) is.)'- e'. Draw, as accurately as

you can, the graph of )' - e'', 0 { x < 0.4, together
with the Euler approximations using the step sizes
in part (a). (Your sketches should resemble Figures
1,2, and 3.) Use your sketches to decide whether
your estimates in part (a) are underestimates or
overestimates.

(c) The error in Euler's method is the difference
between the exact value and the approximate value.
Find the errors made in part (a) in using Euler's
method to estimate the true value of y(0.4), namely
eo'{. What happens to the error each time the step
size is halved?

A direction field for a differential equation is shown.
DrAw, with a ruler, the graphs of the Euler approxima-
tions to the solution curve that passes through the ori-

3. Use Euler's method with
approximate )r-values )r,
the initial-value problem

4. Use Euler's method with
where y(x) is the solution

.),':x+y?,-tt(0) :0.

step size 0.5 to compute the

),:, y3, and )+ of the solution of
.':l+31 2y, l'(l) -2.
step size 0.2 to estimate _]'(l),
of the initial-value problem

2.
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5. Use Euler's method with step size 0.1 to estimate y(0.5),

where y(x) is the solution of the initial-value problem

-)',' 
._ Jt + )'t, )(0) _ l.

6. (a) LJse Euler's method with step size 0.2 to estimate

y(0.4), where -t'(x) is ttre solution of the initial-value
problern y' : lxyo, y(0) : 1.

(b) Repeat part (a) with step size 0.1.

7. (a) Program a calculator or computer to use Euler's

method to compute y(1), where \'(r) is the solution

of the initial-value problem

EIE 8. (a) Program your computer algebra systeffi, using

Euler's method with step size 0.01, to calculate )(2),
where rr is the solution of the initial-value problem

y, : 13 "),., -),(0) 
* I

(b) Check your work by using the CAS to draw the

solution curve.

g. In Exercise 19 in Section 7.2 we considered the differ-
ential equation

R!P- * 1 e - d(r)
dt C+

for the case of a simple electric circuit with resistance

R - 5 Cl, capacitance C - 0.05 F, and constant voltage

E(r): 60 V. If the initial charge is 0(0) - 0 C, use

E,uler's method with step size 0.1 to estimate the charge

after half a second.

10. In Exercise 20 in Section J.2 we considered a 95 "C cup

of coffee in a 20oC room. Use Euler's method with step

size h :2 minutes to estimate the temperature of the

coffee after l0 minutes.

dua"-t +3xly:6x2
dx

.)'(o):3

(i) h* I (ii)ft:0.1
(iii) h:0.01 (iv) h- 0.001

(b) Verify'that _)t - 2 + e-x'is the exact solution of the

differential equation.
(c) Find the errors in using Euler's ntethod to compute

]'(l) with the step sizes in part (a). What happens to

the error when the step size is divided by 10?

Separable Equations

The technique for solving separable dif-

ferential equations was first used by

James Bernoulli (in 1690) in solving a

problem about pendulums and by Leibniz

(in a letter to Huygens in l69l). John
Bernoulli explained the general method

in a paper published in 1694.

We have looked at first-order differential equations from a geometric point of view

(direction fields) and from a numerical point of view (Euler's method). What about

the symbolic point of view? It would be nice to have an explicit formula for a solu-

tion of a differential equation. Unfortunately, that is not always possible. But in

this section we examine a certain type of differential equation that can be solved

explicitly.
A separable equation is a first-order differential equation in which the expres-

sion for dyfdx can be factored as a function of x times a function of y. In other

words, it can be written in the form

4: s@f(vlax

The name separable comes from the fact that the expression on the right side can

be "separated" into a function of x and a function of y. Equivalently, if/( y) + O'

we could write

n

where /t(y) : Uf(y). To

dv - s(x)
dx ft(l)

solve this equation we rewrite it in the differential form

h(y) dy : g(x) dx

so that all y's are on one side of the equation and all I's are on the other side. Then

we integrate both sides of the equation:

ET J h(y) ,ty: J o(") .l*



Equation 2 defines y implicitly as a function of .r. In some cases we may be able to
solve for y in terms of r.

The justification for the step in Equation 2 comes from the Substitution Rule:

ttdv
) ntylay: ) h(y(x))fr0,

f ,r rrr S@): 
J UYQDffi d, rlr()rrr F\ttrrri',rl l,

: 
!o@)a,

EXAMPLE I T

sEcTloll 7.4 sIpARABLt tQUATt0il5 r 5 t 9

(a) Solve the differential equation 
dy

(b) Find the solution of this ,OuurriJ

ssL{.$TlCIH

(a) Writing the equation in differential form and integrating both sides,
we have

(2Y + cosY) dY:6x'dx

ttr*cosy)dy:lar'a,
E y2 + siny :2x3 + C

where C is an arbitrary constant. (We could have used a constant Cr on the left
side and another constant C2 on the right side. But then we could combine these
constants by writing C : Cz - Cr.)

Equation 3 gives the general solution implicitly. In this case it's impossible to
solve the equation to express y explicitly as a function of x.

(b) We are given the initial condition y(1) : zr, so we substitute ,r : I and
y : rt in Equation 3:

12 + sinlr: Z(l)3 + C

C:zr2-2
Therefore, the solution is given implicitly by

Y2+sinY:2x3+rr'-2
The graph of this solution is shown in Figure 2. (Compare with Figure 1).

6x2

2y + cosy
that satisfies the initial condition y(l)

Some computer algebra systems can

plot curves defined by implicit equations.

Figure I shows the graphs of several

members of the family of solutions of
the differential equation in Example l.

As we look at the curves from left to
right, the values of C are 3,2, l, 0, -1,
-2, and -3.

FIGURE I

rcFIGURE 2
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Several solutions of the differential
equation in Example 2 are graPhed in

Figure 3. The values of A are the same

as the y-intercepts.

6

FIGURE 3

FIGURE 4

EXAMPLE 2 I Solve the equation y' : xzy.

SOLUTION First we rewrite the equation using Leibniz notation:

If y * 0, we can rewrite

lY2
dxr

it in differential notation and integrate:

dY 
-x'dx y *o

v

f dy r -
| __ | x_dxJyr

j

lnlyl: + + c
3

This equation defines y implicitly as a function of x. But in this case we can

solve explicitly for y as follows:

lyl- elnlYl - ,(x3lt)+c - ,crx3/t

): : +rC,x3ll

We note that the function y : 0 is also a solution of the given differential equa-

tion. So we can write the general solution in the form

Y- Ae*3/z

where A is an arbitrary constant (A - ec, or A- -€c,, or A - 0).

EXAMPLE 3 I In Section 7.2 we modeled the current /(t) in the electric circuit
shown in Figure 4 by the differential equation

dIti*ru:nQ)

Find an expression for the current in a circuit where the resistance is 12 O, the

inductance is 4 H, a battery gives a constant voltage of 60 Y and the switch is
turned on when t : 0. What is the limiting value of the current?

SOLUTloll With L : 4, R : 12, and E(t) :60, the equation becomes

ffi

dI4-- +l2l:60 or
dt

and the initial-value problem is

dI
- 15 3l

dt

dt 
- 15 3I

dt

Switch

/(0) : 0



Figure 5 shows how the solution in

Example 3 (the current) approaches its
limiting value. Comparison with Figure ll
in Section 7.2 shows that we were able
to draw a fairly accurate solution curve
from the direction field.

6

GURE 5

0

FI

SECTIOil 7.4 STPARABLE IQUATIONS 521

We recognize this equation as being separable, and we solve it as follows:

r"dlr| -- -, - l dtar 15 3I .l

-jtnlts 3rl- r+c
Its 3Il- e-3(/+c)

15 3l : +e-3ce-3r - Ae-3'

J - s \Ar-''
Since /(0) - 0, we have 5 ia : 0, so A : 15 and the solution is

I(t) - 5 5e-3'

The limiting current is

lg I(t): lT tt 5e-3') - s 5 lim e-3, -s 0 - s

Orthogonal Trajectories

I

y-5

An orthogonal trajectory of a family
curve of the family orthogonally, that
instance, each member of the family y -
an orthogonal trajectory of the family x2
ter the origin (see Figure 7). We say that
ries of each other.

of curves is a curve that intersects each
is, at right angles (see Figure 6). For
mx of straight lines through the origin is
+ yt : rz of concentric circles with cen-
the two families are orthogonal trajecto-

Orthogonal
trajectory

FIGURE 6 FIGURE 7

EXAMPLE 4 r Find the orthogonal trajectories of the family of curves x : ky,
where /< is an arbitrary constant.

SoLurfoll rhe curves x : ky'form a family of parabolas whose axis of sym-
metry is the .r-axis. The first step is to find a single differential equation that
is satisfied by all members of the family. If we differentiate x : klr, we get

I - Zkvdv'dx
dvlor- dx Zky
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FIGURE 8

x2 "yy'

v
2x

Y' - -x' + c
2

n12x_+r__c

This is a differential equation, but it depends on k. To eliminate k we note that,

from the equation of thl given general parabola x : ky', we have k : x/yz and

so the differential equation can be written as

2kv

dy

dx

dy_
dx

This means that the slope of the tangent line at any point (x, y) on one of the

parabolas is y' : y/ (2x). On an orthogonal trajectory the slope of the tangent

line must be the negative reciprocal of this slope. Therefore, the orthogonal

trajectories must satisfy the differential equation

2x

This differential equation is separable, and we solve it as follows:

I tat 2x dx

dy

dx

_r
J

g

where C is an arbitrary positive constant. Thus, the orthogonal trajectories are

the family of ellipses given by Equation 4 and sketched in Figure 8. t

Orthogonal trajectories occur in various branches ofphysics. For example, in an

electrostatic field the lines of force are orthogonal to the lines of constant poten-

tial. Also, the streamlines in aerodynamics are orthogonal trajectories of the

velocity-equipotential curves.

Mixing Problems

A typical mixing problem involves a tank of fixed capacity filled with a thor-

oughly mixed solution of some substance (say, salt). A solution of a given concen-

tration enters the tank at a fixed rate and the mixture, thoroughly stirred, leaves at

a fixed rate, which may differ from the entering rate. If y(r) denotes the amount of

substance in the tank at time f, then y'(r) is the rate at which the substance is being

added minus the rate at which it is being removed. The mathematical description of
this situation often leads to a first-order separable differential equation. We can

use the same type of reasoning to model a variety of phenomena: chemical reac-

tions, discharge of pollutants into a lake, injection of a drug into the bloodstream.
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EXAMPLE 5 I A tank contains 20 kg of salt dissolved in 5000 L of water.
Brine that contains 0.03 kg of salt per liter of water enters the tank at a rate of
25 L/min. The solution is kept thoroughly mixed and drains from the tank at the
same rate. How much salt remains in the tank after half an hour?

SOIUTI0N Let y(t) be the amount of salt (in kilograms) after / minutes. We are
given thaty(0) : 20 and we want to find.y(30). We do this by finding a differ-
ential equation satisfied by y(r). Note rhat dy/dt is the rate of change of the
amount of salt, so

(rate in) (rate out)E
dy_
dr

where (rate in) is the rate at which salt
at which salt leaves the tank. We have

rate ln -

enters the tank and (rate out) is the rate

/ L\ ks
[ 25 | -- 0.75
\ mrn / mln(oo,f)

The tank always contains 5000 L of liquid, so the concentration at time t is
y(t)/5000 (measured in kilograms per liter). Since the brine flows our at a rate
of 25 L/min, we have

rare out : ( Yttt re\ (tr t- \ - Y(r) ke- 
\ s000 L / \-- min / 200 min

Thus, from Equation 5 we get

dv

dt

y(r) _ 150 - y(r)

200 200

Solving this separable differential equation, we obtain

r" dv rdt
l--l-

'' 150 y J 200

-rnlrso yl :#+ c

20, we have -ln 130 - C, so

-lnlrso yl:=: lnl3or' 
200

Figure 9 shows the graph of the function
y(r) of Example 5. Notice that, as time ei-..o .,/6\
goes by, the amount of salt approaches 

Since y(0)

150 kg.

Therefore ltso yl- B\e*t/Zoo

Since y(r) is continuous and y(0) -- 2O and the right side is never 0, we deduce
that 150 - y(t) is always positive. Thus, ll50 - yl : 150 - y and so

Y(r):150 -130e-t/2oo

The amount of salt after 30 min is

ffiFIGURE 9 y(30) - 150 I30e*30/2oo - 38.1 kg
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Exercisgs '. ' ' ' r

rI\, .l

l. - 
- \t"

dx

3. )t.1" - x

du
5.

dt

dl, ,t + sin xtL.
dx 3l't

4. )' : x.)t

dx
6.- -l+t-x-lrdt

, " r Find the solution of the difterential equation that

satisfies the given initial condition.

cly
7. I-)'t+l, )'(l)-0dx

dy* I * xg. '-'- - --, .r ;' 0, y(l) : -4dx .\-\'

g.xe '/jlL:t, J(o) -ldr

ro. .r + 21' r,'-T' +T I - o, )'(o) - I
tl.r

du 2t + I
il.

dt ?(u l) '

clt' /\r + 3t
12' --' - 1'(2) :2

clt t1 + I '

| 3. Find the eqr-rertion of the curr,'e that satisfies
clyf dx : -4.rrt' and whose v-intercept is 7.

14. Find an equation of the curve that passes through the

point (l,l) and whose slope at (x. 1') is )'2/x3.

nZ | 5. Solve the initiat-value problem .lf" 
: r' sin x, 1'(0) - l,

nncl graph the solution.

n= 16. Solve the equation e t'),'+ cosr - 0 and graph several

mernbers of the family of solutions. How does the solu-

tion curve change trs the constant C varies?

,7. Solve the initial-value problern 1" : (sin x)/sinl',

1'(0) : nl2,and graph the solution (if your CAS does

irnplicit plots).

18. Solve the equation \" : r 1FT l( yr' ) and graph sev-

eral tnembers of the family of solutions (if your CAS

does implicit plots). How does the solution curve change

as the constant C varies?

, "i-".i I

(a) Use a computer algebra systern to draw a clirection field
for the differential equation. Get a printout and use it to
sketch some solution curves without solving the differ-
ential equation.

EYZt-24 I Find the orthogonal trajectories of the family of
curves. Use a graphing device to draw several members of
each family on a common screen.

21. y : kxz 22. xt - -\'2 
: k

23. _y 
: (x + k) ' 24. .)' : ke-"'

25. Solve the initial-value problem in Exercise l9 in Sec-

tion 1.2 to find an expression for the charge at time /.

Find the limiting value of the charge.

26. In Exercise 20 in Section J.2 we discussed a differential
equation that models the temperature of a 95 oC cup of
coffee in a 20 "C room. Solve the differential equation

to find an expression for the temperature of the coffee

at time /.

27.In E,xercise 1l in Section 7.1 we formulated a model for
learning in the form of the differential equation

dP

,t,:k(M-P)
where P(t) measures the performance of someone learn-

ing a skill after a training time t, M is the maximum
level of performance, and ft is a positive constant. Solve

this differential equation to fincl an expression for P(r).

What is the limit of this expression?

28. In an elementary chemical reaction, single molecule s of
two reactants A and B form a molecule of the product

C: A + $ ---+ C. The law of mass action states that the

rate of reaction is proportional to the product of the

concentrations of A and B:

dfcl
i-: ft[A][B]

(See Example.t in Section 3.3.) Thus, if the initial con-

centrations are [A] - ct moles/L and [B] - b moles/L
and we write x - [C], then we have

dx

d, 
: k(o x)(b - x)

tr (a) Assuming that a + b, find "r as a function of r.

Use a computer algebra system to perform the

intesration.

(b) Solve the differential
(c) Use the CAS to draw

solutions obtained in
from part (a).

19. )" : l/Y

equatlon.
several members of the family of
part (b). Compare with the curves

20. )' : x'ly



(b) Find x(r) assuming that .a : &. How does this
expression for x(t) simplify if it is known thar

[C] - a/2 after 20 seconds?

29. A glucose solution is administered intravenously into
the bloodstream at a constant rate r. As the glucose is
added, it is converted into other substances and removed
from the bloodstream at a rate that is proportional to
the concentration at that time. Thus, a model for the
concentration C - C(r) of the glucose solution in the
bloodstream is

dc 
-r kc

dt

where A is a positive constant.
(a) Suppose that the coneentration at time / : 0 is Co.

Determine the concentration at anv time r bv solv-
ing the differential equation.

(b) Assuming that Co { rf k, frnd lim,-* C(r) and inter-
pret your answer.

30. A certain small country has $10 billion in paper cur-
rency in circulation, and each day $50 million comes
into the country's banks. The government decides to
introduce new currency by having the banks replace old
bills with new ones whenever old currency comes into
the banks. Let r - x(r) denote the amount of new cur-
rency in circulation at time /, with x(0) : 0.
(a) Formulate a mathematical model in the form of an

initial-value problem that represents the 
-'flowo' of

the new currency into circulation.
(b) Solve the initial-value problem found in part (a).
(c) How long will it take for the new bills to account

for 907a of the currency in circulation?

31. A tank contains 1000 L of brine with 15 kg of dissolved
salt. Pure water enters the tank at a rate of 10 Llmin.
The solution is kept thoroughly mixed and drains from
the tank at the same rate" How much salt is in the tank
(a) after / minutes and (b) after 20 minutes?

32. A tank contains 1000 L of pure water. Brine that con-
tains 0.05 kg of salt per liter of water enters the tank at
a rate of 5 Lfmrn Brine that contains 0.04 kg of salt
per liter of water enters the tank at a rate of 10 L/min.
The solution is kept thoroughly mixed and drains from
the tank at a rate of l5 L/min. How much salt is in the
tank (a) after r minutes and (b) after one hour?

33. When a raindrop falls it increases in size, so its mass at
time r is a function of t, m(t). The rate of growth of the
mass is km(t) for some positive constant ft. When we
apply Newton's Law of Motion to the raindrop, we get
(*u)' : gtn, where u is the velocity of the raindrop
(directed downward) and g is the acceleration due to
gravity. The terminal velociry of the raindrop is
lim, -* u(t). Find an expression for the terminal velocity
in terms of g and k.

sEcTloN 7.4 STPARA$Lr EQUATt0il5 s2g

34. An object of mass m LS moving horizontally through a

medium which resists the motion with a force that is a
function of the velocity; that is,

dzs du* dr' - nt d, 
: f(u)

where a - u(t) and s : s(r) represent the velocity
and position of the object at time f, respectively. For
example, think of a boat moving through the water.
(a) Suppose that the resisting force is proportional

to the velocity, that is, /(u) - -ku, k a positive
constant. Let il(O) : us and s(0) : s0 be the initial
values of u and s. Determine u and s at any time r.

What is the total distanee that the object travels
fromtimef:0?

(b) Suppose that the resisting force is proportional to
the square of the velocity, that is, /(u) - -ku',,
k > 0. Let u0 and s' be the initial values of u and s.

Determine u and s at any time r. What is the total
clistance that the object travels in this case?

35. Let A(r) be the area of a tissue culture at time I and let
M be the final area of the tissue when growth is com-
plete. Most cell divisions occur on the periphery of the
tissue and the number of cells on the periphery is pro-
portional to v,?O. So a reasonable model for the
growth of tissue is obtained by assuming that the rate
of growth of the area is jointly proportional to Vm
and M A(r).
(a) Formulate a differential equation and use it to show

that the tissue grows fastest when A(r) - M/3.
(b) Solve the differential equation to find an expression

for A(r). Use a computer algebra system to perform
the integration.

36. According to Newton's Law of Universal Gravitation,'
the gravitational force on an object of mass nz that has
been projected vertically upward from Earth's surface is

tr -_ mgRzr-(.r+R)'

where r - x(t) is the object's distance above the surface
at time /, R is Earth's radius, and g is the acceleration
due to gravity. Also, by Newton's Second Law
F - ma - m (du ldr) and so

du mgRt*A:-(x+Rr
(a) Suppose a rocket is fired vertically upward with an

initial velocity us. Let h be the maximum height
above the surface reached by the object. Show that

Uo:

fHint: By the Chain

@

Rule , m (da /dt) : mu (da /dx).1
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37.

(b) Calculate u" : li rr16-* t 0. This limit is called the

escape velocity for Earth.
(c) Use R - 3960 mi and g :32 ft/s? to calculate uu in

feet per second and in miles per second.

Let y(r) and V(r) be the height and volume of water in

a tank at time /. If water leaks through a hole with area

a at the bottom of the tank, then Torricelli's Law says

that

dv _ _or/zn,
dt

where g is the acceleration due to gravity.
(a) Suppose the tank is cylindrical with height 6 ft and

radius 2 ft and the hole is circular with radius I in.
If we take g : 32 ftls?, show that y satisfies the dif-
ferential equation

Suppose the tank in Exercise 37 is not cylindrical but

has cross-sectional area A( y) at height y. Then the vol-
ume of water up to height y is V - JJ A (u) du and so the

Fundamental Theorem of Calculus gives dV/dy - A(l').
It follows that

38.

dV dV dy

-:dt dv dt

dv
-A(v)j dt

(b) Solve this equation to find the height of the water at

time /, assuming the tank is full at time / : 0.

(c) How long will it take for the water to drain
completely?

and so Torricelli's Law becomes

dvA()'l;: -otEW

(a) Suppose the tank has the shape of a sphere with
radius 2 n and is initially half full of water. If the

radius of the circular hole is I cm and we take

g : 10 mfs2, show that y satisfies the differential
equation

^dv(4y ,=); : -o.ooot JzW

(b) How long will it take for the water to drain
completely?

dy lr
- -E!Ydt

Which Faster,

Experiments have shown that, for
speeds up to 100 mfs, the drag force

due to air resistance is approximately
proportional to the speed.

Suppose you throw a ball into the air. Do you think it takes longer to reach its maxi-

mum height or to fall back to Earth from its maximum height? We will solve the prob-

lem in this project but, before getting started, think about that situation and make a

guess based on your physical intuition.

l. A ball with mass rz is projected vertically upward from Earth's surface with a

positive initial velocity u6. We assume the forces acting on the ball are the force of
gravity and a retarding force of air resistance with direction opposite to the direc-

tion of motion and with magnitude pla(t)|, where p is a positive constant and u(t)

is the velocity of the ball at time r. In both the ascent and the descent, the total

force acting on the ball is -pa - ng. (During ascent, a(t) is positive and the

resistance acts downward; during descent, u(t) is negative and the resistance acts

upward.) So, by Newton's Second Law, the equation of motion is

yn\st - *pu - mg

Solve this differential equation the velocity is

u(t) : - ptf nr

to show that

(,; .T)' _mg
p

2. Show that the height of the ground, is

s- Ptlnt) 
- 

*g'

p
y(r)

the ball, until it hits

( r??9\ ffi ,.: 
\'n 

* 
;) 

'('
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3. Let 11 be the time that the ball takes to reach its maximum height. Show that

n'r (mg + puu\t1: - lnt 

-- 
Ip\mg/

Find this time for a ball with mass 1 kg and initial velocity 2A m/s. Assume the air
resistance is * of the speed.

Let t7 be the time at which the ball falls back to E,arth. For the particular ball in
Problem 3, estimate tz by using a graph of the height function y(r). Which is faster,
going up or coming down?

In general, it's not easy to find /2 because it's impossible to solve the equation
y(r) - 0 explicitly. We can, however, use an indirect method to determine whether
ascent or descent is faster; we determine whether y(2r1) is positive or negative.

Show that

nt'ql l \
.l'(2r,1 :#l.r -_ ' - 2lnxl

p- \ x /

where x - ,Ptrltn. Then show that x )" I and the function

/(x) :- r * I * 2lnx
x

is increasing for x ) 1. Use this result to decide whether 1'(2r,) is positive or nega-
tive. What can you conclude? Is ascent or descent faster?

Exponential Growth and Decay

One of the models for population growth that we considered in Section 7.1 was
based on the assumption that the population grows at a rate proportional to the size
of the population:

lL: o,
dt

Is that a reasonable assumption? Suppose we have a population (of bacteria, for
instance) with size P : 1000 and at a certain time it is growing at a rate of
P' : 300 bacteria per hour. Now let's take another 1000 bacteria of the same type
and put them with the first population. Each half of the new population was grow-
ing at a rate of 300 bacteria per hour. We would expect the total population of 2000
to increase at a rate of 600 bacteria per hour initially (provided there's enough
room and nutrition). So if we double the size, we double the growth rate. In gen-
eral, it seems reasonable that the growth rate should be proportional [o the size.

The same assumption applies in other situations as well. In nuclear physics,
the mass of a radioactive substance decays at a rate proportional to the mass. In
chemistry, the rate of a unimolecular first-order reaction is proportional to the
concentration of the substance. In finance, the value of a savings account with con-
tinuously compounded interest increases at arate proportional to that value.
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In general, if y(l) is the value of a quantity y at time t and if the rate of change

of y with respect to r is proportional to its size y(t) at any time, then

tr ff:r,
where ft is a constant. Equation I is sometimes called the law of natural growth
(if k > 0) or the law of natural decay (if ft < 0). Because it is a separable differ-
ential equation we can solve it by the methods of Section 7.4:

P)-
I Y: I tat

JvJ

lnlyl: kt + C

lYl: eo'*' : e'eo'

| : Ae*'

where A(: +ec or 0) is an arbitrary constant. To see the significance of the con-
stant A, we observe that

y(0): Aek'o:A

Therefore, A is the initial value of the function.
Because Equation I occurs so frequently in nature, we summarize what we have

just proved for future use.

E The solution of the initial-value problem

dt,
frv

dtr

v(r)

y(0)

- )'g ek'

: )'o

IS

M Population Growth

What is the significance of the proportionality constant k? In the context of popu-

lation growth, we can write

dP I dP

-- 
kP or : kdt Pdt

tdP
Pdt

is the growth rate divided by the population size; it is called the relative growth
rate. According to (3), instead of saying "the growth rate is proportional to popu-

lation size" we could say "the relative growth rate is constant." Then (2) says that

a population with constant relative growth rate must grow exponentially. Notice

that the relative growth rate k appears as the coefficient of r in the exponential
function yoek'. For instance, if

4L: o.r*
dt

E

The quantity
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and / is measured in years, then the relative growth rate is k : 0.02 and the popu-
lation grows at a rate of 2Vo per year. If the population at time 0 is Po, then the
expression for the population is

P(t) : Poeon''

EXAMPLE I r Assuming that the growth rate is proportional to population size,
use the data in Table I to model the population of the world in the 20th century.
What is the relative growth rate? How well does the model fit the data?

SOLUTION We measure the time / in years and let r : 0 in the year 1900. We
measure the population P(t) in millions of people. Then the initial condition is
P(0) : 1650. We are assuming that the growth rate is proportional to population
size, so the initial-value problem is

TABLE I

TABLE 2

FIGURE I

A possible model for
world population growth

dP

dt

From (2) we know that the solution is

P(0) - 1650

P(t) : r65oe*'

One way to estimate the relative growth rate k is to use the fact that the popu-
lation in 1910 was 1750 million. Therefore

P(10) - 1650ek(10) - 1750

We solve this equation for fr:

1750
etok

1650

, I 1750
k : 

l0 'n ,OrO - 0.005884

Thus, the relative growth rate is abolt 0.67o per year and the model becomes

P(t) : 1650eo oos'8ar

Table 2 and Figure I allow us to compare the predictions of this model with the
actual data. You can see that the predictions become quite inaccurate after about
30 years and they underestimate by a factor of almost 2 in 1990.

Population
(in millions)

Yt'i-l I

Populat iorr

( nr illion s )

9(X

9l(
el(
9.1(

e+(

9.5 (

9(r(
()l (

9ri(
r,)g(

r)9(-

l fi50

1 750

l ri60

1070

I j(x)

l5 l0
l0l0
i7(x)
-t-+ 5 0

5 .10( )

5770

Yc il I\{otlc I l)o;lr-r lll ion

e(x)

9l0
el0
9-10

q-10

95( )

960

970

9t{0

99( )

L)9(r

1 650

1 750

185(r

I 969

l0E fi
l2 l-+

I l-19

l-19 r

I (r-ll

I ri t)l
I e03

l (r50

1750

1 860

1070

l l00
1520

.r 0t()

.17(X)

+-1.5 ( )

5.1(x)

5770

1650e0.005884r
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ln Section 1.7 we modeled the same data

with an exponential function, but there
we used the method of least squares.

Another possibility for estimating t would be to use the given population for
1950, for instance, instead of 1910. Then

P(50): l650e5ok:2520

| 2520t: 
50 

tn ,U, - 0.008470

The estimate for the relative growth rate is now 0.85Vo per year and the model is

P(t) : l65oeo oo8a1t

The predictions with this second model are shown in Table 3 and Figure 2. This
exponential model is more accurate over a longer period of time, but it too lags

behind realitv in recent years.

Population
(in millions)

FIGURE 2 Another model for world population growth

EXAMPLE 2 r Use the data in Table I to model the population of the world in
the second half of the 20th century. Use the model to estimate the population in
1993 and to predict the population in the year 2010.

SOLUTION Here we let t : 0 in the year 1950. Then the initial-value problem is

*

dP_:kP
dt

P(0) : 2520

and the solution is

Let's estimate k by using the

P(10)

P(t) - 252Oek'

population in 1960:

- 2520etok - 3020

I 3020

l0 2520

about 1.87o per year and the model

P(t) : 2520e0'or8rr

IS

TABLE 3

Ycur l\'loclcI Popu lut iott

9(X

el(
9l(
el(
e-+(

()5(

t) (r(

e7(
()g(

r)9(

99(

1 650
lJ L)('t

re55
)t )7
ll r5

l5l0
l7+ l
les5
3l-le
i5lrr
371 |

I(r50

1750

I ti60

107( )

l3(x)
l5 l0
-1010

i7(x)
+-15 ( )

5i(x)
517 (l

1650e0.00847r

The relative growth rate is



FIGURE 3

A model for world population growth
in the second half of the 20th centurv
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We estimate that the world population in 1993 was

P(43) : 2520e0 0rtir(43) : 5488 million

The model predicts that the population in 2010 will be

P(60) - 2520e0 0r8r(60) : 7465 million

The graph in Figure 3 shows that the model is fairly accurate to date, so the
estimate for 1993 is quite reliable. But the prediction for 2010 is riskier.

Population
(in millions)

E Radioactive Decay

Radioactive substances decay by spontaneously emitting radiation. If la(t) is the

mass remaining from an initial rnoss ftis of the substance after time t, then the rela-
tive decay rate

1dm
mdt

has been found experimentally to be constant. It follows that

dm_- km
dt

where ft is a negative constant. In other words, radioactive substances decay at a
rate proportional to the remaining mass. This means that we can use (2) to show

that the mass decays exponentially:

m(t) : 
^or*'

Physicists express the rate of decay in terms of half-life, the time required for
half of any given quantity to decay.

EXAMPTE 3 r The half-life of radilm-226 C33na) is 1590 years.
(a) A sample of radium-226 has a mass of 100 mg. Find a formula for the mass

of t33Ra that remains after / years.

il

P _ 252gro.0tan
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lggr-{ln 2lt5e0lt

ln2k-
1590

t - -1s90 
tlT : 2762years
ln2

(b) Find the mass after 1000 years correct to the nearest milligram.
(c) When will the mass be reduced to 30 mg?

S0LUTTON

(a) Let m(t) be the mass of radium-226 (in milligrams) that remains after
t years. Then dm/dt : km and y(0) : 100, so (2) gives

*(t):m(o)ek':l1oek'

In order to determine the value of k, we use the fact that y(1590) : j (100). Thus

100er5eo* : 50 so ,tseor : !

and 1590t : tn | -- -ln2

r50

:

Therefore m(t) - 100 s-unL/tseo)t

We could use the fact that ,tn? - 2 rc write the expression for m(t) in the
alternative form

m(t)-100 X 2-t/tseo

(b) The mass after 1000 years is

t??(1000) - 100e -\tnz/r5e0)r000 : 65 mg

(c) We want to find the value of / such that m(t) : 30, that is,

100e -0n2/15e0)t 
- 30 Of g-0n2/t5e0)t - 0.3

We solve this equation for t by taking the natural logarithm of both sides:

ln2
t - In0.3

1590

Thus il

4000 As a check on our work in Example 3, we use a graphing device to draw the
graph of m(t) in Figure 4 together with the horizontal line m : 30. These curves
intersect when t - 2800, and this agrees with the answer to part (c).

I Continuously Compounded tnterest

EXAMPTE 4 I If $1000 is invested at 6Vo interest, compounded annually, then
after 1 year the investment is worth $1000(1.06) : $1060, after 2 years it's
worth $[1000(1.06)]1.06 : $1123.60, and after t years it's worth $1000(1.06)'.
In general, if an amount Ae is invested at an interest rate r (r : 0.06 in this
example), then after r years it's worth A0(1 + r)'. Usually, however, interest is
compounded more frequently, say, n times a year. Then in each compounding
period the interest rateis rfn and there are nt compounding periods in t years,
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so the value of the investment is

/ ,\"'
Aol 1+-l

\ n/

For instance, after 3 years at 6Vo interest a $1000 investment will be worth

$1000(1.06)3 : $1191.02 with annual compounding

$1000(1.03)6 : $1194.05 with semiannual compounding

$1000(l'015)'' : $1195'62 with quarterly compounding

$1000(1.005)tu : $1196.68 with monthly compounding

/ 0.06 \ro) r

$10001 l+ * | :$1197.20 withdailycompounding
\ 365/

You can see that the interest paid increases as the number of compounding
periods (n) increases. If we let n -> oo, then we will be compounding the interest
continuously and the value of the investment will be

A(r) : ls o.(, . ;) : 
iT o,[(' * i)''']"

| / ,\'/'l'r:Aol limll+-l IL"--\ n/ I
: A.f ri* ( r * f\'-.|" (sr,cre ,,? rrrl

L.--\ m/ l
But the limit in this expression is equal to the number e (see Equation 6 in Sec-
tion 3.7). So with continuous compounding of interest at interest rate r, the amount
after t years is

A(t) : tror"

If we differentiate this equation, we get

dA

dr:rAge":rA(t)

which says that, with continuous compounding of interest, the rate of increase of
an investment is proportional to its size.

Returning to the example of $1000 invested for 3 years at 67o interest, we see

that with continuous compounding of interest the value of the investment will be

A(3) : $1000e(o06)3

: $loooeors : $1197.22

Notice how close this is to the amount we calculated for daily compounding,
$1197.20. But the amount is easier to compute if we use continuous
compounding. lI
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Exe rcises

l. A population of protozoa develops with a constant rela-

tive growth rate of 0 .7944 per member per day. On day

zero the population consists of two members. Find the
population size after six days.

2. A common inhabitant of human intestines is the bac-

terium Escherir:hia c:oli. A cell of this bacterium in
a nutrient-broth medium divides into two cells every
20 minutes. The initial population of a culture is

100 cells.
(a) Find the relative growth rate.
(b) Find nn expression for the number of cells after

I hours.
(c) Find the number of cells after 10 hours.
(d) When will the population reach 10.000 cells?

3. A bacteria culture starts with 500 bacteria and grows at

a rate proportional to its size. After 3 hours there are

8000 bacteria.
(a) Find an expression for the number of bacteria after

f hours.
(b) Find the number of bacteria after 4 hours.
(c) When will the population reach 30,000?

4. A bacteria culture grows with constant relative growth
rate. The count was 400 after 2 hours and 25.600 after
6 hours.
(a) What was the initial population of the culture?
(b) Find an expression for the population after / hours.
(c) In what period o1' time does the population double?
(cl) When will the population reach 100,000?

The table gives estimates of the world population, in
millions, ovcr two centuries:

(a) Use the exponential model and the population fig-
ures for 1750 and 1800 to predict the world popula-
tion in 1900 and 1950. Compare with the actual
figures.

(b) Use the exponential model ancl the population fig-
ures for 1850 and 1900 to predict the world popula-
tion in 1950. Compare with the actual population.

(c) Use the exponential rnodel and the population fig-
ures for 1900 and 1950 to predict the world popu-
lation in 1992. Cornpare with the actual 1992
population of 5.4 billion and try to explain the
discrepancy.

6. The table gives the population of the United States, in
millions, for the years 1900- 1990.

Yeltr Population

9(X)

910
ql0
q 1{}

r.).+{)

950
(.){r{ 

)

97()
(iH()

qrx)

76

9l
I06
lll
l-1 I

l5()
lTtl
l0.i
22V

150

(a) Use the exponential model and the census figures
for 1900 and 1910 to predict the population in 1990.
Compare with the actual figure and try to explain
the discrepancy.

(b) Use the exponential model and the census figures
for 1970 and 1980 to predict the population in 1990.
Compare with the actual population. Then use this
model to predict the population in the years 2000
and 2010.

(c) Draw a graph showing both of the exponential func-
tions in parts (a) and (b) together with a plot of the
actual population. Are these models reasonable ones?

Experiments show that if the chemical reaction

NoO, -+ 2NO, + * O,

takes place at 45 oC, the rate of reaction of dinitrogen
pentoxide is proportional to its concentration as follorvs:

- 
d[N2os] 

-_ o.ooo5[h{,o,]
dr

(See Example 4 in Section 3.3.)
(a) Find an exprcssion for the concentratior-r [NtOr]

after / seconds if the initial concentration is C.

(b) How long will the reaction take to reduce the con-
centration of NnOr ts 90slo of its original value?

Polonium -210 has a half-life of 140 days.

(a) If a sample has a mass of 200 mg, find a f-ormula
for the mass that remains after r days.

(b) Find the rnass after 100 days.
(c) When will the mass be reduced to 10 mg?
(d) Sketch the graph of the mass function.

Polonium-214 has a very short half-life of 1.4 X 10-a s.

(a) If a sample has a mass of 50 mg, find a formula for
the mass that remains after / seconds.

w
TI

7,

5.

8.

9.

\"r il l75t) l8(x) lli50 Itl(x) 1 950

Iloprrlltt iort 7ls r)06 l7l l6()fi 15 r7



(b) Find the mass that remains after a hundredth of a

second.
(c) How long would it take for the mass to decay to

40 mg?

After 3 days a sample of radon -222 decayed to 58G/o of
its original amount.
(a) What is the half-life of radon -222?
(b) How long would it take the sample to decay to I}Va

of its original amount?

Scientists can determine the age of ancient objects by a
method called rudictcarhon dating. The bombardment of
the upper atmosphere by cosmic rays converts nitrogen
to a radioactive isotope of carbon, 'oC, with a half-life
of about 5730 years. Vegetation absorbs carbon dioxide
through the atmosphere and animal life assimilates 'oC

thror-rgh food chains. When a plant or animal dies it
stops replacing its carbon and the amount of 'oC begins
to decrease through radioactive decay. Therefore, the

level of radioae tivity must also decay exponentially. A
parchment fragrnent was discovered that had about 74Vo

as much I'tC radioactivity ers does plant material on

Earth toda1,. Estirnate the age of the parchment.

A curve passes through the point (0,5) and has the

property that the slope of the curve at every point P

is twice the r'-coordinate of P. What is the equation of
the curve?

Newton's Law of Cooling states that the rate of cooling
of an object is proportional to the temperature differ-
ence between the object and its surroundings. Suppose

that a roast turkey is taken from an oven when its tem-
perature has reached 185'F and is placed on a table in a

roorn where the temperature is 75'F. If u(t) is the tem-
perature of the turkey after r minutes, then Newton's
Law of Cooling implies that

du

E : k(u 75)

This coulcl be solved as a separable differential equa-

tion. Another method is to make the change of variable

J - r'r 75.
(a) What initial-value problem does the new function y

satisfy? What is the solution?
(b) If the temperature of the turkey is 150'F after half

an hour, what is the temperature after 45 min?
(c) When will the turkey have cooled to 100'F?

A thermometer is taken from a room where the tem-
perature is 20oC to the outdoors, where the temperature
is 5 "C. After one minute the thermometer reads 12'C.
Use Newton's Law of Coolins to answer the followine
questions.
(a) What will the reading on the thermometer be after

one more minute?
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(b) When will the thermometer read 6 "C?
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The rate of change of atmospheric pressure P with
respect to altitude /r is proportional to P, provided that
the temperature is constant. At 15.C the pressure is

101.3 kPa at sea level and 87.14 kPa at h- 1000 m.
(a) What is the pressure at an altitude of 3000 m?

(b) What is the pressure at the top of Mount McKinley.
at an altitucle of 6187 m?

(a) If $500 is borrowed at l4%a interest, find the
amounts due at the encl of 2 years if the interest is
compounded (i) annually, (ii) quarterly, (iii) monthly,
(iv) daily, (v) hourly, and (vi) continuously.

(b) Suppose $500 is borrowed and the interest is com-
pounded continuously. If A(t) is the amount due

after / years, where 0 < r < 2, graph A(t) for each

of the interest rates l{c/a, l}Vo. and 6Vo orr a com-
mon screen.

(a) If $3000 is invested at 5% interest, find the value

of the investment at the end of 5 years if the interest
is compounded (i) annually, (ii) semiannually,
(iii) monthly, (iv) weekly, (v) daily, and (vi) contin-
uously.

(b) If A(r) is the amount of the investment at time / for
the case of continuous compounding, write a dif-
ferential equation and an initial condition satisfied
by A(r).

How long will it take an investment to double in value if
the interest rate is 6o/a compounded continuously?

Consider a population P - P(t) with constant relative
birth and death rates a ancl B, respectively, and a con-
stant emigration rate m, where a, B, and tn are positive
constants. Assume that a > P. Then the rate of change

of the population at time / is modeled by the differential
equation

dP :kP m
dt

wherek:u p

(a) Find the solution of this equation that satisfies the

initial condition P(0) - P6.

(b) What condition on m will lead to an exponential
expansion of the population?

(c) What condition on rz will result in a constant popu-
lation? A population decline?

(d) [n 1847, the population of Ireland was about 8 mil-
lion and the difference between the relative birth
and death rates was l.6To of the population. Because

of the potato famine in the 1840s and 1850s, about

210,000 inhabitants per year emigrated from lre-
land. Was the population expanding or declining at

that time?

15.

10.

ll. 16.

EJtl

17.

12.

t3.

18.

19.

14.
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20. Let c be a positive number. A differential equation of
the form

#:/<-rr'
where k is a positive constant, is callecl a doontsday
ecluation because the exponent in the expression k.)"*'' it
larger than that for natural growth (that is, ftr').

(a) Determine the solution that satisfies the initial con-
dition )'(0) : )'0.

(b) Show that there is a finite time r - f such that
lim, .r )(t): rc.

(c) An especially prolific breed of rabbits has the
growth term ky t'ot . If 2 such rabbits breed initially
and the warren has 16 rabbits after three months.
then when is doomsday?

Baseball

r- +>

tr:. il
i,:

.:
,, '.;ll"lf1

In this project we explore three of the many applications of calculus to baseball. The
physical interactions of the game, especially the collision of ball and bat, are quite com-
plex and their models are discussed in detail in a book by Robert Adair, The Physics
of Baseball (New York: Harper and Row, 1990).

l. It may surprise you to learn that the collision of baseball and bat lasts only about a

thousandth of a second. Here we calculate the average force on the bat during this
collision by first computing the change in the ball's momentum.

The momentum p of an object is the product of its mass n and its velocity a,

that is, p : ma.Suppose an object, moving along a straight line, is acted on by a

force F : F(t) that is a continuous function of time.
(a) Show that the change in momentum over a time interval lt6, r,] is equal to the

integral of F from t0 to tr; that is, show that

p(rt) - p(til : F(t\ dt

This integral is called the impulse of the force over the time interval.
(b) A pitcher throws a9}-milh fastball to a batter, who hits a line drive directly

back to the pitcher. The ball is in contact with the bat for 0.001 s and leaves
the bat with velocity ll0 mi/h. A baseball weighs 5 oz and, in U.S. Customary
units, its mass is measured in slugs: m: w/g, where g :32ft/sz.
(i) Find the change in the ball's momentum.
(ii) Find the average force on the bat.

2. In this problem we calculate the work required for a pitcher to throw a 90-mi/h
fastball by first considering kinetic energy.

The kinetic energy K of an object of mass m and velocity u is given by
y : |mu2. Suppose an object of mass nr, moving in a straight line, is acted on by a
force F : F(s) that depends on its position s. According to Newton's Second Law

F(s) : *": *ff
where a and a denote the acceleration and velocity of the object.
(a) Show that the work done in moving the object from a position s0 to a position

s1 is equal to the change in the object's kinetic energy; that is, show that

w - J,"' 
o(r) ds : +mul - i mu|

where u0 : u (so) and u1 - u (s1) are the velocities of the object at the positions

,*i;:,
,,1"

Batter's box
,i,,,it,l

An overhead view of the position of a

baseball bat, shown every fiftieth of
a second during a typical swing.
(Adapted tiom ?'ire Physics $ Baseball)

f''Jln
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s6 and s1. Hint: By the Chain Rule,

du clu ds duo'dr-m dt dt-m'rr*

517

(b) How many foot-pounds of work does it take to throw a baseball at a speed
of 90 mi/h?

3. (a) An outfielder fields a baseball 280 ft away from home plate and throws it
directly to the catcher with an initial velocity of 100 ft/s. Assume that the
velocity o(r) of the ball after t seconds satisfies the differential equation
du/dt : -o/10 because of air resistance. How long does it take for the ball to
reach home plate? (Ignore any vertical motion of the ball.)

(b) The manager of the team wonders whether the ball will reach home plate
sooner if it is relayed by an infielder. The shortstop can position himself
directly between the outfielder and home plate, catch the ball thrown by the
outfielder, turn, and throw the ball to the catcher with an initial velocity of
105 ftft. The manager clocks the relay time of the shortstop (catching, turning,
throwing) at half a second. How far from home plate should the shortstop posi-
tion himself to minimize the total time for the ball to reach the plate? Should
the manager encourage a direct throw or a relayed throw? What if the shortstop
can throw at I15 ft/s?

EY (c) For what throwing velocity of the shortstop does a relayed throw take the same
time as a direct throw?

The Logistic Equation

In this section we discuss in detail a model for population growth, the logistic
model, that is more sophisticated than exponential growth. In doing so we use all
the tools at our disposal-direction fields from Section 7.2,Euler's method from
Section 7.3, and the explicit solution of separable differential equations from Sec-
tion'7.4. In the exercises we investigate other possible models for population
growth, some of which take into account harvesting and seasonal growth.

E The Logistic Model

As we discussed in Section 7.1, a population often increases exponentially in its
early stages but levels off eventually and approaches its carrying capacity because
of limited resources. If P(f) is the size of the population at time /, we assume that

dP_:kP
dt

if P is small

This says that the growth rate is initially close to being proportional to size. In
other words, the relative growth rate is almost constant when the population is
small. But we also want to reflect the fact that the relative growth rate decreases as

the population P increases and becomes negative if P ever exceeds its carrying
capacity K, the maximum population that the environment is capable of sustain-
ing in the long run. The simplest expression for the relative growth rate that incor-
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FIGURE I

Direction field for the logistic
equation in Example I

porates these assumptions rs

I dP / r\
p a,:o\t-v)

Multiplying by P, we obtain the model for population growth known as the logistic
differential equation :

tr

Notice from Equation I that if P is small compared with K, then P/K is close to 0
and so dP/dt : tP. But if P --> K (the population approaches its carrying capac-
ity), then P/ K ---> 1, so dP/dt -+ 0. We can deduce information about whether solu-

tions increase or decrease directly from Equation l. If the population P lies
between 0 and K, then the right side of the equation is positive, so dP/dt > 0 and
the population increases. But if the population exceeds the carrying capacity
(P > K), then I - P/K is negative, so dP/dt ( 0 and the population decreases.

I D,....,o' F,",o"

Let's start our more detailed analysis of the logistic differential equation by look-
ins at a direction field.

EXAMPLE ; r Draw a direction field for the logistic equation with k : 0.08 and

carrying capacity K : 1000. What can you deduce about the solutions?

SOLUTION In this case the logistic differential equation is

dP ^^^ 1. P \
d,:0.08P\t - 1000/

A direction field for this equation is shown in Figure l. We show only the first
quadrant because negative populations aren't meaningful and we are interested
only in what happens after t : 0.

r 400

I 200

600

400

2

The logistic equation is autonomous (dP/dt
the slopes are the same along any horizontal
positive for 0

depends only on P, not on l), so

line. As expected, the slopes are

#:m(r
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The slopes are small when P is close to 0 or 1000 (the carrying capacity).
Notice that the solutions move away from the equilibrium solution P : 0 and

move toward the equilibrium solution P : 1000.

In Figure 2 we use the direction field to sketch solution curves with initial
populations P(0) : 100, P(0) : 400, and P(0) : 1300. Notice that solution
curves that start below P : 1000 are increasing and those that start above

P : 1000 are decreasing. The slopes are greatest when P : 500 and, therefore,
the solution curves that start below P : 1000 have inflection points when
P = 500. In fact we can prove that all solution curves that start below P : 500
have an inflection point when P is exactly 500 (see Exercise 9).

l 400

r200

./

800

600

400

200

FIGURE 2

Solution curves for the logistic
equation in Example I

tr Eurer-s ,-rernoo

Next let's use Euler's method to obtain numerical estimates for solutions of the
logistic differential equation at sp'ecific times.

EXAMPLE 2 I Use Euler's method with step sizes 20, 10,5, l, and 0.1 to
estimate the population sizes P(40) and P(80), where P is the solution of the

initial-value problem

#:oosr(r #) P(0) : 100

SSt-UTN#ffi With step size h - 20, to- 0, & : 100, and

F(t, P) -

we get, using the notation of Section 7.3,

P1 : 100 + 20F(0, 100) : 244

Pz- 244 + 20F(20,244) : 539.14

P3: 539.14 + 20f @0,539.14) :: 936.69

o oar(r

//'

/

Pq: 936.69 + 20F(60,936.69) : 1031.57
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FIGURE 3

Euler approximations of the

solution curve in Example 2

Thus, our estimates for the population sizes at times r : 40 and r : 80 are

P(40) - 539 P(80) - 1932

For smaller step sizes we need to program a calculator or computer. The table
gives the results.

Step size Eulcr cstinratc ol' P(-10) Eulcr cstirnatc of P(80)

20

I0

5

l

0. I

s39

647

695

725
731

l 032
gL)7

99 I

9llfi
gl,i5

Figure 3 shows a graph of the Euler approximations with step sizes ft : l0 and
h : l. We see that the Euler approximation with ft : I looks very much like the
lower solution curve that we drew usins a direction field in Fieure 2.

n The Analytic Solution

The logistic equation (l) is separable and so we can solve it explicitly using the
method of Section 7.4. Since

dP / P\
T: o"\r - V)

fdPrl_- :ltrat
J P(l P/ K) r

on the left side, we write

IK
4t-P/ n: Pw-4

this expression by writing

Kll
PU{-n:F + K-P

ffi

we have

z

To evaluate the integral

The method of partial fractions (Appen-
dix F) gives a systematic approach to
problems of this t)'pe.

P

We can further simplify
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as you can verify by combining the fractions on the right-hand side. This enables
us to rewrite Equation 2:

J(++ #)0,:!r,a,
mlrl- lnl/( pl: kt + c

KP
ln

KP : e-k,-C - ,-Cr-kr

KP

-: 

Ae-k,
P

where A - +e-c. Solving Equation 3 for P, we get

K,,,PI
i l-Ae-k' ) i:r.fu

KP-- 1+ e*
We find the value ofA by putting / : 0 in Equation 3. If t : 0, then P : Po (the
initial population), so

K-Po . o--r, :Ae":A

Thus, the solution to the logistic equation is

A PG):T#, whereA -#
EXAMPLE 3 r Write the solution of the initial-value problem

dP / p \
i;: o.o8P(t - ftrJ P(o) : roo

and use it to find the population sizes P(40) and P(80). At what time does the
population reach 900?

SOLUTlOll The differential equation is a logistic equation with k : 0.08, carry-
ing capacity K : 1000, and initial population & : 100. So Equation 4 gives the
population at time t as

p(tt :_ looo looo - loo
l+Ae-"* whereA: 100 

:9

1000

E

Thus P(t) :
1+ gr-o'ott
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So the population sizes when / - 40 and 80 are

Compare these values with
estimates from Example 2:

P(40) : 731 P(80)

P(40): 1ffi: ,nr'6

The population reaches 900 when

P(80) :- tunnr, :'985.3
r * 9e-uA

the Euler

: 985

Compare the solution curve in Figure 4
with the lowest solution curve we drew
from the direction field in Figure 2.

1000

r000

I + 9, -0.08t

Solving this equation for /, we get

I + gr-o.tt*,:f;

,-0.08t _ 
*

- 900

-0.08/: ln ,, : -ln8l

ln 81t: oos 
:54'9

So the population reaches 900 when t is approximately 55. As a check on our
work, we graph the population curve in Figure 4 and observe where it intersects
the line P : 900. The cursor indicates that r : 55. *

t Comparison of the Natural Growth and Logistic Models

In the 1930s the biologist G.F. Gause conducted an experiment with the protozoan

Pqramecium and used a logistic equation to model his data. The table gives his
daily count of the population of protozoa. He estimated the initial relative growth
rate to be 0.7944 and the carrying capacity to be 64.

0

FI

I (rlaYs ) 0 I 1 -)
1 1 5 fi 1 IJ r) l0 ll ll l-l l-t l5 l6

P (otrservccl ) 2
1
-) 22 t6 3c) 52 5;1 17 50 76 fr9 5r 5l lo 5i 59 57

EXAMPLE 4 r Find the exponential and logistic models for Gause's data. Com-
pare the predicted values with the observed values and comment on the fit.

SOLUTfON Given the relative growth rate k:0.7944 and the initial population

Po : 2, the exponential model is

P (t) - Po ek ' - 2ra 'leaat

Gause used the same value of ft for his logistic model. [Thrs ls reasonable

because Po: 2 is small compared with the carrying capacity (K - 64). The

equation

shows that the value
exponential model.l

rdP
h ,t,

of k for the

l,:,:/'(r a):
logistic model is very

k

close to the value for the
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Equation 4 gives

64

t43

P(t)

Awhere

So

K
I + Ae-k'

KP064

64
P(t) :

1+ trr-o.7eaat

2

-31--: Dr0

FIGURE 5

The exponential and logistic
models for the Paramecium data

We use these equations to calculate the
integer) and compare them in the table.

+ 31, -o Teaar

predicted values (rounded to the nearest

We notice from the table and from the graph in Figure 5 that for the first
three or four days the exponential model gives results comparable to those of the
more sophisticated logistic model. For t > 5, however, the exponential model is
hopelessly inaccurate, but the logistic model fits the observations reasonably well.

I Other Models for Population Growth

The Law of Natural Growth and the logistic differential equation are not the only
equations that have been proposed to model population growth. In Exercise 14 we
look at the Gompertz growth function and in Exercises 15 and 16 we investigate
seasonal-growth models.

Two of the other models are modifications of the loeistic model. The differen-
tial equation

ffi

dP

-:dt

has been used to model populations

C

ct to "harvesting" of one sort or

i\
K/

subje

/.P(

that

l-

are

t (da)'s) 0 2
1
J -t 5 6 -|

I tt 9 I0 lt l2 l3 l4 l5 l6

/' ( obscrvccl )
-) -)

-') 22 l6 39 52 54 1l 50 76 69 5r 57 70 53 5c) 5l

/'] ( lclg i st ic nroclc-l ) 2 .l 9 tl 2ri -10 5l 57 6l 62 63 64 61 64 61 64 6.1

/' (crpolterttiaI rnodel) ') -t t0 'r) -l rt 106

p - 2,0.7eaat
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where the extra factor, | - mlf, takes into account the consequences of a sparse

population. (See Exercise 13.)

Exercises

another. (Think of a population of fish being caught at a constant rate). This equa-

tion is explored in Exercises 11 and 12.
For some species there is a minimum population level m below which the spe-

cies tends to become extinct. (Adults may not be able to find suitable mates.) Such

populations have been modeled by the differential equation

dP I P\l zr\_:kPtt__il1_-l
dt \ l(/\ Pl

l. Suppose that a population develops according to the

logistic equation

dP

; - o.osP o.ooosP2

where r is measured in weeks.
(a) What is the carrying capacity? What is the value

of k?
(b) A direction field for this equation is shown. Where

are the slopes close to 0? Where are they largest?

Which solutions are increasins? Which solutions are

decreasins?

(c) Use the direction field to sketch solutions for initial
populations of 20, 40, 60, 80, 120, and 140. What
do these solutions have in common? How do they
differ? Which solutions have inflection points? At
what population levels do they occur?

(d) What are the equilibrium solutions? How are the

other solutions related to these solutions?

Suppose that a population grows according to a logistic
model with carrying capacity 6000 and k - 0.0015 per
year.
(a) Write the logistic differential equation for these

data.
(b) Draw a direction field (either by hand or with a

computer algebra system). What does it tell you
about the solution curves?

(c) Use the direction field to sketch the solution curves

for initial populations of 1000, 2000, 4000, and

8000. What can you say about the concavity of
these curves? What is the significance of the inflec-
tion points?

(d) Program a calculator or computer to use Euler's
method with step size h- I to estimate the popula-
tion after 50 years if the initial population is 1000.

(e) If the initial population is 1000. write a formula for
the population after / years. Use it to find the popu-
lation after 50 years and compare with your esti-
mate in part (d).

(f) Graph the solution in part (e) and comperre with the

solution curve you sketched in part (c).

The Pacific halibut fishery has been modeled by the dif-
ferential equation

d)':kr(l 
-l)dt \ Kl

where y(l) is the biomass (the total mass of the members

of the population) in kilograrrs at time I (measured in
years), the carrying capacity is estimatecJ to be

K : 8 X 107 kg, and ft : 0.71 per year.
(a) If y(0) - 2 x 107 kg, find the biomass a year later.

(b) How long will it take for the biomass to reach

1 x 107 ks?

 .The table gi"; the nurnber of yeast cells in a new labo-
ratory culture.

3.
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(a) Plot the data and use the plot to estimate the carry-
ing capacity for the yeast population.

(b) Use the data to estimate the initial relative srowth
rate.

(c) Find both an exponential rnodel and a logistic model
for these data.

(d) compare the predicted values with the observed
values, both in a table and with graphs. Comment
on how well your moclels fit the data.

(e) use your logistic model to estirnate the number of
yeast cells after 7 hours.

5. The population of the worlcl was about 5.3 billion in
1990. Birth rates in the 1990s range from 35 to 40 mil-
lion per year ancl death rate rates from 15 to 20 million
per year. Let's assume that the carrying capacity for
world population is 100 billion.
(a) write the logistic differential equarion for these

data. (Because the initial population is small com-
pared to the carrying capacitl,, 1,ou can take k to be
an estimate of the initial relative growth rate.)

(b) Use the logistic model to predicr the world popula-
tion in the years 2000, 2100, and 2500.

(c) What are your predictions if the carrying capacity
is 50 billion?

6. (a) Make a guess as ro the carrying capacity for the
U.S. population. Use it and the fact rhat the popula-
tion was 228 million in 1980 to formulate a losistic
model for the U.S. population.

(b) Determine the value of A in 1'our model by using the
fact that the population in 1990 was 250 million.

(c) Use your moclel to predict the U.S. population in the
years 2100 and 2200.

(d) Use your model to predict the year in which the
U.S. population will exceed 300 million.

7. one model tor the spread of a rumor is that the rate of
spread is proportional to the product of the fraction y of
the population who have heard the rumor and the frac-
tion who have not heard the rumor.
(a) write a differential equation rhar is sarisfied by y.
(b) Solve the differential equarion.
(c) A small town has 1000 inhabitants. At 8 ,q.u.,

80 people have heard a rumor. By noon half the
town has heard it. At whar tirne will 90Vo of the
population have heard the rumor?

8. Biologists stocked a lake with 400 fish and estimated
the carrying capacity (the maximal population for the
fish of that species in that lake) to be 10,000. The num-
ber of fish tripled in rhe firsr year.
(a) Assuming that the size of the fish popularion satis-

fies the logistic equation, find an expression for the
size of the population after r years.

(b) How long will it take for the population to increase
to 5000?
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9. (a) Show that if P satisfies rhe logistic equarion (l),
then

d)P .l p\l 2p\
,ti : r:e( t - F/ (' -;)

(b) Deduce that a population grows fastest when it
reaches half its carrl,ing capacity.

For a fixecl value of K (say K - l0), the family of logis-
tic functions given b1' Equation 4 depends on the initial
value Po and the proportionality constant k. Graph
several members of this farnill'. 11ow does the graph
change rvhen Ps varies? How does it change when k
varies?

Let's modify the logistic differential equation of
Example I as follorvs:

E= ro.

@ tz.

il.

@

(a) Suppose P(r) represents a fish population at time r.
where I is measured in u'eeks. Explain the meaning
of the term - 15.

(b) Draw a clirection field for this differential equation.
(c) What are the ecluilibrium solutions?
(d) use the direction fielcl to sketch several solution

curves. Describe what happens to the fish popula-
tion for various initial populations.

(e) Solve this differential equation explicitly, either by
using partial fractions or witl-r a computer irlgebra
system. Use the in itial populations 200 and 300.
Graph the solutions and compare with your sketches
in part (d).

Consider the clifferential equation

dP I
,t, 

: o'oBP\ I

tlP I:0.0gPl Idr \

P\
i5

1000 /

P\
| -(looo /

13.

as a model for a fish population, where r is measured in
weeks and c is a constant.
(a) Use a CAS to draw direction fields for various

values of c.
(b) From your direction fields in part (a), determine

the values of c for which there is at least one equi-
librium solution. For what values of c does the fish
population always die out?

(c) Use the differential equation to prove what you dis-
covered graphically in part (b).

(d) What woulcl you recommend for a limit to the
weekly catch of this fish population?

There is considerable evidence to support the theory
that for some species there is a minimum population nz

such that the species will become extinct if the size of-

the population falls below rrr. This condition can be
incorporated into the logistic equation by introducing
the factor (l - m/P). Thus, the moclified logistic rnodel
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(c) Graph the Gompertz growth
Po : 100, and c _- 0.05, and

is given by the differential equation

'tP:rp( t-i)(' '')
ttr \ Kl \ P/

(a) Use the differentiitl equation to show that any solu-

tion is increasing rf m { P < K and decreasing if
0< P

(h,) For the case where k - 0.08, K : 1000, and 15'

nt - 200, draw a direction field and use it to sketch

several solution curves. Describe what happens to
the population for various initial populations. What
are the equilibriurn solutions?

(c) Solve the differential equation explicitly, either by
using partial fractions or with a computer algebra

system. Use the initial population P0.

(cl) [Jse the solution in part (c) to show that if P0 < ffi,

then the species rrv'ill become extinct. lHint: Show w
that the numerator in your expression for P(t) is 0 rl
tor some value of t.l

logistic function in Example 3. What are the slml-
larities? What are the differences?

(d) We know from Exercise 9 that the logistic function
grows fastest when P - KlT. Use the Gompertz

differential equation to show that the Gompertz

function grows fastest when P - K/r.

In a seasonal-growth model, a periodic function of
tirne is introduced to account for seasonal variations in

the rate of growth. Such variations could, for example,

be caused by seasonal changes in the availability of
food.
(a) Find the solution of the seasonal-growth model

where k, r, and @ are positive constants.
(b) By graphing the solution fbr several values of k,, r,

and S, explain how the values of k, r, and @ affect
the solution. What can you say about lim,-* P(f)?

Suppose we alter the differential equation in Exer-

cise 15 as follows:

dP

= 
: kPcos(rr +)

clt

dP::- : kp cos2(rf d)
dt

P(o) : Ps

P(0) - Po

| 4. Another model for a growth function for a limited
population is given by the Gompertz function, which l6'

is er solution of the clifferential equation

dP / r\
d, - ct"\F/ t

where cr is ar constant and K is the carrying capacity.
(a) Solve this difterential equation.
(b) Compute lim, ,-,,P(t) fE

fr.rnctionfor K - 1000.

compare it with the

(a) Solve this difterential equation with the help of a

table of integrals or a CAS.
(b) Graph the solution for several values of k, t, and @.

How do the values of ft, r. and rf affect the soh-rtion?

What can you say about lilrll-', P(t) in this case'/

where k is ar positive constant

Predator-Prey Systems

We have looked at a variety of models for the growth of a single species that lives

alone in an environment. In this section we consider more realistic models that
take into account the interaction of two species in the same habitat. We will see

that these models take the form of a pair of linked differential equations.

We first consider the situation in which one species, called the prey, has an

ample food supply and the second species, called the predators, feeds on the prey.

Examples of prey and predators include rabbits and wolves in an isolated forest,

food fish and sharks, aphids and ladybugs, and bacteria and amoebas. Our model

will have two dependent variables and both are functions of time. We let R(r) be

the number of prey (using R for rabbits) and W(t) be the number of predators (with
W for wolves) at time l.

In the absence of predators, the ample food supply would support exponential

growth of the prey, that is,

dR

dt

In the absence of prey, we assume that the predator population would decline at a
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rate proportional to itself, that is,

dW
-- - : -fWdr

where r is a positive constant

with both species present, however, we assume that the principal cause of death
among the prey is being eaten by a predator, and the birth and survival rates of the
predators depend on their available fbod supply, namely, the prey. We also assume
that the two species encounter each other at a rate that is proportional to both pop-
ulations and is therefore proportional to the product RI/. (The more there are of
either population, the more encounters there are likely to be.) A system of two dif-
ferential equations that incorporates these assumptions is as follows:

dR
- kR aRW

dr

dW----,-- -rw + hRw
dt

where ft, r,a,and b are positive constants. Notice that the term -aRW decreases
the natural growth rate of the prey and the term bRW increases the natural growth
rate of the predators.

The equations in (1) are known as the predator-prey equations, or the Lotka-
Volterra equations. A solution of this system of equations is a pair of functions
R(t) and w(t) that describe the populations of prey and predator as functions of
time. Because the system is coupled (R and W occur in both equdtions), we can't
solve one equation and then the other; we have to solve them simultaneously.
Unfortunately, it is usually impossible to find explicit formulas for R and lv as
functions of l. We can, however, use graphical methods to analyze the equations.

EXAMPLE I r Suppose that populations of rabbits and wolves are described by
the Lotka-Volterra equations (1) with ft:0.08, a : 0.001, r: 0.02, and
b : 0.00002.
(a) Find the constant solutions (called the equilibrium solutions) and interpret
the answer.
(b) Use the system of differential equations to find an expression for dW/dR.
(c) Draw a direction field for the resulting differential equation in the Rlr-plane.
Then use that direction field to sketch some solution curves.
(d) Suppose that, at some point in time, there are 1000 rabbits and 40 wolves.
Draw the corresponding solution curve and use it to describe the changes in both
population levels.
(e) Use part (d) to make sketches of R and W as funcrions of /.

50LUTr6$
(a) With the given values of k, a, r, and b, the Lotka-Volterra equations become

dR

,It 
: 0.09R 0.001 RW

dW

,tt: -0.02w +0.0000?RW

tr
lV represents the predator.
R represents the prey.

The Lotl<a-Volterra equations were
proposed as a model to explain the
variations in the shark and food-fish
populations in the Adriatic Sea by the
Italian mathematician Vito Volterra
(r860- re40).
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0.08W- -- 80
0.001

150

100

Both R and W will be constant if both derivatives are 0, that is,

R' : R(0.08 0.001w) - o

W': W(-0.02 + 0.00002R)-0

One solution is given by R : 0 and W : 0. (This makes sense: If there are no

rabbits or wolves, the populations are certainly not going to increase.) The other

constant solution is

0.02R===--1000
0.00002

So the equilibrium populations consist of 80 wolves and 1000 rabbits. This
means that 1000 rabbits are just enough to support a constant wolf population of
80. There are neither too many wolves (which would result in fewer rabbits) nor

too few wolves (which would result in more rabbits).

(b) We use the Chain Rule to eliminate t:

dw dw:
dr dR

dW

dW dr -0.02w + 0.00002RW

dR dR

dt

0.08R 0.001 Rw

(c) If we think of W as a function of R, we have the differential equation

dw -0.02w + 0.00002RW

0.08R 0.001 RW

differential equation in
in Figure 2. If we move

dR

dt

dR

for this
curves

Figure 1 and we use

along a solution

\\\

FIGURE I Direction field for the predator-prey system

3000 R

FIGURE 2 Phase portrait of the system



FIGURE 3

Phase trajectory through (1000, 40)
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curve, we observe how the relationship between R and w changes as time passes.
Notice that the curves appear to be closed in the sense that if we travel along a
curve, we always return to the same point. Notice also that the point (1000,90)
is inside all the solution curves. That point is called an equilibrium point
because it corresponds to the equilibrium solution R : 1000, W : 90.

when we represent solutions of a system of differential equations as in
Figure 2, we refer to the RW-plane as the phase plane, and we call the solution
curves phase trajectories. so a phase trajectory is a path traced out by solu-
tions (R, w) as time goes by. A phase portrait consists of equilibrium points
and typical phase trajectories, as shown in Figure 2.

(d) Starting with 1000 rabbits and 40 wolves corresponds to drawing the solu-
tion curve through the point P0(1000,40). Figure 3 shows this phase trajectory
with the direction field removed. Starting at the point po at time r : 0 and
letting t increase, do we move clockwise or counterclockwise around the phase
trajectory? If we put R : 1000 and, w : 40 in the first differential equation.
we set

dR

dt 
: 0.08(1000) - 0.001(1000) (40) : 80 _ 40 : 40

since dR/dt ) 0, we conclude that R is increasing at ps and so we move counter-
clockwise around the phase trajectory.

we see that at Pe there aren't enough wolves to maintail a balance between
the populations, so the rabbit population increases. That results in more wolves
and eventually there are so many wolves that the rabbits have a hard time
avoiding them. So the number of rabbits begins to decline (at p1 , where we
estimate that R reaches its maximum population of about 2800). This means
that at some later time the wolf population starts to fall (at p2, where R : 1000
andw - 140). But this benefits the rabbits, so their population later starts to
increase (atP3, where w:80 andR - 210). As a consequence, the wolf popu-
lation eventually starts to increase as well. This happens when the populations
return to their initial values of R : 1000 and w : 40, and the entire cycle
begins again.

(e) From the description in part (d) of how the rabbit and wolf populations rise
and fall, we can sketch the graphs of R(r) and W(t). Suppose the points p1, p2,

ft 1ro0o, +01
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and & in Figure 3 are reached at times /1,

of R and W as in Figure 4.

t2, and r:. Then we can sketch graPhs

FIGURE 4

Graphs of the rabbit and wolf populations as functions of time

FIGURE 5

Comparison of the rabtrit

and wolf populations

To make the graphs easier to compare, we draw the graphs on the same axes

but with different scales for R and W, as in Figure 5. Notice that the rabbits

reach their maximum populations about a quarter of a cycle before the wolves.

R

3000

2000

1000

tt tt

An important part of the modeling process, as we discussed on page 76, is to

interpret our mathematical conclusions as real-world predictions and to test the

predictions against real data. The Hudson's Bay Company, which started trading in

animal furs in Canada in 1670, has kept records that date back to the 1840s.

Figure 6 shows graphs of the number of pelts of the snowshoe hare and its preda-

tor, the Canada lynx, traded by the company over a 90-year period. You can see

that the coupled oscillations in the hare and lynx populations predicted by the

Lotka-Volterra model do actually occur and the period of these cycles is roughly

l0 years.
Although the relatively simple Lotka-Volterra model has had some success in

explaining and predicting coupled populations, more sophisticated models have

also been proposed. One way to modify the Lotka-Volterra equations is to assume

that, in the absence of predators, the prey grow according to a logistic model with

carrying capacity K. Then the Lotka-Volterra equations (l) are replaced by the sys-
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FIGURE 6

Relative abundance of hare and lynx
from Hudson's Bay Company records r 875l 850

tem of differential equations

dW

dt:-rW+bRW
This model is investigated in Exercises 9 and 10.

Models have also been proposed to describe and predict population levels of two
species that compete for the same resources or cooperate for mutual benefit. Such
models are explored in Exercise 2.

Exercises

l. For each predator-prey system, determine which of the
variables, J or.J,,, represents the prey population and
which represents the predator population. Is the growth
of the prey restricted just by the predators or by other
factors as well? Do the predators feed only on the prey
or do they have additional food sources? Explain.

dx(a) -:-0.05x+0.0001xvdt
dv

dt
dx

(b) 1 : 0.2x 0.0002 x2 - 0.006x.y
dt
dy_
dr 0.015y + 0.00008xy

Each system of differential equations is a model for two
species that either compete for the same resources or
cooperate for mutual benefit (flowering plants and
insect pollinators, for instance). Decide whether each
system describes competition or cooperation and explain
why it is a reasonable model. (Ask yourself what effect
an increase in one species has on the growth rate of the
other.)

dx
(a) - - 0.12x 0.0006x2 + 0.00001"ry

dt
dv

dr

dx(b) -:-' - o.l5x o.ooo2 xt - o.ooo6xy
dt

dY - o.2y o.oooog.r,,,, - o.ooo2xy
dt

3-4 r A phase trajectory is shown for populations of rab-
bits (R) and foxes (F').
(a) Describe how each population changes as time goes by.
(b) Use your description to make a rough sketch of the

graphs of R and F as functions of time.

3.

2.
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4.

5-6 I Graphs of populations of two species are shown.

them to sketch the corresponding phase trajectory.

In Example l(b) we showed that the rabbit and wolf
populations satisfy the differential equation

clw -0.OZW + 0.00002RW

,tR - 0l)8R-OJOIRW

By solving this separable differential equation, show

that
R0.02 W0.0n

"t..n-*"tt* 
- C

whereCisaconstant.

It is impossible to solve this equation for I'V'as an

explicit function of R (or vice versa). If you have a com-
puter algebra system that graphs implicitly defined
curves, use this equation and your CAS to draw the

solution curve that passes through the point (1000,40)
and compare with Figure 3.

8. Populations of aphids and ladybugs are modeled by the

equations

dA : 2A 0.01At
dt

dL

E: -0.5L + 0.0001At

(a) Find the equilibrium solutions and explain their
sign ificance.

(b) Find an expression for dL/dA.
(c) The direction field for the differential equation in

part (b) is shown. Use it to sketch a phase portrait.
What do the phase trajectories have in common?

r0000 15000 A

(d) Suppose that at time / - 0 there are 1000 aphids

and 200 ladybugs. Draw the corresponding phase

trajectory and use it to describe how both popula-
tions change.

(e) Use part (d) to make rough sketches of the aphid

and ladybug populations as functions of r. How are

the graphs related to each other?

In Example I we used Lotka-Volterra equations to

model populations of rabbits and wolves. Let's modify
those equations as follows:

dR 
- o.o8R' - o.ooo2ft) - o.oot^w

dr

dW

;: -0.02w + o.oooozRw

(a) According to these equations, what happens to the

rabbit population in the absence of wolves?

(b) Find all the equilibrium solutions and explain their
sign if icance.

Use

5.

9.

7.

Species

Species

Species

Species



(c) The figure shows the phase trajectory that starts at
the point (1000,40). Describe what eventually hap-
pens to the rabbit and wolf populations.

30
600 800 1000 1200 1.400 1600 R

(d) Sketch graphs of the rabbit and wolf populations as

functions of time.

In Exercise 8 we modeled populations of aphids and lady-
bugs with a Lotka-Volterra system. Suppose we modify

Chapter 7 Review
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those equations as follows:

dA

E - zA(t 0.00014) - 0.0lAL

553

(a)

(b)
(c)
(ct)

. CONCEPT CHECK I

dL

*:-0.5t+0.0001At

In the absence of ladybugs, what does the model
predict about the aphids?
Find the equilibrium solutions.
Find an expression for clL/dA.
Use a computer algebra system to draw er direction
field for the differential equation in part (c). Then
use the direction field to sketch a phase portrait.
What do the phase trajectories have in common?
Suppose that at time f - 0 thcre are 1000 aphids
and 200 ladybugs. Draw the corresponding phase
trajectory and use it to describe how both popula-
tions change.

(f) Use part (e) to make rough sketches of the aphid
and ladybug populations as functions of r. How are

the graphs related to each other?

(e)

ffi lo.

l. (a) What is a differential equation?
(b) Wtrat is the order of a differential equation?
(c) What is an initial condition?

2. What can you say about the solutions of the equa-
tion.),' - 12 + .y'2 just by looking at the differential
equation?

What is a clirection field for the differential equation

.)" : tr(r, l')?

Explain how Euler's method works.

What is a separable differential equation? How do you
solve it?

6. (a) Write a differential equation that expresses the law
of natural growth.

(b) Under what circumstances is this an appropriate
model for population growth?

(c) What are the solutions of this equation?

7. (a) Write the logistic equation.
(b) Under what circumstances is this an appropriate

moclel for population growth?

8. (a) Write Lotka-Volterra equations to model populations
of food fish (F) and sharks (S).

(b) What do these equations say about each population
in the absence of the other?

3.

4.

5.

.-&. TRUE-FALSE QUtZ a

Determine whether the statement is true or false. If it is
true, explain why. If it is false, explain why or give an

example that disproves the statement.

l. All solutions of the differential equation .),' : -)'a are
decreasing functions.

2. The function/(x) - (ln r)/x is a solution of the differ-
ential equation xt)" * ry : 1.

3.

4.

The eeuation trr

The equation r
5. If '1, is the

: J + ,.l' is separable.

: 3)' 2x + 6xY

ial-value

]'(0)

I is separable.

problem

-l

solution of the init

lL 
-2,( r- r)dr \ s/

then limr--o ltr - 5.
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l. (a) A direction field for the differential equation

)" : )'( )' - 2) ( l' 4) is shown' Sketch the

graphs of the solutions that satisfy the given initial
condition s.

(i) .r'(0) : -0.3 (ii) y(0) - I
(iii) )'(0) - 3 (iv) y(0) : 4.3

s EXERCTSES s

problem in part (a). Compare with your estimate
from part (a).

(c) On what lines are the centers of the horizontal line
segments of the direction field in part (a) located?

What happens when a solution curve crosses these

I ines?

4. (a) Use Euler's method with step size 0.2 to estimate
y(0.4), where ),'(x) is the solution of the initial-value
problem

),' : ?Xyt .'(0) : I

(b) Repeat part (a) with step size 0.1.
(c) Find the exact solution of the differential equation

and compare the value at 0.4 with the approxima-
tions in parts (a) and (b).

5. Solve the equation ),' : 2 + Zxz * )' + xt-)'.

6-7 I Solve the initial-value problem.

6. I + J - Zxl"n-I',,,tr ) 0, .)'(1) _ -z
7. Jy_)" - ln x, )'(1) - 2

n= 8. Solve the initial-value problem 2)'-)" : r€'t, )'(0) : l,
and graph the solution.

9-10 r Find the orthogonal trajectories of the given farnily
of curves.

k
-l 10._),- 1+l

| | . A bacteria culture starts with 1000 bacteria and the

growth rate is proportional to the number of bacteria.
After 2 hours the population is 9000.
(a) Find an expression for the number of tracteria after

/ hours.
(b) Find the number of bacteria after 3 h.

(c) How long does it take for the number of bacteria
to double?

12. An isotope of strontium, "nSr, has a half-life of 25 years.

(a) Find the mass of nosr that remains from a sample of
l8 mg after / years.

(b) How long would it take for the mass to decay to
2 mg?

13. Let C(r) be the concentration of a drug in the blood-
stream. As the body eliminates the drug , C(t) decreases

at a rate that is proportional to the amount of the drug
that is present at the time. Thus, C'(r) - -kc(t), where

k is a positive number called the elintination constttnr of
the drug.
(a) If Co is the concentration at time /: 0, find the

concentration at time f.

(b) If the body eliminates half the drug in 30 h, how
long does it take to eliminate 9ATo of the drug?

ttltrfllllll
ttlllllf,ttl
tttrtlllttll
ttlllltllltt
tttttllll//lt / / / / / aa/ /
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-'\-\\\\.\-\\-\--\
--//-/-t
.t ./ ./ ./ ./ .t ./ / / / ./ ./
,/,//////l/////,//././//////// ./ ./ ./ ./ ./ ./,/ "/ ./ ./ ./

(b)

2. (a)

(b)

3. (a)

If the initial condition is )'(0) : c, for what values
of c is lirrrl:*- y(r) finite? What are the equilibrium
solution s?

Sketch a direction field for the differential equation
y' : x/-l'. Then use it to sketch the four solutions
that satisfy the initial conditions 1'(0) - 1,

)'(0) - -1,y(2) - l, and )'(-2) - l.
Check your work in part (a) by solving the differen-
tial equation explicitly. What type of curve is each

solution curve?

A direction field for the differential equation

-1f,,' - -tr2 y2 is shown. Sketch the solution of the
initial-value problem

.),' - J2 )t )'(0) - I

Use your graph to estimate the value of r'(0.3).

9.

\l
\l
\t\\

\\,/\/-\\ ./ /

r2t4
tt/
t/"/
t/
t,/\

J3
I

I

I

I

\-l

tl\\
t-\\/\\\

(b) Use Euler's method with step size 0.1 to estimate

.y(0.3), where y(x) is the solution of the initial-value



14. (a) The population of the w,orld was 4.45 billion in
1980 and 5"30 billion in 1990. Find an exponential
rnodel for these data and use the model to predict
the worlcl population in the year 2020.

(b) According to the rnodel in part (a), when will the
worlcl population exceed l0 billion?

(c) [Jse the data in part (a) to find a logisric moclel for
the population. Assume a carrying capacity of
100 billion. Then use the logistic model to predict
ttre population in 2020. Compare with your preclic-
tion from the exponential rnoclel.

(d) Accorcling to the logistic model, when will the
world population exceed 10 billion? Compare with
your precliction in part (b).

15. The von Bertalanffy growth model is usecl to predict
the length t(r) of a fish over a period of tirne. If L* is
the largest length for a species', then the hypothesis is
that the rate of growth in length is proportional to
L- L. the length yet to be achieved.
(a) Formulate and solve a differential equation to find

an expression for l,(r).
(b) For the North Sea haddock it has been cletermined

that L.-:53 cm, t(0) - l0 cm, and the constant of
proportionality is 0.2. what does the expression for
L(t) become with these data?

15. A tank contains 100 L of pure water. Brine that con-
tains 0.1 kg of salt per liter enters the tank at a rerte of
l0 L/rnin. The solution is kept ttroroughly rnixed erncl

drains from the tank at the same rate. How much salt
is in the tank after 6 minutes?

17. one model for the spread of an epiclemic is that the
rate of spread is jointly proportional to the number of
infected people and the number of uninfectecl people. In
an isolated town of 5000 inhabitants, 160 people have a

disease at the beginning of the week and 1200 have it at
the end of the week. How long does it take for 80% of
the population to become infected?

18. Populations of birds and insects are rnodeled by the
equations

dx 0.4x 0.002rv
dt

dt,

; -- -0.2r' + 0.000008xy

(a) Which of the variables, -r or )r. represents the bird
population and which represents the insect popula-
tion? Explain.

(b) Find the equilibrir.rm solutions ancl explain their
sign if icance.

( c ) Fi nd an express ion 1o, Iyf clx.

(d) The direction fielcl for the differential equarion in
part (c) is show,n. Use it to sketch the phase trajec-
tory corresponding to initial populations of 100 birds
ancl 40,000 insects. Then use the phase trajectory to
describe how both populations change .
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(e) use part (d) to make rough sketches of the bird and
insect populations as functions of time. How are
these graphs related to each other?

19. Suppose the model of E,xercise l8 is replaced by rhe
equations

dx

d; 
: 0.4x( I - 0.000005x) 0.002x 1'

d),

,tt 
: -0.2r' + 0.000008ry

(a) According to these equations, what happens to the
insect population in the etbsence of birds?

(b) Find the equilibrium solutions and explain rheir
sign ificance.

(c) The f ig ure shows the phase trajectory that starts
with 100 birds and 40.000 insects. Describe whar
eventualll' happens to the bird ancl insect
popll lat ion s.

,v
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(d) Sketch graphs of the bird and insect populartions as

functions of time.

Barbara weighs 60 kg and is on a diet of 1600 calories
per day, of which 850 are used automatically by
basal metabolism. She spends about 15 cal/kg/clay
times her weight doing exercise. If I kg of fat contains
10,000 cal and we assurne that the storage of calories
in the tbrm of fat is 100G/o efficient, formulate a differ-
ential equation and solve it to find her weight as a func-
tion of time. Does her weight ultimately approach an
equilibrium weight?

20.



| . Find all functions / such that,f is continuous and

[,f(x)]' : 100 + f t[/(r)]' + t/'(r)l']dt

7. A student forgot the Product Rule for differentiation and

ing that (fg)' - f'g'. However, hg was lucky and got the

tion / that he used was f (x) : sx- and the domain of his
(i, *). What was the function g?

# d'):-l

for all real x

made the mistake of think-
correct answer. The func-

problem was the interval

3. Letfbe a function with the property that/(0) - 1,./'(0) - l, and

f(a + b) : f(o)f(b) for all real numbers a and b. Show that f'(*) : f(*) for all x
and deduce that f (r) - e"'.

4. Find all functions / that tionsatisfy the equa

(I 
',",*) 

(J

5. A planning engineer for a new alum plant must present some estimates to his com-

pany regarding the capacity of a silo designed to contain bauxite ore until it is
processed into alum. The ore resembles pink talcum powder and is poured from a

conveyor at rhe top of the silo. The silo is a cylinder 100 ft high with a radius of
200 ft. The conveyor carries 60,000nft3 lh and the ore maintains a conical shape

whose radius is 1.5 times its height.
(a) If, at a certain time t, the pile is 60 ft high, how long will it take for the pile to

reach the top of the silo?

(b) Management wants to know how much room will be left in the floor area of the

silo when the pile is 60 ft high. How fast is the floor area of the pile growing at

that height?
(c) Suppose a loader starts removing the ore at the rate of 20'000z ft'/h when the

height of the pile reaches 90 ft. Suppose, also, that the pile continues to main-

tain its shape. How long will it take for the pile to reach the top of the silo

under these conditions?

6. Snow began to fall during the morning of February 2 and continued steadily into

the afternoon. A snowplow began to clear a street at noon, traveling at a constant

rate. The plow traveled 6 km from noon to I p.rra. but only 3 km from I P.M. to

2 p.ru. When did the snow begin to fall? fHints: To get started, let r be the time mea-

sured in hours after noon; let .x(t) be the distance traveled by the plow at time t;

then the speed of the plow is dx/dt.Letbbe the number of hours before noon that it
began to snow. Find an expression for the height of the snow at time /. Then use the

given information that the rate of removal R (in m7h) is constant.l

7. A dog sees a rabbit running in a straight line across an open field and gives chase.

In a rectangular coordinate system (as shown in the figure), assume:

(i) The rabbit is at the origin and the dog is at the point (L,0) at the instant the

dog first sees the rabbit.
(ii) The rabbit runs up the y-axis and the dog always runs straight for the rabbit.

(iii) The dog runs at the same speed as the rabbit.

(a) Show that the dog's path is the graph of the functiony: f(t), wherey satisfies

the differential equation

d'y
J -----; :

dx'



8. (a)

(b)

(b) Determine the solution of the equation in part (a) that satisfies the initial condi-
tions y: y':0when x: L. lHint: Let z: dy/dx inthe differentialequation
and solve the resulting first-order equation to find z; then integrate z to find y.l

(c) Does the dog ever catch the rabbit?

Suppose that the dog in Problem 7 runs twice as fast as the rabbit. Find a differ-
ential equation for the path of the dog. Then solve it to find the point where the
dog catches the rabbit.
Suppose the dog runs half as fast as the rabbit. How close does the dog get to
the rabbit? What are their positions when they are closest?
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cymhuls, are rle.fined as sums of
infinite series in Ser:tion 8.5.
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l,{otice how closely the computer-

generated models (which involt,e

Bessel functions and cosine functions)
match the photographs of a vibrating

rubbet' membrane.

$*$ f f nfinite sequences and series were introduced briefly in A Preview of Calculus

in connection with Zeno's paradoxes and the decimal representation of numbers.

Their importance in calculus stems from Newton's idea of representing functions

as sums of infinite series. For instance, in finding areas he often integrated a

function by first expressing it as a series and then integrating each term of the

series. We will pursue his idea in Section 8.7 in order to integrate such functions

as e-tz. (Recall that we have previously been unable to do this.) Many of the

functions that arise in mathematical physics and chemistry, such as Bessel

functions, are defined as sums of series, so it is important to be familiar with

the basic concepts of convergence of infinite sequences and series.

Physicisa also use series in another way, as we will see in Section 8.9. ln studying

fief ds as diverse as optics, special relativity, and electromagnetism, th ey analye

phenomena by replacing a function with the first few terms in the series that

represents it.

A

A

A

#
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Sequences

A sequence can be thought of as a list of numbers written in a definite order:

At, QZ, A3, Q4, Qn,

The number ar is called thefirst term, e2isthe second term, and in general a, is
the nth term. We will deal exclusively with infinite sequences and so each term cn
will have tt SUCCgsSor oa+r.

Notice that for every positive integer n there is a corresponding number an and
so a sequence can be defined as a function whose domain is the set of positive
integers. But we usually write a, instead of the function notation/(n) for the value
of the function at the number n.

1{OTATl0l{ . The sequence {a1, ez, az,. . .} is also denoted by

{o"} or {o,}T:'

EXAMPLE I r Some sequences can be defined by giving a formula for the nth
term. In the following examples we give three descriptions of the sequence: one
by using the preceding notation, another by using the defining formula, and a
third by writing out the terms of the sequence. Notice that n doesn't have to
start at 1.

(a) 
{*}::

f t 2 3 4 n Ia,,:;+ t;,; ,r,t, ... . 
n + t, j

f z 3 4 s

l-1' g'- 27 ' gl
(-1)'(n + 1)

3"' )
(c) {J" - 3 }I:, a,r: tfn-3,n G3,...)
(d) 

{.", +}-.:,
nTran: cos - , ft
o {'' +'+ ,0,

nTr
cos 

-6 )
EXAMPTE 2 r Here are some sequences that don't have a simple defining
equation.
(a) The sequence { p,}, where p, is the population of the world as of January 1

in the year n.
(b) If we let anbe the digit in the nth decimal place of the number e, then {a"}
is a well-defined sequence whose first few terms are

{7, l, 8, 2,8, r,8, 2, 8, 4, s, ...}

(c) The Fibonacci sequence {"f,} is defined recursively by the conditions

ft:1 fr:1 f^:f,-r*fn-z n>-3

Each term is the sum of the two preceding terms. The first few terms are

{1, l, 2,3, 5, g, 13, 21, . . .l
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This sequence arose when the l3th-century Italian mathematician known as

Fibonacci solved a problem concerning the breeding of rabbits (see Exercise 35).

ffi

A sequence such as the one in Example l(a), a": n/(n * 1), can be pictured

either by plotting its terms on a number line, as in Figure l, or by plotting its
graph, as in Figure 2. Note that, since a sequence is a function whose domain is
the set of positive integers, its graph consists of isolated points with coordinates

(1, a ') 
(2, u7) (3, or) (n, a,)

From Figure I or 2 it appears that the terms of the sequence a, : nf (n * l) are

approaching 1 as n becomes large. In fact, the difference

,- n 
- 

I

n]-l n+l

can be made as small as we like by taking n sufficiently large. We indicate this by
writine

In general, the notation

means that the terms of the
that the following definition
tion of a limit of a function

lim 1

rr -.n n + 1

!,t: o"- L

sequence {a,} approach L as n becomes large. Notice
of the limit of a sequence is very similar to the defini-
at infinity given in Section 2.5.

A more precise def inition of the limit
of a sequence is given in Appendix D.

Figure 3 illustrates Definition I by showing the graphs of two sequences that
have the limit L.

t?34567

I Definition A sequence {a,,} has the limit L and we write

lTu'-L 
or an--->Lasn---+w

if we can make the terms a,, as close to L as we like by taking n suffi-
ciently large. If lim,,-on ctll exists, we say the sequence converges (or is
convergent). Otherwise, we say the sequence diverges (or is divergent).

F lG U R E 3 Graphs of two sequences with lim e u: L
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If you compare Definition 1 with Definition 4 in Section 2.5 you will see rhat
the only difference between lim,-- an : L and lim,-- f(*) : Z is that n is
required to be an integer. Thus, we have the following theorem, which is illustrated
by Figure 4.

E ttreorem If lim* --* f (x) - L and f (") - a,, when n is an integer,
then limn ---* an: L.

FIGURE 4

Limit Laws for Convergent Sequences

In particular, since we
r

E

In this case the sequence

diverges to oo.

The Limit Laws given
their proofs are similar.

If ao becomes large as n becomes large, we use the notation

know from Section 2.5 that lim,--* (l/x') - 0 when

Ilim --0 ifr
n-'e n'

lg an: oc

{o"} is divergent, but in a special way. We say that {o,}

in Section 2.3 also hold for the limits of sequences and

The Squeeze Theorem can also be adapted for sequences as follows. (See Fig-
ure 5.)

y: f (x)

If {a,,} and {b"} are convergent sequences and c is a constant, then

Itg 
(o, + b") : t yo^ + 

IryU"

lim (a, b") - lim an lim b,
n---+x n---rx n---+a

Iim car: c lim a,
n---r* n---+fi

lim (a,b) - lim an' hm bn
n---rx n---r@ n---t@

lrm a,,
An rIrm .-: 

- 

if lim b,,+ 0
n---+e bn 

:r:b" 
n'..*

limc- c
n---r*
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lf an
11 +&

Squeeze Theorem for Sequences

FIGURE 5

The sequenc e {b,,} is squeezed between

the sequences {n,} and { c,, }.

Another useful fact about limits of sequences is

which follows from the Squeeze Theorem because

EXAMPLE3I FiNdIiM

s&LUTEsp{ rhe *.,;;;r';,1". to the one we used
numerator and denominator by the highest power of
Laws.

given by the following theorem,

-lo, l= an

4 Theorem If lim I n"l - 0, then lim ao - 0.
fl --+.X n --->6

in Section 2.5: Divide
n and then use the Limit

lim 1

n---tn

This shows that the guess

earlier from Figures I and

correct.

nl
lim 

-- 

lim 

--

Fr--)oo n + | n---n 
1+ 

I

n

Iliml+lim-
n--+fr n-'>x n

obtain

we made

2 was

1:l+o:l

Here we used Equation 3 with r - l.

EXAMPLE 4 I Calculate lim 
ln n

n "--+n n

$#ilffiT$ffi${ Notice that both numerator and denominator approach infinity as

n--too. We can't apply I'Hospital's Rule directly because it applies not to
sequences but only to functions of a real variable. However, we can apply

I'Hospital's Rule to the related function /(x) - (ln x) f x and obtain

ln x I/x
l*;:lg r :o

Therefore, by Theorem 2 we have

lnnls;: o

I Determine whether the sequence a,? : (-l)' is convergent or

r

r
EXAMPLE 5

divergent.

s#[-uT{*ffi If we write out the terms of the sequence,

{-1, l, -1, l, -1, l, -1,

we

)

The graph of this sequence is shown in Figure 6. Since the terms oscillate
between I and - I infinitely often, an does not approach any number. Thus,

lim,--* (-1)" does not exist; that is, the sequence {(-l)'} is divergent. tFIGURE 6
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r Evaluate lim 
(-l)' 

if it exisrs.
n ----r., nThe graph

is shown in
answer.

of the sequence in Example 6

Figure 7 and supports the

Q,,

I

FIGURE 7

Creating Graphs of Sequences

Some computer algebra systems have

special commands that enable us to cre-
ate sequences and graph them directly.
With most graphing calculators, how-
ever, sequences can be graphed by using

parametric equations. For instance, the
sequence in Example 7 can be graphed
by entering the parametric equations

x-t t-:t!/t'
and graphing in dot mode, starting with
t : I and setting the r-step equal to 1.

The result is shown in Figure 8.

I

0

FIGURE 8

EXAMPLE 6

5#II,'Tfitrru

lim
n----re

(- 1)"

n

I
-lim--0n-'e n

Therefore, by Theoreffi 4,

I'g 
Yy:o

EXAMPLE 7 I Discuss the convergence of the sequence an: nlfn", where
n! : l'2' 3 n.

SOLUTION Both numerator and denominator approach infinity as n -+ oo but
here we have no corresponding function for use with l'Hospital's Rule (x! is not
defined when x is not an integer). Let's write out a few terms to get a feeling fbr
what happensto an as n gets large:

t

1.2Qt: I Az: 
Z4

1. 2.3
ur, 1:" 3.3.3

n1.2.3
an:

n' n' n

It appears from these expressions and the graph in Figure 8 that the terms are
decreasing and perhaps approach 0. To confirm this, observe from Equation 5
that

E

SO

We know that lln -+ Q as n --+ oo. Therefore,, atl--+ 0 as ,? ---> oo by the
Theorem.

EXAMPLE 8 I For what values of r is the sequence {r"} convergent?

S$LUTION We know from Section 2.5 and the graphs of the exponential
in Section 1.5 that lim, ---* ar : oo for a
Therefore, puttrng a - r and using Theorem 2, we have

ts rn-{; li ;:',
For the cases r - 1 and r - 0 we have

Squeeze

t

functions

l0

lim l" - lim 1 - I and lim 0' - lim 0 - 0
ll ---+x n +(A n+X n --.>X

If -1 < r

lg l"l : l'* lrl": o



and, therefore, lim n.--+x rn - 0

Example 5. Figure 9 shows the

is shown in Figure 6.)

by Theorem 4.If r
graphs for various

sEcTr0N 8.1 SEQUrilCtS 565

values of r. (The case r - - 1

FIGURE 9

The sequence e,,-- t""
t

The results of Example 8 are summartzed for future use as follows.

DefinitionAsequence{o,}iscal1edincreasingtfan<
n

all n

Ir')
EXAMPTE 9 r The sequence 

t, . , J 
is decreasing because

33
,+5 ,+6

for all n > l. (The right side is smaller because it has a larger denominator.) *

EXAMPIE f 0 r Show that the sequence o,: 7\1is decreasing.

SOLUTfOII I We must show that an+r 1c,, that is,

n*l n

h+l\2+r -n'+l

This inequality is equivalent to the one we get by cross-multiplication:

n*"t 
,1;n - <= (n+l)(n'+1)(n+l)'+1 n/ +l

<= n3 + n2 + n + 1

<+ l<n2+n

ll

2n

6 The sequence {r"} it convergent if -1 < r
other values of r.

[o ir -l
Itrt":11 if r- rn-+T L
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FIGURE IO

Mathematical induction is often used in

dealing with recursive sequences. See

page 88 for a discussion of the Principle
of Mathematical Induction.

Since n

An+ l

Sffifi-tfT$#ffi 3 Consider the function f(x) : -.! ,x'+l
*2 +1-2x2 1- x2

f'(*) : #-- o whenever,rz> I'' (*' + l)t (*' + 1)'

Thus,,f is decreasing on (1,*) and so/(n) > f(n + l). Therefore, {a,} is
decreasing. IT

For instance, the sequence an: n is bounded below (a, > 0) but not above.
The sequence an: n/(n + 1) is bounded because O 1 a^ < I for all n.

We know that not every bounded sequence is convergent fa,: (-l)' satisfies

- I € a, < I but is divergent, from Example 5l and not every monotonic sequence
is convergent (a, : n ---> @).But if a sequenie is both bounded and monotonic,
then it must be convergent. This fact is stated without proof as Theorem 7, but
intuitively you can understand why it is true by looking at Figure 10. If {c,} is
increasing and an < M for all n, then the terms are forced to crowd together and
approach some number l.

Z Monotonic Sequence Theorem Every bounded, monotonic sequence is
convergent.

EXAMPLE ll I Investigate the sequence {a,} defined by the recurrence relation

a1 _: 2 ctn*t - I@" + 6)

S$t-UT'tffif{ We begin by computing the firsr few

Q1: 2 a2: iQ
a5: 5.75

+6):4 e3:*@ +

a6 : 5.875 a7 - 5.9375 as:= 5.96815

for n- I,2,3,...

terms:

6) -5 a4: its + 6)-5.5

increasing and the terms are
increasing, we use mathematical
This is true for n : I because

- ft, then we have

These initial terms suggest that the sequence is
approaching 6. To confirm that the sequence is
induction to show that an+l

Q2: 4

Def inition A sequence {o"} is bounded above if there is a numb er M
such that

an

It is bounded below if there is a number m such that

m

If it is bounded above and below, then {o"} is a bounded sequence.

A*+t ) ap



SO

and

Thus

(a) What is a sequence?

(b) What does it mean to say that limn -* ctn : 8?

(c) What does it mean to say that limn _-m an - mJ

(a) What is a convergent sequence? Give two examples.
(b) What is a divergent sequence? Give two examples.

List the first six terms of the sequence defined by

-:n
2n + I

Does the sequence appear to have a limit? If so, find it.

List the first eight terms of the sequence {sin(nrr/Z)}.
Does this sequence appear to have a limit? If so, find it.
If not, explain why.

6) . +(r2)

lim an+t: lim ).(o,,+ 6) - +(lr^ o, + 6) : ift + 6)
n---+x n----+x \n -x I
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general term ao of the

pattern of the first few terms

6. {+,+,*,*,...}
g. {0, 2, o, 2,0,2, ...}

ar+r + 6

i(an*, + 6) 'i@n
+6)

a *+z

We have deduced thatan+r ) an is true for n: k * l. Therefore, the inequality
is true for all n by induction.

Next we verify that {a,} is bounded by showing that a, ( 6 for all n.

(Since the sequence is increasing, we already know that it has a lower bound:

en2 er: 2for all n.) We know that at 16, so the assertion is true for n -- l.
Suppose it is true for n : ft. Then

SO

and

Thus

A1s

ap + 6

a*+ t

This shows, by mathematical induction, that an I 6 for all n.

Since the sequence {a,} is increasing and bounded, the Monotonic Sequence

Theorem guarantees that it has a limit. The theorem doesn't tell us what the

value of the limit is. But now that we know L : lim"-* an exists, we can use

the given recurrence relation to write

ibo +

Since a, --'> L, it follows that anal -'> L, too (as n -+ a, n * I --+ oo also). So we

have

L:L(r+ 6)

Solving this equation for L, we get L - 6, as we predicted.

Exercises

ffi

l.

2.

3.

5-8 I Find a formula for the

sequence, assuming that the

continues.

s. {+,+,t,*,...}
7. {*, *,*,&, }

4.

9-26 t Determine whether the sequence converges or
diverges. If it converges, find the limit.

I
9. an: j

n2-1
ll' an: 

rL, + |

f0. an: 4J;

4n3
12. e,, :

3n + 4
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n2
13. Ltrt :

n + I

| 5. ct,, : cos(n rrl2)

I n")
17. { 

- 
}

l.3"J

I tn1r,t) )19. 1- |tn)
21. {&t + 2 - J;}

23. cr,r: p2-"

cos tn
25. (t,,: 

_

14. {arctan 2n}

16. e,,:(-1) ",1' 
ul-fn'

rs. It * t. '1"]!v' 
L nt )

20. {( - t)" sin(u")}

.r., Iht(z+.")J22. {LLt 
L 3rr )

24. e,, : ln(n + 1) ln n

(-3)"
26. (t,, : 

,!
1

37 . ct,,
3rt + 5

nz
39. (rrt- 

-

tr + 2

38. a,t:3 + (-l)'ln

40. crn: ,/,, + I

35. (a) Fibonacci posed the following problem: Suppose
that rabbits live forever and that every month each
pair produces a new pair, which becomes productive
at age 2 months. If we start with one newborn pair,
how many pairs of rabbits will we have in the nth
month? Show that the answer ir J,, where {,f,,} is the
Fibonacci sequence defined in Example 2(c).

(b) Let a,, : .f,*,/f,, and show that a,, r : I + lla,-r.
Assuming that {o,l is convergent, find its limit.

36. Find the limit of the sequence

{,8. J^tr,J2m,...}
37-40 r Determine whether the sequence is increasing,
decreasing, or not monotonic.

filzl-lz I Use a graph of the sequence to decide whether the
sequence is convergent or divergent. If the sequence is con-
vergent, guess the value of the limit from the graph and
then prove your guess. (See the margin note on page 564 for
advice on graphing sequences.)

27. a,,: (-l) '' n I I 
zB. en: Z + (-?/rr)^

tl

5n+3

41 . Suppose you know that {o,} is a decreasing sequence
and all its terms lie between the numbers 5 and B.

Explain why the sequence has a limit. What can you say

about the value of the limit?

42. A sequence {o,l is given by a, - ,8, cttt+t : ,r,E + ,r,, .

(a) By induction or otherwise, show that {o,,} is increas-
ing and bounded above by 3. Deduce that lim,, -* ctsl

ex ist s.

(b) Find lim,, -' all.

43. Show that the sequence defined by

tll: I Q,t+t_3 l/A,

is increasing and a,, 13 for all n. Deduce that {a,,} is
convergent" and find its limit.

44. Show that the sequence defined by

a1: 2 en*t- l/(3 a,)

satisfies 0 { d,, € 2 and is decreasing. Decluce that the
sequence is convergent. and find its limit.

45. We know that lim,,-- (0.8)" : 0 [from (6) with
r :0.8]. Use logarithms to determine how large n has
to be so that (0.8)' < 0.000001.

46. (a) Let n | : {1,, a2: .f(a), e3: ffur) - .f(f(a)), ...,
ert*t - f (a,,), where./ is a continuous function. If
lim,, -* a,, : L, show that JQ) : L.

(b) Illustrate part (a) by taking f(*) - cos x, u:1, and
estimating the value of L to five decimal places.

r , t, )]2s' 
lt"ttn(r,,+ tr)

1n'
3f. a,,: 

,)

30{r}

(2n 1)
32. e,, :

(2n)"

33. (a) Determine whether the sequence defined as follows
is convergent or divergent:

ay:l Gu*t-1 an forn}_ I

(b) What happens if the first term is a1 : 2?

34, (a) If lirn77* - e,, : L, what is the value of lirnp +ca an11?

(b) A sequence {o,,} is defined by

e1 - | a,11 - l/(l + a,) for n

Find ttre first ten terms of the sequence correct
to five decimal places. Does it appear that the
sequenee is convergent? If so, estimate the value of
the limit to three decimal places.

(c) Assuming that the sequence in part (b) has a limit,
use part (a) to find its exact value. Compare with
your estimate from part (b).
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47. Let a and b be positive numbers with a > b. Let a' be

their arithmetic mean and br their geometric mean:

ey: L+ bt - rab
/-

Repeat this process so that, in general,

crn,.r-a'*b" bn+t- J"rrh
2

(a) Use mathematical induction to show that

eo) ar+t) hn+t7 b,

(b) Deduce that both {o") and {b,,} are convergent.
(c) Show that lim.,,.,+x art: lim,, --* b,r. Gauss called the

common value of these limits the arithmetic-
geometric mean of the numbers a and b.

A sequence is defined recursively by

a1- | an*t-1+#;

Find the first eight terms of the sequenc e {a"}. What do
you notice about the odd terms and the even terms? By
considering the odd and even terms separately, show
that {o"} is convergent and deduce that

jg an: 12

This gives the continued fraction expansion

49.

EE Logistic Sequences

A sequence that arises in ecology as a model for population growth is defined by the
Iogistic difference equation

Pn+r:kP"(l-P")

where p, measures the size of the population of the nth generation of a single species.
To keep the numbers manageable, p, is a fraction of the maximal size of the popula-
tion, so 0 = p, < 1. Notice that the form of this equation is similar to the logistic
differential equation in Section 7.6. The discrete model-with sequences instead of
continuous functions-is preferable for modeling insect populations, where mating
and death occur in a periodic fashion.

An ecologist is interested in predicting the size of the population as time goes on,
and asks the questions: Will it stabilize at a limiting value? Will it change in a cyclical
fashion? Or will it exhibit random behavior?

Write a program to compute the first n terms of this sequence starting with an ini-
tial population p6, where 0 ( po ( 1. Use this program to do the following.

l. Calculate 20 or 30 terms ofthe sequence for pn: j and for two values of ft such

that I < t < 3. Graph the sequences. Do they appear to converge? Repeat for a
different value of ps between 0 and l. Does the limit depend on the choice of p6?

Does it depend on the choice of k?

2. Calculate terms of the sequence for a value of ft between 3 and 3.4 and plot them.
What do you notice about the behavior of the terms?

3. Experiment with values of ft between 3.4 and 3.5. What happens to the terms?

4. For values of /< between 3.6 and 4, compute and plot at least 100 terms and com-
ment on the behavior of the sequence. What happens if you change ps by 0.001?
This type of behavior is called chaotic and is exhibited by insect populations under
certain conditions.



t7o CHAPTER 8 IIIIII{ITT SEQUTI,ICES AND STRIES

Series

If we try to add the terms of an infinite sequence {o,}X:t we get an expression of
the form

E a1 ia2*a3 I...*en-r...

which is called an infinite series (orjust a series) and is denoted, for short, by the
symbol

\--l

L (ln
n:I

But does it make sense to talk about the sum of infinitely many terms?
It would be impossible to find a finite sum for the series

| + 2 + 3 + 4 + 5 + ... r n -r ..'

because if we start adding the terms we get the cumulative sums l, 3, 6, 10, 15,

21,. . . and, after the nth term, n(n + l)/2,which becomes very large as n increases.
However, if we start to add the terms of the series

we get i, 1, i, *E, rr, *@, . . ., I - l/2^, .. . . The table shows that as we add more
and more terms, these partial sums become closer and closerto l. (See also Fig-
ure ll in A Preview of Calculus, page 7.) In fact, by adding sufficiently many
terms of the series we can make the partial sums as close as we like to L So it
seems reasonable to sav that the sum of this infinite series is I and to write

lll11l++++++248163764

:ll11l),E,2u 2 4 g 16

I++
2n

I+ + -l2n

We use a similar idea to determine whether or not a general series (l) has a sum.
We consider the partial sums

,S1 - A1

,S2- A1 + Q2

.fr- A1 + A2 +

Sa- Q1 + Ay + +Qa

and, in general,

Q3

A3

Srr:A1 +Ap+A3+ + an:i ei
i: I

These partial sums form a new sequence {s,}, which may or may not have a limit.
If lim,-- sn : J exists (as a finite number), then, as in the preceding example, we
call it the sum of the infinite series ) c,.

II Surn ol- f irst /l ternts

I

l
-)

-)

l
5

6

7

l0
I5

l0
25

0.50(xxxxx)
0.75(XXXXX)

0.t375(XXXX)

0.9375(XXX)

( ). r)6fi7.5(xx)

0.9fi-I.1750t)

0.991lti750
0. eee( )t l-1-+

0.9999(r9-ll'i
().9999r)r)05

( ).999 9r)9r) 7



El Definition Given a series Il:1 a,,- a1 + a2 + a3 + "', let s,, denote

its nth partial sum:

S,, :
i: I

If the sequence {s,,} is convergent and lim,,-* s'71 - s exists as a real

number, then the series ) A,, is called convergent and we write

x

a1 + a2 + + a,, + -.T or
tt-l

The number s is called the sum of the series. Otherwise. the series is

called divergent.

sEcTloN 8.2 sERril r 571

Thus, when we write 2I:, o,: J we mean that by adding sufficiently many

terms of the series we can set as close as we like to the number s. Notice that

h

2 o^: lim ) ci
tt:l n +- i:l

EXAMPLE 1 r An important example of an infinite series is the geometric
series

ai ar + ar2 + ar3 +... + arn-t+...: i or"-' a*O

Each term is obtained from the preceding one by multiplying it by the common
ratio r. (We have already considered the special case where o: land, : i.)

If r : 1,then sn : e * a -l ... * a : ne--->+m. Since lim,--s, doesn't
exist, the geometric series diverges in this case.

lf r * l, we have

sn: e * ar t ar' + .,. * ar"-l

and fs,,: ar * ar2 + "' + ar"-t I ar"

Subtracting these equations, we get

sn rsrr-a Qr

a(l r")
Jrr- 

r_ r

If -l < r ( l, we know from (6) in Section 8.1 that r" ---> 0 ss 4 --> m, So

lT,. : :ryY :, _, - #t^\," :, _,
Thus, when lrl < t the geometric series is convergent and its sum is a/(l - r).

If r < -1 or r ) 1, the sequence {r'} is divergent and so, by Equation 3,

limn-- s, does not exist. Therefore, the geometric series diverges in those cases.

a

E
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We summarize the results of Example 1 as follows.

EXAMPLE 2 I Find the sum of the geometric series

$SLAjTIOI{ The first term is a - 5 and the common

I r | - 3 < 1, the series is convergent by (4) and its

40 
1n-r

l0 20 405 + +...3927
55 n-ITEZT-T-Jr \ 3/ 3

ratio is r
sum is

- - i. Since

I

What do we really mean when we say

that the sum of the series in Example 2

is 3l Of course, we can't literally add an

infinite number of terms, one by one.

But, according to Definition 2, the total
sum is the limit of the sequence of par-
tial sums. So, by taking the sum of suffi-
ciently many terms, we can get as close

as we like to the number 3. The table
shows the first ten partial sums so and

the graph in Figure I shows how the
sequence of partlal sums approaches 3.

Another way to identify a and r is to
write out the first few terms:

II

I
I

:
-)

I

+

5

()

1

N

()

l0

5,(XXXXX)

l.(r(r(r(r(r7

.1.sN{sl{9

I -l( )7107

,1..j()50(rl

l.'7-1661()

.1. t755S.i

l Nslel5
i.07ti0 t 7

1.r,1-flt)15
FIGURE I

22"3'-n convergent or divergent?EXAMPLE 3 I Is the series

\ 12n21-n $
L/_JZJ
l:l n:l

We recognize this series as a geometric
r

4"9#- ) 4(i)n-'
J n:l

serieswitha-4and

n:l

S*$-{JTISN Letos rewrite the nth term of the series in the form ern-t:

4r: :.
I

gI The geometric series

i arn-t- a+ ar+ ar|+
n:l

is convergent if lrl < 1 and its sum is

ai ar'-l l'l
=l

If I r | > 1, the geometric series

1-r

is divergent.

4 + + + $ + ...
Since



EXAMPLE 4 I

$#t_i3T i*f{

After the first
Therefore

sEcTloN 8.2 ttRlil r t7,

Write the number 2.317 - 2.3171711 ... as a ratio of integers.

z.3ririr7...:2.3+ L+ L+ L+10' 10' l0'

term we have a geometric series with a - lT 103 and r - U rcz

[:X *,141]L,r 5 I Find the sum of the series
n:0

5#il'L$T{illd Notice that this series starts with n : 0 and so the first term is
xo : 1. (With series, we adopt the convention that x0 - I even when x - 0.)

Thus

This is a geometric
verges and (4) gives

E

,?:0

series with a - I and r- x. Since lrl - l"l

tl

z.3rj-2.3+ ld - 2.3
Il- -

10,

_23 _L n _n47
l0 990 495

t7

1000
+

99

100

IT 
"fu+D

partial fraction decomposition

I
i+l

t .r': t]-
n:o t-X

FXAMPI E 6 r Show that the r"ri", i . t, 
is conversent. and find its sum.

Er n(n * l)

$OttlTlsil This is not a geometric series, so we go back to the definition of a con-
vergent series and compute the partial sums.

sllll
.s-- :rn Z-J ./.' 7ri(i+1) 1.2 2.3 3.4

This is similar to the method we used

in Example 7 in Section 5.5. A full dis-
cussion of partial fractions appears

in Appendix F.

Notice that the terms cancel in pairs.

This is an example of a telescoping
sum: Because of all the cancellations,

the sum collapses (like an old-fashioned
collapsing telescope) into just two
terms.

We can simplify this expression if we use the

I
,(t+D

Thus,



574 CHAPTER I rilililrTE SEQUEITCtS Ar{D SERTES

Figure 2 illustrates Example 6 by show-
ing the graphs of the sequence of terms
a,,: I/[n(n + l)] and the sequence

{s,,} of partial sums. Notice that en + 0

and s,, ---+ 1. See Exercises 44 and 45
for two geometric interpretations of
Example 6.

FIGURE 2

The method used in Example 7 for
showing that the harmonic series
diverges is due to the French scholar
Nicole Oresme (1323-1382).

and so

Therefore, the given series is convergent and

tlLJ
n:t n(n + l)

EXAMPLE 7 I Show that the harmonic series

111l+ +-+ +234

,t;

.s l-
L
n:l n

is divergent.

SOLUTION

.r1 : 1

s2:l+

s4:1+

,$t-1+

:l+

sr6 : 1 +

:l+

Similarly, ,srz

I

1

1
2

l_
2

1
2

I
2

1
2

I
2

I

1

1+t

i, tuo and in general

n
52,

This shows that .s2n --) m as n + oo and so {sr} is divergent. Therefore, the
harmonic series diverges.

El ttreorem If the series i a,, is convergent, then lim An- 0.
n:l n ---t(fr

t

Proof Let sn : a1 + es + + an. Then a,, - .$n

gent, the sequence {r,,} is convergent. Let lim,-,*,s4
lt 1 @, we also have limr--* .s2-1 - s. Therefore

sn- r. Since )
- J. Since n

an ts conver-
l->ooas

lim ctn: lim (s, Jn-r) - lim s,, lim Jrr-r
n---+& n->fr n---rcr n----+6

E-J ,T-0
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I{OTE | . With any series X an we associate two sequences.' the sequence {s,} of
its partial sums and the sequence {a"} of its terms. lf 2 a, is convergent, then the
limit of the sequence {s,} is s (the sum of the series) and, as Theorem 6 asserts, the
limit of the sequence {c,} is 0.

@ IfOTE 2 . The converse of Theorem 6 is not true in general. If lim,, -- a,, : 0.

we cannot conclude that ) c,, is convergent. Observe that for the harmonic series
2 l/n wehave en : l/n - 0 as n ---> co, but we showed in Example 1 that> l/n is
divergent.

E ttre Test for Divergence If lim a, does not exist or if lim an + 0, then
f n+at ll---rT

f\
the serles ), a,, rs drvergent.

n:I

The Test for Divergence follows from Theorem 6 because, if the series is not
divergent, then it is convergent, and so lim,-- an : O.

EXAMPLE I r Show that the ,..i", i = !' . diverges.

^7t 
5n'* 4

n'llsoLurloN t^'9o': lim 
5n, + 4: lg 5 + 4/n, 

: i + o

So the series diverges by the Test for Divergence.

NOTE 3 . If we find that lim,-- an* O, we know that2 a" is divergent. If we
find that lim,-- an : O, we know nothing about the convergence or divergence of
) a,. Remember the warning in Note 2: lf lim"-" en : O, the series ) a" might
converge or it might diverge.

E Theorem If > at1 and\ b,, are convergent series, then so are the series

EXTanx

(i)
n:l n:l n:l tt:l n:l

(iii)
n:l rr: I n: I

ilx

These properties of convergent series
Laws for Convergent Sequences in Section
of Theorem 8 is proved:

Let

ss : Lan
n:I

The nth partial sum for the series I (o,, + b") is

follow from the corresponding Limit
8.1. For instance, here is how part (ii)

nx

t,, :
t: I n:l

t7sSr?- La;
i: I

lln:
i:1
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and, using Equation 9 in Section 5 .2, we have

/n n \

,,r:u^: 
l11 3 (o,+ b,): lg € a;+ i b,)

_ lim
fl-6 i:l n--+* i:l

_lims,,+limrn-,s+ t
n---+6 n---+6

Therefore, ) (an + b,) is convergent and its sum is

:, 
(a, + b,)-.r + t -

. € 
"r:t 

3 

n:t 

l\
EXAMPLE 9 r Find the sum of the series

n:t \n(n+l) L /
SOLUTION The series ) l/2" is a geometric series with a - +and r - +, so

"z +:*:,
L

In Example 6 we found that

"z#:r
So, by Theorem 8, the given series is convergent and

i(,,,t,..++) :3i I +i+
Ft \r(n+1) 2 / n:tn(n +l) 7:'2"

-3'1+1-4

E

IIOTE 4 . A finite number of terms can't affect the convergence of a series. For
instance, suppose that we were able to show that the series

nn
3,r\l

is convergent. Since

:nl?3:n
z-J 

-

n:tn3+l 2' 9 28 uan3+l

it follows that the entire series 2i-,n/ (n3 + 1) is convergent. Similarly, if it is
known that the series )i:"*, az converges, then the full series

-N

2o,:2o,+
n:l n:l n:N+l

is also convergent.
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Exercises

l. (a) What is the difference between a sequence and
a series?

(b) What is a convergent series? What is a divergent
series?

2. Explain what it means to say that )i:, en: 5.

[! la . Find at least l0 partial sums of the series. Graph both
the sequence of terms and the sequence of partial sums on
the same screen. Does it appear that the series is convergent
or divergent? If it is convergent, find the sum. If it is diver-
gent, explain why.

23.

25.

26.

27.

n:l

ac

n:l

ŝ
Ln:I
x

tt: I

3',+20
6.

l- /r\
lsinl -fL \n/

I

5+2-"

arctan /l

24.,3,

,,"f ' )
\rz + | /)

28. t
n:I

''(r+=)

nln_
n + I

4.: sin n

x?
5.s

E' n(n l)

29-32 r Express the number as a ratio of

29. 0.5 - 0.5555 . . . 30. 0.15 :
3f . 0.307 - 0.307307307307...

32. 4.1510 . 4.157015701570...

integers.

0. l5l5l5l5 .

I 
"z 

(-;)" 33-36 r Find the values of x
Find the sum of the series for

for which the series converges.
those values of x.

2n
9. Let an : ----------:. n:o

3n + I
33.

35.
n:o

n:0
x

n:0

I

7

34.

36.

3"x',

tan" x(a)

(b)

10. (a)

Determine whether {o"} is convergent.
Determine whether El:, a, is convergent.

Explain the difference between

t7n

2o, and 2o,
i:l J:t

Explain the difference between

and

![E rz-38 r Use the partial fraction command on your CAS to
find a convenient expression for the partial sum, and then
use this expression to find the sum of the series. Check your
answer by using the CAS to sum the series directly.

(b)

2o,
i:l

io,
t: I

37. i
n:I

: n= + 3n + I
38. L, 

1r, + ny

I l-28 r Determine whether
divergent. If it is convergent,

n.4 +3+ jI+ffi+
x 1_ -41r, _ l

t3. s
- 

Arl
n:l 't

3-ngn+l

[2(0.1)" + (0.2)"1

the series is convergent or
find its sum.

39. If the nth partial sum of

.t:

find a, and 2I:, o,.

40. If the nth partial sum of

S,, :

find an andZI:, o,.

a series >;:, A,, is

n-l
n + I

a series >::, e,, is

3 n2-"

12.t-1+?
x1

14.
n:I e'"

: 4n+l16.z *
n:o )"

.11
/-l I

-TT

3(o + l)(n + 2)

(t--L 
)\ 2'-' 3"

1

4tr" - |

15.

18.17.

i
n:I

n:I

n' 41.

s--\ nTO \:
7' 'lt 

+ n2

col

21. \
7t n(n + 2)

20.

tz: I

n:l

r

n:l

When money is spent on goods and services, those that
receive the money also spend some of it. The people
receiving some of the twice-spent money will spend

some of that, and so on. Economists call this chain
reaction the multiplier effect. In a hypothetical isolated
community, the local government begins the process by
spending D dollars. Suppose that each recipient of spent
money spends l})c%o and saves l)}s%o of the money

22.
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42.

that he or she receives. The values c and s are called the

marginal propensitv to consblme and the marginal prrt-

pensity to sal'e and, of course, c + s - l.
(a) Let S,, be the total spending that has been generated

after n transactions. Find an equation for 'S,,.

(b) Show that lim,,-*,S,, - kD, where fr -- 1/s. The

number k is called the multiplier. What is the multi-
plier if the marginal propensity to consulne is 807o?

NOTE . The federal government uses this principle to
justify deficit spending. Banks use this principle to jus-

tify lending a large percentage of the money that they

receive in deposits.

A certain ball has the property that each time it falls
from a height /r onto a hard, level surface, it rebounds to

a height rh, where 0 < r 11. Suppose that the ball is

dropped from an initial height of ^Fl meters.

(a) Assuming that the ball continues to bounce indefi-
nitely, find the total distance that it travels.

(b) Calculate the total time that the ball travels.
(c) Suppose that each time the ball strikes the surface

with velocity u it rebounds with velocity ftu, where

0< k

come to rest?

46. A right triangle ABC is given with LA - 0 and

leCl - b. CD is drawn perpendicular to A B, DE rs

drawn perpendicular to BC, 'EF LAB, and this process

is continued indefinitely as in the figure. Find the total
length of all the perpendiculars

lcol+ lnnl+ lrr'l + lrcl+
in terms of b and 0.

47.

BGEC

What is wrong with the following calculation?

0:0+0+0+
-(l l)+(l l)+(1 1)+

-1-1+l-l+l-l+
-l+(-1 +l)+(-l+l)+(-1 +l) +

:1 + 0 + 0 + 0 + "' _ 1

(Guido Ubaldus thought that this proved the existence

of God because "something has been created out of
nothing. ")

48. Suppose that )I:, an (a, + 0) is known to be a conver-
gent series. Prove that El:, l/a,, is a divergent series.

49. If > a,, is convergent and I b,, is divergent, show that
the series E (a,, + b,,) is divergent. [Hint: Argue by

contradiction.l

50. If I a,, and > b^ are both divergent, is 2 (o,, + b,,)

necessarily divergent?

52.

Suppose that a series 2 a, has positive terms and its
partial sums .r,, satisfy the inequality rn { 1000 for all
n. Explain why 2 an must be convergent.

The Fibonacci sequence was defined in Section 8.1 by

the equations

ft: 1, f, : 1, fr: f^-t * f,-z n

Show that each of the following statements is true.

43. What is the value of c +cr) tt:2?

44. Graph the curves t, - -r", 0 { -r { 1, for n - 0, 1,2,
3, 4 on a colnmon screen. By finding the areas

between successive curves, give a geometric demonstra-

tion of the fact, shown in Example 6, that

i,
,r:r n(n + l)

45. The figure shows two circles C and D of radius I that

touch at P. in is a comtnon tangent line; Ct is the circle

that touches C, D,, and Z; Co is the circle that touches C,

l), and Cr; C. is the circle that touches C, D, and Cz.

This procedure can be continued indefinitely and pro-

duces an infinite sequence of circles {C,,}. Find an

expression for the diarneter of C,, and thus provide
another geonretric demonstration of Example 6.

if>(1
n:2

51.

fn fn+r



53. The Cantor set, named after the German mathemati-
cian Georg Cantor (1845-1918), is constructed as fol-
lows. We start with the closed interval [0, 1] and remove
the open iirterval (+,3). That leaves the two intervals

[0,*] and [3,t] and we remove the open middle third
of each. Four intervals remain and again we remove
the open middle third of each of them. We continue
this procedure indefinitely, at each step removing the
open middle third of every interval that remains from
the preceding step. The Cantor set consists of the num-
bers that remain in [0, 1] after all those intervals have
been removed.
(a) Show that the total length of all the intervals that

are removed is l. Despite that, the Cantor set con-
tains infinitely many numbers. Give examples of
some numbers in the Cantor set.

(b) The Sierpinski carpet is a two-dimensional ana-
logue of the Cantor set. It is constructed by remov-
ing the center one-ninth of a square of side l, then
removing the centers of the eight smaller remaining
squares, and so on. (The figure shows the first three
steps of the construction.) Show that the sum of the
areas of the removed squares is 1. This implies that
the Sierpinski carpet has area 0.

EHffi
54. (a) A sequence {o,l is defined recursively by the equa-

tion a,, - +(a,-r * a,-) for n > 3, where a1 and a2

SECTION 8.3 I||t Il{ItGRAL AND C0l'lPARl50l'| TtSTS: tSTll\|ATll{G lUl'15 579

can be any real numbers. Experiment with various
values of a1 and G2 and use your calculator to guess
the limit of the sequence.

(b) Find lim,, -.- e71 in terms of a1 and azby expressing
en+t - e,, in terms of e2 - el and summing a series.

55. Consider the series

in
7, @ + 1)l

(a) Find the partial sums sr, J2, s3, and sa. Do you rec-
ognize the denominators? Use the pattern to guess
a formula for s,,.

(b) Use mathematical induction to prove your guess.

(c) Show that the given infinite series is convergent,
and find its sum.

56. In the figure there are infinitely many circles approach-
ing the vertices of an equilateral triangle, each circle
touching other circles and sides of the triangle. If the
triangle has sides of length 1, find the total area occu-
pied by the circles.

The lntegral and Comparison Tests; Estimating Sums

In general, it is difficult to find the exact sum of a series. We were able to accom-
plish this for geometric series and for the series ) l/ln(n + 1)] because in each of
those cases we could find a simple formula for the rzth partial sum J,. But usually
it is not easy to compute lim"-- s,. Therefore, in this section and the next we
develop tests that enable us to determine whether a series is convergent or divergent
without explicitly finding its sum. In some cases, however, our methods will enable
us to find good estimates of the sum.

In this section we deal only with series with positive terms, so the partial sums
are increasing. In view of the Monotonic Sequence Theorem, to decide whether a
series is convergent or divergent, we need to determine whether the partial sums
are bounded or not.
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m Testing with an Integral

Let's investigate the series whose terms are the reciprocals of the squares of the

positive integers:

1111*E +T + 4* s, +
I

Ti
n:l

There's no simple formula for the sum sn of the first n terms, but the computer-
generated table of values given in the margin suggests that the partial sums are

approaching a number near 1.64 as n --> o and so it looks as if the series is
convergent.

We can confirm this impression with a geometric argument. Figure 1 shows the

curve y : l/x'and rectangles that lie below the curve. The base of each rectangle
is an interval of length l; the height is equal to the value of the function y : l/x2
at the right endpoint of the interval. So the sum of the areas of the rectangles is

1

n?

1l+
f22

11
T^T-T3' 4',

I.. I: 
t area: t

+.1,"

I*-;- +
4'

1l
ll

tl

^l^l1/. 1zLt-
i
n:l

:l 1ll1l
\:l-llJ-

?:, J; JT fi JT J4 JJ

I :l
!-\-/-_ -'t ' 1_l .)

)- n:l n-

area I
5z

I
4z

area :
FIGURE I

If we exclude the first rectangle, the total area of the remaining rectangles is

smaller than the area under the curve y : l/x' for x 2 1, which is the value of the

integral Ii Olr') dx. ln Section 5.9 we discovered that this improper integral
is convergent and has value l. So the picture shows that all the partial sums are

less than

Thus, the partial sums are bounded and the series converges. The sum ofthe series

(the limit of the partial sums) is also less than 2:

4 o*:2
x-

I
+

32

I
)n-

[The exact sum of this series was

Euler (1107-1783) to be n'/6, but

this book.l
Now let's look at the series

found by the Swiss mathematician Leonhard
the proof of this fact is beyond the scope of

n ,,,-t j I

1l

f

l0
50

l(x)
5(X )

I(XX)

5(XX)

-16.16

5-19lJ

615 r

63.50

6-ll9
6+.19

64 tl



n \',,: j r
i I tr/

)
l0
50

I (X)

5(X)

I(XX)

5(XX)

f
t1t'

lr{

+.1

(rl

t19

li rT

0l I0
752-1

5 f(96

l8l4
8010

e6fi I
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The table of values of sn suggests that the partial sums aren't approaching a finite
number, so we suspect that the given series may be divergelt. Again we use a pic-
ture for confirmation. Figure 2 shows the curve y:1/^8, but this time we use
rectangles whose tops lie above the curve.

FIGURE 2

The base of each rectangle is an interval of length L The height is equal to the
value of the function y : 1/"G atthe left endpoint of the interval. So the sum of
the areas of all the rectansles is

\.L
tt: I

I
r-tn

llll1
trl-Ll

JT O JT A $ I

This total area is greater than the area under the curve y : l/ Ji for x >- 1, which
is equal to the integrat J'i\/Ji )dx. But we know from Section 5.9 rhar this
improper integral is divergent. In other words, the area under the curve is infinite.
So the sum of the series must be infinite, that is, the series is divergent.

The same sort of geometric reasoning that we used for these two series can be
used to prove the following test.

NOTE . When we use the Integral Test it is not necessary to start the series or
the integral at n : l. For instance, in testing the series

J;
co

T
Z-r
n:4

1

(n-3Y we use
I

-dx(x 3)'

Also, it is not necessary thatf be always decreasing. What is important is that/be
ultimately decreasing, that is, decreasing for x larger than some number N. Then
2i,:ro, is convergent, so )l=, a, is convergent by Note 4 of Section 8.2.

The lntegral Test Suppose / is a continuous, positive, decreasing function
on [1, *) and let a,, : f(n). Then the series I]: t an is convergent if and
only if the improper integral 

"f , fC*l dx is convergent. In other words:

f (r) dx ts convergent, then t a,, is convergent.
n:I

f (*) dx rs divergent, then

(a) If

(b) rf

J,'"

Ioc

J,
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EXAMPLE I r Determine whether the series j ln r 
converges or diverges.

soluTlon The function f(x): (inx)/x,, o.;;" ""d 
continuous forx ) I

because the logarithm function is continuous. But it is not obvious whether or
not/is decreasing, so we compute its derivative:

x\/x\-lnx l-lnx
i'txt: f 

: 
f

Thus,/'(x) ( 0 when ln-r ) l, that is, x ) e.It follows that/is decreasing

when x ) e and so we can apply the Integral Test:

f-lnx l'lnx (lnx)'-l'
I dx:liml-dx:lim'^ |Jr * ,'-Jt x r-n 2 L

(ln r)2:ls7:*
Since this improper integral is divergent, the series 2 (lnn)/n is also divergent
by the Integral Test. :

EXAMPLE 2 r For what values of p is the series 
2,+ 

convergent?

soLUTloN lf p <0, then lim,-. Olnn) : @.If p : 0, then lim,-- (l/nP) : l.
In either case lim,-- (l/np) * 0, so the given series diverges by the Test for
Divergence [see (7) in Section 8.2].

If p > 0, then the function/(x): l/xp is clearly continuous, positive, and

decreasing on [],*;. We found in Chapter 5 [see (2) in Section 5.9] that

r'l
J, V dx converges if p > 1 and diverges if p < I

It follows from the Integral Test that the series 2 llnp converges ifp > I and

diverges if 0 < p < l. (For p: l, this series is the harmonic series discussed in
Example 7 in Section 8.2.) I

The series in Example 2 is called the p-series. It is important in the rest of this
chapter, so we summarize the results of Example 2 for future reference as follows.

Il The p-series i
n:l

I

A is convergent if p

Testing by Comparing

The series

E
n:l

1

2"+l
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reminds us of the series )l:, 1f2", which is a geometric series with a: I and
r : !and is therefore convergent. Because the series (2) is so similar to a conver-
gent series, we have the feeling that it too must be convergent. Indeed, it is. The
inequality

l1
2'\ l' y

shows that our given series (2) has smaller terms
and therefore all its partial sums are also smaller
series). This means that its partial sums form
which is convergent. It also follows that the sum
of the geometric series:

that those of the geometric series
than I (the sum of the geometric
a bounded increasing sequence,
of the series is less than the sum

I
-/t ?

2n + I

Similar reasoning can be used to prove the following test, which applies only to
series whose terms are positive. The first part says that if we have a series whose
terms are smaller than those of a known convergent series, then our series is also
convergent. The second part says that if we start with a series whose terms are
larger than those of a known divergent series, then it too is divergent.

The Comparison Test Suppose that 2 an and > bn are series with positive
terms.

(a) If > b^ is convergent and a,.,

(b) If > bn ts divergent and an

In using the Comparison Test we must, of course, have some known series ) b,,
for the purpose of comparison. Most of the time we use either a p-series 12 l/nP
converges if p > I and diverges ifp < l; see (l)] or a geometric series 12 ar"-t
converges if lrl < I and diverges if lrl > l; see (4) in Secrion 8.2].

EXAMPLE 3 I Determine whether the series i
diverges. n:l 2nz + 4n + 3

converges or

n:I

Standard series for use with the
Comparison Test

SSL{JTISH For large n the dominant term in the
pare the given series with the series > 5l Qn').

because the left side has a
son Test , en is the left side

denominator ts 2n2, so we com-
Observe that

5

2,'fZnz + 4n + 3

bigger denominator. (In the notation of the Compari-
and b, rs the right side.) We know that

;
n:7

5 5- 1

2,'f:T3,,f
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is convergent (p-series with p : 2

5

?:,2n2 + 4n + 3

is convergent by part (a) of the Comparison Test.

Although the condition en 4 bn or an > b, in the Comparison Test is given for
all n, we need verify only that it holds for n 2 N, where N is some fixed integer,
because the convergence of a series is not affected by a finite number of terms.
This is illustrated in the next example.

EXAMPLE 4 r Test the series 2 
ln n 

for convergence or divergence.
n:l n

S0LUTION We used the Integral Test to test this series in Example 1, but we can

also test it by comparing it with the harmonic series. Observe that ln n ) | for
n)3andso

lnn I_>
nn

n

We know that I lln is divergent (p-series with p - 1). Thus, the given series

divergent by the Comparison Test.

I{OTE . The terms of the series being tested must be smaller than those of a con-
vergent series or larger than those of a divergent series. If the terms are larger than
the terms of a convergent series or smaller than those of a divergent series, then the

Comparison Test doesn't apply. Consider, for instance, the series

ffi

is

ffi

+1
,o:, 2" - |

The inequality

,,-l'7
is useless as far as the Comparison Test is concerned because 2b,: > (*)'it
convergent and an) b,. Nonetheless, we have the feeling that2 l/(2^ - 1) ought
to be convergent because it is very similar to the convergent geometric series

> (j)".In such cases the following test can be used.

The Limit Comparison Test Suppose that 2 an and > bn are series with
positive terms. If

lg 
un: c

where c is a finite number and c
both diverge.
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Although we won't prove the Limit Comparison Test, it seems reasonable
because for large n, an: cb,.

EXAMPLE 5 I Test the series i t+ for convergence or divergence.
1:l /' I

SffiLtFT"fi{"}h{ We use the Limit Comparison Test with

11
Utt: 

^r, , On:
Ll 2"

and obtain

Since this limit
series converges

limq"_ lim 2" _ lim I :1
,--'* b,, n--'* 2" | ;:; I - U2"

exists and I I/2" is a convergent geometric series, the given
by the Limit Comparison Test. t

@ Estimating the Sum of a Series

Suppose we have been able to use the Integral Test to show that a series ) c" is
convergent and we now want to find an approximation to the sum s of the series.
Of course, any partial sum Ju is an approximation to s because lim,-* sn : s. But
how good is such an approximation? To find out, we need to estimate the size of
the remainder

R., - .s J'r, : ar*r + an+2 + an*3 +

The remainder Rn is the error made when s,,, the sum of the
as an approximation to the total sum.

We use the same notation and ideas as in the Integral Test.

of the rectangles with the area under y : f (*) for x ) n rn

ftrr - an+r * an*z +

Similarly, we see from Figure 4 that

^Ro 
: an+r + an+? +

So we have proved the following error estimate.

first /r terms, is used

Comparing the areas
Figure 3, we see that

FIGURE 3

EXAMPLE 6 I
(a) Approximate the sum of
10 terms. Estimate the error

the series I Unt by using the sum of the first
involved in this approximation.

y : /(r)

y : f(x)

El Remainder Estimate for the Integral Test If > a,x converges by the
Integral Test and Rn - ,s s,,, then

J;, r(x) dx
FIGURE 4
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(b) How many terms are required to ensure that the sum is accurate to within
0.0005?

SotuTlon In both parts (a) and (b) we need to know II fj)dx. With

f(x) : lfx3, wehave

f"t r.._..f rl' ,. (_r *_L\J. i ax : lyl- * 1,,: lg \-tF * ^, ) 
: 

2,t

: r l I l I .,(a) l,i- s'o:T*T* F+"'* rd -t.t975

According to the remainder estimate in (3), we have

f'l l I
R'o < 

J ,T d*: 
,(lo)T 

: 
2oo

So the size of the error is at most 0.005.

(b) Accuracy to within 0.0005 means that we have to find a value of n such that
R, < 0.0005. Since

f- I I
Rn

I

2,f . 0.0005we want

Solving this inequality, we get

n?>J--1000 or n
0.001

We need 32 terms to ensure accuracv to within 0.0005.

If we add sn to each side of the inequalities in (3), we get

sr, + fi, rk)dx
lrr'

because s, * Rn : s. The inequalities in (4) give a lower bound and an upper
bound for s. They provide a more accurate approximation to the sum of the series

than the partial sum s, does.

t

g

EXAMPLE 7 I Use (4) wit h n- 10 to estimate the sum of the series t +
n:l n'

SOLUTIOH The inequalities in (4) become

f- I f'l
sto + 

J,, jd*
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From Example 6 we know that

f"l I
| ^dx:.Jn x' 2n2

so t'o+2(llf <s<t'o+2(1of

Using s16 - 1.197532, we get

1.201664 ( s s 1.202532

If we approximate .r by the midpoint of this interval, then the error is at most
half the length of the interval. So

*l
) . - l.2o2l with error < 0.0005n'*

If we compare Example 7 with Example 6, we see that the improved estimate in
(4) can be much better than the estimate J - s,. To make the error smaller than
0.0005 we had to use 32 terms in Example 6 but only 10 terms in Example 7.

If we have used the Comparison Test to show that a series ) a, converges by
comparison with a series ) bn, then we may be able to estimate the sum ) an

by comparing remainders, as the following example shows.

EXAMPLE I r Use the sum of the first 100 terms to approximate the sum of the
series ) l/ (n3 + l). Estimate the error involved in this approximation.

S0LUTlOtl Since

lt

"\l< "'
the given series is convergent by the Comparison Test. The remainder I for the
comparison series ) lfn3 was estimated in Example 6. There we found that

f'r I,,=J,jd*:z*
Therefore, the remainder R, for the given series satisfies

With n - 100 we have

1

Rn

I
R 

'uo 
< 

2(100f 
: 0.00005

Using a programmable calculator or a computer, we find that

P'th:}, #:06864s38
with error less than 0.00005. ffi
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l. Draw a picture to show that

:l ,"-l
,7, n'"' Jt J'''

What can you conclude about the series?

2. Suppose / is a continuous positive decreasing function
for x ) I and e,,: f(n). By drawing a picture, rank the

following three quantities in increasing order:

i:2

positive terms

say about E a,,?

say about ) a,,?

positive terms

say about I a,,?

say about I an?

What name is given to the first series? To the second?

For what values of b does the first series converge? For
what values of b does the second series converge?

I Determine whether the series is convergent or
divergent.

"' / 1 r\
6.

,r I \ltVlt tt /

7. i t'te ''7 8. i -+rr: I n:l n- -l_ I

si--!- rot+
n-l n- -f I n:t n-

lr. i -+- tz. i --FL-
rt,2 tt ln tt ,:t ! n I

:
t3.

7, ,'+ ,tt 14' 
,E,-', 

-' . t
: I + 5" :r' 

sinZn
15.

n:0 + rr:l n{n

CHAPTER 8 tl'|ilNrTE SEQUENCil Al,lD 5tRlt5

Exercises

xa
\---\ J

17. ). 18.
E' n(n + 3)

:l
19. -tt:t I + rln

: /r\
21. F' \n /

l+2"
l+3"

I

#-4
n'-3n

J nt, - 4n1

23. Find the values of p for
convergent:

which the following series is

:cl

Z *"""
24. (a) Find the partial sum ss6 of the series Il:,llro.

Estimate the error in using .s1p &S an approximation
to the sum of the series.

(b) Use (4) with rz - l0 to give an improved estimate of
the sum.

(c) Find a value of n so that s,, is within 0.00001 of
the sum.

25. (a) Use the sum of the first 10 terms to estimate the
sum of the series El:, Unt. How good is this
estimate?

(b) Improve this estimate using (4) with n - 10.

(c) Find a value of n that will ensure that the error in
the approximation s' : s,, is less than 0.001.

26. Find the sum of the series >;:,llns correct to three
decimal places.

27. Estimat. E;: t n :i 2 to within 0.01.

28. How many terms of the series Il:, Uln(lnn)'l would
you need to add to find its sum to within 0.01?

\i
.{-/
n:l

n:3

tt:l

3.

lt" 
tt-|

J 
'" 

'f{t) at

Suppos. ;'A,, and z b,,"ri .r-ries with
and Z b, is known to be convergent.
(a) If n,,2 b,, for all n, what can you

whv?
(b) lf a,, { b, tor all n, what can you

whv?

Suppose I a,, and I b,, are series with
and Z b,, is known to be divergent.
(a) If a,, ) b, for all n, what can you

whv?
(b) If a,, I bn for all n, what can you

whv?

It's important to distinguish between

n:l rr:l

4.

5.

29--3CI r Use the sum

the sum of the series.

:1
79.

rr: I 11 1- n-

of the first 10 terms to approximate
Estimate the error.

31. (a) Use a graph of } - Llx to show that if s,, is the nth
partial sum of the harmonic series, then

s,, { I + lnn

(b) The harmonic series diverges but very slowly. Use

part (a) to show that the sum of the first million
terms is less than 15 and the sum of the first billion
terms is less than 22.

fI{{ 32. (a) Show that the series El:, (1n n)'ln'is convergent.
(b) Find an upper bound for the error in the approxima-

tion J' : s,,.



(c) What is the smallest value of n such that this upper
bound is less than 0.05?

(d) Find s,, for this value of n.

The meaning of the decimal representation of a number
0.dtdzdt... (where the digit di is one of the numbers 0,
l, 2, 9) is that

0.d,d=drd+. . . :

SECTION 8.4 OTl{IR (Ot{YERGTI{CT ITSTS

Show that this series always converges.

34. Find all positive values of b for which the series

>::, b'n' converges.

35. If > an rs a convergent series with positive terms, is it
true that ) sin(a,) is also convergent?

36. Show that rf an > 0 and 2 an is convergent, then

) ln(l + c,) is convergent.

have looked at so far apply only to series with posi-
learn how to deal with series whose terms are not

589

33.

dl

l0
d. d, doi - *---+* . *
l0' l0' lOt

Other Convergence Tests

The convergence tests that we

tive terms. In this section we

necessarily positive.

M Alternating Series

- An alternating series is a series whose terms are alternately positive and nega-

tive. Here are two examples:

1lll1 -r
l-=*=--*=-;*2 3 4 5 6 ':r' n

I 2 3 4 5 6 i,.," n
-t+j-i 6-j Z,\-t)"n+l

We see from these examples that the nth term of an alternating series is of the form

u^: (-l)"-tb, or 0, : (-l)"b,

where b, is a positive number. (In fact, b": la"l.)
The following test says that if the terms of an alternating series decrease to 0 in

absolute value, then the series converges.

The Alternating Series Test If the alternating series

m

n:1

satisfies

(a) h o+r < b,, for all n

(b) :'Xb" - 0

then the series is convergent.



590 CHAPTER 8 ll{tll'llTE StQUtl'lCtS AilD SERIES

FIGURE I

Figure 2 illustrates Example I by showing
the graphs of the terms ao : (- l) "-rfn
and the partial sums .sn. Notice how the
vafues of s,, zigzag across the limiting
value, which appears to be about 0.7.

In fact, it can be proved that the exact
sum of the series is ln? : 0.693.

EXAMPLE I r The alternating

I1-; +

satisfies

(a) bo+r < bo

We won't present a formal proof of this test, but Figure I gives a picture of
the idea behind the proof. We first plot s1 : br on a number line. To find sz we
subtract b2, So J2 is to the left of s1. Then to find s3 we add 03, so 13 is to the right
of s2. But, since b3 1 b2, s3 is to the left of s1. Continuing in this manner, we see

that the partial sums oscillate back and forth. Since b" --+ 0, the successive steps
are becoming smaller and smaller. The even partial SUms .r2, se, J6, . . . are increas-
ing and the odd partial srfiis s1, sl, ss, ... are decreasing. Thus, it seems plausible
that both are converging to some number s, which is the sum of the series.

harmonic series

1l +:34

l1 \\
n + I n

(- 1)"-'
n

t
n:l

(b) lim bn:
n --r(n

because

1lim-_0
n---+N n

so the series is convergent by the Alternating Series Test. ffi

EXAMPLE 2 r The seri^- + GD"3"
"t 3, ffi is alternating, but

lim bn: lim -. t' - - lim 3

n--,rc n-x 4n 1 n,--+x 
4 

I

n

Irm an: lim 
( ' l)"3:

n---+x n-,-r"_ 4n 1

_3
4

FIGURE 2 so condition (b) is not satisfied. Instead. we look at the limit of the nth term of
the series:

This limit does not exist, so the series diverges by the Test for Divergence. tr

EXAMPLE 3 I Test the series

")

(- 1;n+r -{- for convergence or divergence.n'+lll: I

SOLUTION The given series is alternating so we try to verify conditions (a) and
(b) of the Alternating Series Test.



Instead of verifying condition (a) of the
Alternating Series Test by computing

a derivative, we could verify that
bn+t I bu directly by using the tech-
nique of Solution I of Example l0 in
Section 8.1.
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Unlike the situation in Example l, it.is not obvious that the sequence given by
b,: n'/(n' + t) is decreasing. However, if we consider the related function

f(x): *'/(rt + 1), we find that

x(2 - x')J,\x):7rTl),

Since we are considering only positive .r, we see that/'(x) < 0 if 2 - x3 < O,

that is, , > 1/2. Thus,/is decreasing on the interval(:lr,co). This means that

f(n + l) < f(") and therefore bn+t l bn when n > 2. (The inequality bz< bt
can be verified directly but all that really matters is that the sequence {b"} is
eventually decreasing.)

Condition (b) is readily verified:

)
n-

lim b, : lim --1 
- 

: lim
n---+rc n----r,' n-' + 1 o---*

I
n -o

1I +_lr?

n-

Thus, the given series is convergent by the Alternating Series Test.

The error involved in using the partial sum ,r, as an approximation to the total
sum .r is the remainder Rn : J - r,. The next theorem says that for series that sat-
isfy the conditions of the Alternating Series Test, the size of the error is smaller
than bna1, which is the absolute value of the first neglected term.

Alternating Series Estimation Theorem If s - > (-l)'-'b,, is the sum of
an alternating series that satisfies

(a) 0 < bn+r < bn and (b) hm bn: 0

then lR"l: ls s, 
l

You can see geometrically why this is true by looking at Figure l. Notice that
J - J+ < bt,lr - rrl ( b6, and soon.

#

EXAMPLE 4 I Find the sum
places. (By definition, 0! -

of the series i 
(-l)' 

correct to three decimal

l.) ' fo n!

1
-+0 *o,+0asn-+m

SOIUTION We first observe that the series is convergent by the Alternating Series
Test because

11(a) , 
- --\/ (n+1)! nt(n+1)

1

nl,

ll_<_
nln

(b) 0
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To girle us a feel for how many terms we need to use in our approximation, let's
write out the first few terms of the series:

lllllllls:o! - il r- 2l- 3l+ 4t- st*a-i+"'
:r-r ++-I**-h**-fr+...

Notice that b, : in { ,o*r : 0.0002

and se :1- 1++-i+*- **h= 0.368056

By the Alternating Series Estimation Theorem we know that

ls s6 
l

This error of less than 0.0002 does not affect the third decimal place, so we
have

s = 0.368

correct to three decimal places.
In Section 8.7 we will prove that e' : 2i_o x" fnl for all x, so what we have

obtained in this example is actually an approximation to the number e-r. :

NOTE . The rule that the error (in using s, to approximate s) is smaller than the
first neglected term is, in general, valid only for alternating series that satisfy the
conditions of the Alternating Series Estimation Theorem. The rule does not apply
to other types of series.

I Absolute Convergence

We have convergence tests for series
with positive terms and for alternating
series. But what if the signs of the
terms switch back and forth irregularlyl
We will see in Example 7 that the idea
of absolute convergence sometimes
helps in such cases.

Given any series 2 an we can consider the corresponding series

/
:: I

whose terms are the absolute values of the terms of the original series.

Definition A series > a,, is called absolutely convergent if the series of
absolute values > lo"l is convergent.

Notice that if > a, is a series with positive terms, then lo"l : an and so abso-
lute convergence is the same as convergence.

EXAMPLE5I Theseries

i(-1)"-' 1 I 1

7, n2 
-:l-T +T T +



is absolutely convergent because
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11++34
and is therefore divergent. ffi

convergent but not absolutely
absolute convergence implies

n:l

(-r)"-' I _ +
',r:LJ

n- | n:l

llll
^-1+--;-+a+^+n' 2' 3' 4'

is a convergent p-series (p : 2). I

EXAMPTE 6 r We know that the alternating harmonic series

: (-l)'I I I I

'rn234

is convergent (see Example l), but it is not absolutely convergent because the
corresponding series of absolute values is

(-l;"-r | + I

n:1

\ rt I \l ' _
l-.L

n:l n

I1+ +
2

which is the harmonic series (p-series with p - 1)

Example 6 shows it is
convergent. However, the
convergence.

possible for a series to be

next theorem shows that

is

II Theorem If a series 2 an is absolutely convergent, then it is convergent.

To see why Theorem I is true, observe that the inequality

0{a, +lo,l<2lo"l

true because lc,l is either c, or -ah.If2a, is absolutely convergent, then

I a, I is convergent, so 2 2lo^l is convergent. Therefore, by the Comparison Test,
(a^ + la, l) is convergent. Then

2 o, :2 @^ + lo^l) - 2 l""l

is the difference of two convergent series and is therefore convergent. I

EXAMPLE 7 r Debrmine whether the series

; cos /l cos I cos 2 cos 3
:-rT

?,n2 12'22'3;

is convergent or divergent.

SOLUTIOII This series has both positive and negative terms, but it is not alter-
nating. (The first term is positive, the next three are negative, and the following
three are positive. The signs change irregularly.) We can apply the Comparison

Figure 3 shows the graphs of the terms
a,t and partial sums s, of the series in
Example 7. Notice that the series is

not alternating but has positive and

negative terms.

FIGURE 3
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Test to the series of absolute values

i
n:7

cos /r
)n-

lcosnl
n'

Ts
z-l
n:l

Since IcosnI

lcosnl ._ 1) --n' n'

We know that2 lfnz is convergent (p-series with p : 2) and, therefore,
) lcos nl/n2 is convergent by the Comparison Test. Thus, the given series
2 (cosn)fn2 is absolutely convergent and therefore convergent by Theorem 1. I

I Tn. R..,o -,.r.
The following test is very useful in determining whether a given series is abso-
lutely convergent.

The Ratio Test

(a) If lim I 
a"+t

-L
n:ln.---+@ | A"

(and therefore convergent).

(b) If lim I 
a"+r

-Ln---+x I A" n --+oc I A"

divergent.

The Ratio Test can be proved by comparing the given series to a geometric
series. It's understandable that geometric series are involved because, for those
series, the ratio r of consecutive terms is constant and the series converges if
lrl< 1. Inpart(a)of theRatioTest,theratioof consecutivetermsisn'tconstant
butla^*tfanl - L ro, for large n,la,*rfa,l is almost constant and the series con-
vergesifL<1.

IfOTE . If lim,-- lan,r/anl : t, ttre Ratio Test gives no information. For
instance, for the convergent series ) lfnz wehave

An+l

an

I

_ (r+tr __ o' 
1

| (n+l)' / t\''r
7 [t+:l\ n/

as n --+ oo

whereas for the divergent series I lf n we have

An+l

an

n+l n I:-:-
I n+l Il+

as t? -+ oo



Therefore, if limn-* | o,*r la,
diverge. In this case the Ratio

EXAMPLE 8 I

SOLUTISH We

Test the series

An*l

4,,

SECTION 8.4 OT|{TR COl'IVERGEI'ICE IESTS 595

I - 1, the series 2 ao might converge or it might
Test fails and we must use some other test.

t
n:I

?n-(- I )" * for absolute convergence.\ / an
J

Estimating Sums

We have used various methods for esti-

mating the sum of a series-the method

depended on which test was used to
prove convergence. What about series

for which the Ratio Test works? There

are two possibilities: lf the series haP-

pens to be an alternating series, as in

Example B, then it is best to use the
Alternating Series Estimation Theorem.
lf the terms are all positive, then use

the special methods explained in Exer-

cise 34.

use the Ratio Test with an : (- 1)"n3 f 3":

(-1)"*t(, + I)'
3n+ 

| _(n+l)3.3"
3"* t n'(- l)" nt

3"

:+(+)': +(,+;)'*+-,
Thus, by the Ratio Test, the given series is absolutely convergent and therefore

convergent. I

EXAMPLE 9 I Test the convergence of the series i +
n:l n!

SSLLITIOH Since the terms An: n"/n! are positive, we don't need the absolute

value signs.

a,+t _ (n + l)'*l
An fu + l)!

n! (n + l)(tz + l)" n!

7nn (n + l)nl

l\'+-f --+e
n/

:(+)":(,
(see Equation 6 in Section 3.7). Since e
Ratio Test.

l, the given series is divergent by the

ffi

as n --> co

NOTE . Although the Ratio Test works
the Test for Divergence. Since

nn
Un I

n!

it follows that an does not approach

divergent by the Test for Divergence.

in Example 9, an easier method is to use

0 as n --+ @. Therefore, the given series is

Exgrcises.. ..

l. (a) What is an alternating series?

(b) Under what conditions does an alternating series

converge?
(c) If these conditions are satisfied, what can you say

about the remainder after n terms?

2. What can you say about the series 2 an in each of the

following cases?

(a) lim
n+A:

Cl n+l

an -8
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(b) lim
n-:f-

(c) lim
n +:a

E \i 1_11rr-lro 1, \ r,/
n:I

6.
n2 + I

, lnn

3-8 r Test the series for convergence or divergence.

3.?-t++-i+3-
tltll4. +_ +__ln} ln3 ln4 ln5 ln6

l7-18 I Approximate the sum of the series to the indicated
accuracy.

: (-t)"
17.

7n 2" nl

: (-l)"-r
f8.

n-l n

l9-28 I Determine whether the series is absolutelv
convergent.

: (-3)"
tg. L 1

tt-l n

: (-t)"'r
21 . \

Et 2n + I

: sin ?rr
23.

n-l n-

+ (n + l)5"
25.

rr-l n J-"

; (n + 2ll
27. \

F, rr! 10"

l 1.1 1.4.728.-+ +3 3.s 3.5-7

A n+l

cln

Q ttil

Cln

:0.8

1I

,t' 20.

72.

24.

26.

,F

T
,{-r
n-0

Y
Z-)
rt:l

T
Z-r
It: I

T/-r
tl:l

(-3)"
nl

(- l)"-'
n + I

(- l; tt + r5 "-'
(tl + f"4"*
cos(n rr/6)

n"6

5n + 1 n:I

7.
tt=t 11- -f I

\--\ , lll ra

R \ f -l)tt 
| 

-

V. / i I I.

ng
'L

9. Is the 50th partial sum s-5s of the alternating series
El:, (- l) n-t 

f n an overestimate or an underestimate of
the total sum? Explain.

| 0. Calculate the first 10 partial sums of the series

i (-l)"'
7,-t n3

and graph both the sequence of terms and the sequence
of partial sums on the same screen. Estimate the error in
using the lOth partial sum to approximate the total sum.

I l. For what values of p is the following series convergent?

i'#
12-14 r How many terms of the series do we need to add in
order to find the sum to the indicated accuracv?

: (-l)/'-l
12.

n-l n

-r 
( 

-)\il
13.

rt:l n!

: (-t)"n
14. Z- (error <0.002)

rt:l +

E= l5-16 I Graph both the sequence of terms and the sequence
of partial sums on the same screen. Use the graph to make
a rough estimate of the sum of the series. Then use the
Alternating Series Estimation Theorem to estimate the sum

1.4.7.10
3 5i.g +

2)

3 ' 5 '7 ' ' Qn + l)

29. The terms of a series are defined recursively by the
equations

5n + Iilt: 2 (l,t.t: 
4n * r rr,,

Determine whether I a,, converges or cliverges.

30. A series ) o,, is defined by the equations

2 + cosr?
e1: I ert+t : --------p- A,,

Jrt

Determine whether 2 a, c-onverges or diverges.

3l. For which of the following series is the Ratio Test
inconclusive (that is, it fails to give a definite answer)?

t.4.7. .(3n

(a)t+

32. For which positive integers fr is the seriescorrect to four decimal places.

+ (-l;".'
f5.

7, Qn l)!
+ (-l)"
L,r_, 

Qr\
i ('r!)'

E, kn)l

convergent?



(a) Show that )I:o x"/n! converges for all x.

(b) Deduce that lim,, -* x" f n! - 0 for all .r.

Let I c,, be a series with positive terms and

r,,: e,+t/a,,. Suppose that lim,, n- r,, - L <
converges by the Ratio Test. As usual, we let

remainder after rz terms, that is,

R,, : Gn*r * 0r*z + Qrt*3 +

(a) If {r,,} is a decreasing sequence and r,,*1
by summing a geometric series, that

35.

Use Exercise 34 to estimate the error rn using .Ts rIS

an approximation to the sum of the series.
(b) Find a value of n so that s,, is within 0.00005 of the

sum. Use this value of n to approximate the sum of
the series.

36. Use the sum of the first 10 terms to approximate the

sum of the series

J:

TN
3,2"

Use E,xercise 34 to estimate the error.

+ x+ x2+ + x" + : 
r=

(x

of the form

sEcTloll 8.5 P0wrR sERrts

(a) Find the partial sum ,ss of the series

ir
Z-r
rr:l n2"

597

33.

34.

R,, ( 
a,*l

I - fn+l

(b) If {r,,} is an increasing sequence, show that

R,, € 
Qn*l

l-L

let

1,soZa,
R,, be the

rt:0

which converges when - 1

Section 8.2).

More generally, a series

Power Series

A power series is a series of the form

tr 2r^"":co*ctx*czx2*cax31- ...
n:0

where x is a variable and the c,'s are constants called the coefficients of the series.

For each fixed x, the series (l) is a series of constants that we can test for conver-

gence or divergence. A power series may converge for some values of x and diverge

for other values of x. The sum of the series is a function

f(x): cs * c1x * c2x2 + "' + cnxn + "'

whose domain is the set of all "r for which the series converges. Notice that/resem-
bles a polynomial. The only difference is that/has infinitely many terms.

For instance, if we take c, : I for all r, the power series becomes the geomet-

ric series

n:0
c,(x a)" - c6 + c lx a) + cz(x a)t +

is called a power series in (x - a) or a power series centered at a or a power
series about a. Notice that in writing out the term corresponding to n : 0 in
Equations I and 2 we have adopted the convention that (x - o)o : 1 even when

B
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x - a. Notice also that
power series (2) always

whenx- a all
converges when

of the terms are 0 for n
x:a.

EXAMPLE I r For what values of x is the series

SOLUTION We use the Ratio Test. If we let an, as

the series, then a,, - nlx".If x + 0, we have

n:0

usual, denote the nth term of

lim
n--)@

An+l

an - lim
n---+rc

(n * l)!x"*'
nl x"

: lT (, + t)l"l - oc

series diverges when x * 0. Thus, the given series con-
0.

EXAMPLE 2 t For what values of x does the series
(x 3)"

converge?
n

SOLUTIOH Let an- (x 3

By the Ratio Test, the
verges only when r -

a n+)-

CI,,

ffi

i
n:l

:-fl, 3l*lx 3l as,r-->ooI '"l+

By the Ratio Test, the given series is absolutely convergent, and therefore conver-
gent, when lr - 3l < I and divergenr when l* - 3l > l. Now 

l

l"x-31<l <+ -l < x-3<1 <= 2<x<4

so the series converges when 2 ( x ( 4 and diverges when x 1 2 or x > 4.
The Ratio Test gives no information when lr - 3 | : t so we must consider

x : 2 and x : 4 separately. If we put x : 4 inthe series, it becomes 2 l/n, the
harmonic series, which is divergent. If x:2, the series is2(-l)'/n, which
converges by the Alternating Series Test. Thus, the given power series converges
for2< x14. I

We will see that the main use of a power series is that it provides a way to rep-
resent some of the most important functions that arise in mathematics, physics,
and chemistry. In particular, the sum of the power series in the next example is

called a Bessel function, after the German astronomer Friedrich Bessel (1784-
1846), and the function given in Exercise 21 is another example of a Bessel func-
tion. In fact, these functions first arose when Bessel solved Kepler's equation for
describing planetary motion. Since that time, these functions have been applied
in many different physical situations, including the temperature distribution in a

circular plate and the shape of a vibrating drumhead (see the photographs on
pages 558-559).
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EXAMPLE 3 t Find the domain of the Bessel function of order 0 defined by

599

/o(x) : i el)"*'!
n:o 22"(n!)2

$SLUTfOtl Let an - (-1)"x'"/l

An*1

an

z'" (n!)t]. Then

( - l) n*'" 2(n+t)

*2n+?

22(n+"[(n + 1)!]t

22"(n!)z

@
22"(n!)2

2'"*'(n + l)z(nl)z

x': 
4(n + lY---+ 

Q

--ZnT

for all x

Thus, by the Ratio Test, the given series converges for all values of x. In other

words, the domain of the Bessel function "/o is (-*,*) - R. ffi

Recall that the sum of a series is equal to
sums. So when we define the Bessel function
we mean that, for every real numbet x,

/o(x) - lg s,(x) where

The first few partial sums are

the limit of the sequence of partial
in Example 3 as the sum of a series

sz(x)-l- x'
4

sz,(x) : ; 
(-=t)'t1'

i:o 22i (iDz

s+(x):l- ++ +464so(x) - I

so(x):l- ++ + xu

4 64 2304
ss(x): I ++ + *+ x*

4 64 2304 t4',456

FIGURE I

Partial sums of the Bessel function ,Io

Figure I shows the graphs of these partial sums, which are polynomials. They are

all approximations to the function Jo, but notice that the approximations become

better when more terms are included. Figure 2 shows a more complete graph of the
Bessel function.

For the power series that we have looked at so far, the set of values of r for
which the series is convergent has always turned out to be an interval [a finite
interval for the geometric series and the series in Example 2, the infinite interval
(-*,-) in Example 3, and a collapsed interval [0,0]: {0} in Example 11. The
following theorem, which we won't prove, says that this is true in general.

cc

El Theorem For a given power series

possibilities: ':o
(i) The series converges only when x : a.

(ii) The series converges for all x.

(iii) There is a positive number R such that the series converges if
lx al

1l 
: 

"Io(x)

FIGURE 2
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FIGURE 3

The number R in case (iii) is called the radius of convergence of the power
series. By convention, the radius of convergence is R : 0 in case (i) and R : oo

in case (ii). The interval of convergence of a power series is the interval that
consists of all values of x for which the series converges. In case (i) the interval
consists of just a single point a. In case (ii) the interval is (-oo, o). In case (iii) note
thattheinequality lx - ol < Rcanberewritten as a - R ( r 1 a * R. When.r
is an endpoinr of the interval, that is, x : ct + R, anything can happen-the series
might converge at one or both endpoints or it might diverge at both endpoints.
Thus, in case (iii) there are four possibilities for the interval of convergence:

(a - R,a + R) (a - R,a + Rl la - R,a + R) lo - R,a + Rl

The situation is illustrated in Figure 3.

Convergence for lx - a | < R

a-R a a+R

Divergence for l* - ol > R

We summarize here the radius and interval of convergence for each of the
examples already considered in this section.

The Ratio Test can be used to determine the radius of convergence R in most
cases. The Ratio Test always fails when x is an endpoint of the interval of conver-
gence, so the endpoints must be checked with some other test.

EXAMPLE 4 r Find the radius of convergence and interval of convergence of
the series

S0LUT! ON Let an -

+ (-3)^ x":
Er r/, + I

(-3) "x" /1fi + 1. Then

An+l

an

l"l- 3lt

Series Raclius of convergencc Interval of convcrgcrlce

Geotttetric s(ri(s

I'..runrpl(

Ii.rurrtplt

[:.runrplt

r(l

T
Z-) n ! -\'"

q__ J)'
n

\- (-l)"-\'-"

!,, }t\,,'j

R:l

R:0

R:l

R.:'/-

(-l.l)

i0)

[].

(-x

-1)

.r' )

I + (r/n)

1 + (2/")
asn+oo
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By the Ratio Test, the given series converges if 3 lt | < I and diverges if
3lrl > l. Thus, it converges if l"rl < j and diverges if lxl > i. ttris means that
the radius of convergence is R : i.

We know the series converges in the interval (-+, f ), but we must now test

for convergence at the endpoints of this interval. If x : -i, the series becomes

€ (-3)'(-+)' i I r r l r

Fo Jn+l EoJn+l Jl J2 ,/l \/4

which diverges. (Use the Integral Test or simply observe that it is a p-series with
p : + < l.) If x : ], the series is

€ (-3)',(+)' € (-r)'
7o Jn+l FoJn+l

which converges by the Alternating Series Test. Therefore, the given power

series converges when -l< x € l, tothe interval of convergence is (-i,i].
IT

EXAMPLE S r Find the radius of convergence and interval of convergence of
the series

i n(* + 2)"

3-, l*'
SSL{.}Tf#ru lf an: n(x + 2)" /3'*', then

A n+l

an

(n + 1) (r + 2)'*r 3n+r'nG+2Y

: (, + f) l* !_zl -, l* ! zl 
as n-+ oo

\ n/ 3 3

UsingtheRatioTest,weseethattheseriesconVergesif|x+z|/z<
it diverges if lx + Zlll
lx + 2l

The inequality lx + 2l
series at the endpoints -5 and l. Whell x : -5, the series is

i'(tll':+i?t)^n
?o 3n+t t uo

which diverges by the Test for Divergence [(-1)'n doesn't converge to 0]. When

r : 1. the series is

i n(3)' r \Z,;+: i}o"

which also diverges by the Test for Divergence. Thus, the series converges only
when -5 I x (-1, so the interval of convergence is (-5, l). I



602 CHAPTER I [{ilt{tTE SEQUilTCES At{D 5ERtil

Exercises

l.

2.

What is a power series? EE

(a) What is the radius of convergence of a power series?
How do you find it?

(b) What is the interval of convergence of a power
series? How do you find it?

3. If )l:n c,,4" is convergent, does it follow that the follow-
ing series are convergent?

20. Graph the first several partial sums s,(x) of the
series E]:o x", together with the sum function

"f(x) 
: U0 x), on a common screen. On what

interval do these partial sums appear to be converging
to /(,r)?

21. The function ./, defined bv

/'(x) - I
n:0

(- l1n *2n+l

n!(n + 1)!2?'*l

is called the Bessel function of order I.
(a) Find its domain.
(b) Graph the first several partial sums on a common

screen.
(c) If your CAS has built-in Bessel functions, graph /,

on the same screen as the partial sums in part (b)
and observe how the partial sums approximate 11.

22. The function A defined by

2.3.s.6.8.9
is called the Airy function after the English mathemati-
cian and astronomer Sir George Airy (1801-1892).
(a) Find the domain of the Airy funcrion.
(b) Graph the first several partial sums s,,(;) on a

common screen.
(c) If your CAS has built-in Airy functions, graph A on

the same screen as the partial sums in part (b) and
observe how the partial sums approximate A.

23. A function / is defined by

/(x) :l+2x*x?+2x3+xa+

that is, its coefficients arl c2,, : 1 and c?n+ r : 2 for all
n 7 0. Find the interval of convergence of the series
and find an explicit formula for/(x).

24. If /(x) : EI:o c,,x", where cn*4: c,, for all n 7 0, find
the interval of convergence of the series and a formula
for /(x).

25. Suppose the series ) c,,xn has radius of convergence 2
and the series I doxn has radius of convergence 3. what
is the radius of convergence of the series I (r,, + d,,)x"?
Explain.

7.6. Suppose that the radius of convergence of the power
series E c,,x" is R. What is the radius of convergence of
the power series I cnx2"?

4. Suppose that ll:o c,,x" converges when J : -4 and
diverges when x - 6. What can be said about the con- fE
vergence or divergence of the following series?

(a)
n:0 n:0

6J:

(c)
n:0 n:O

(a) : c,,(-2)'
n:0

_2"(x - 3)"

n + 3

n!(Zx I )"

(b) i c,,(- 4)^
n:0

5- | I r Find the radius of convergence and interval of
convergence of the series.

x utt q' 
(- l)ttX"s. : ---l-- 6.:

n-0 11 + /. ,-t jn

7. i xn 
8. i +r' Z-J .,:o n! n:l n-

_ : (- t)"jr" : nzxn
9.

Ft n2" 7n 10"

12. S 
(- l)"t- - 

'

Eu4u 
\ / 

tt:t (Zn l)!

13. i (-1)" 
(*;) 

14. i u -r!)
n:l l/n n:t nJ"

16.i(x*l)"
F, n(n + l)

2,#."

g
x-

Eg
tl

@

15.
rr:(J

17.
n:I

(-t

18. z
n:I

nx"

19. lf k is a positive integer, find the radius of convergence
of the series
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Representations of Functions as Power Series

In this section we learn how to represent certain types of functions as sums of
power series by manipulating geometric series or by differentiating or integrating
such a series. You might wonder why we would ever want to express a known func-
tion as a sum of infinitely many terms. We will see later that this strategy is useful

for integrating functions that don't have elementary antiderivatives, for solving dif-
ferential equations, and for approximating functions by polynomials. (Scientists do

this to simplify the expressions they deal with; computer scientists do this to rep-

resent functions on calculators and computers.)
We start with an equation that we have seen before:A geometric illustration of Equation I is

shown in Figure l. Because the sum of a

series is the limit of the sequence of par-

tial sums, we have

I : lim s,,(x)
1-rt7+T

where

s,,(x): 1 * x * 12 + "'+ 'r"
is the /lth partial sum. Notice that as

r? increases, s,,(r) becomes a better
approximation to.f(x) for -l { x < 1.

FIGURE I

f(r) : and some partial sums

II tr- 1+-x
l-"r

+ Nz + J3 + -
tr:0

l"l

We first encountered this equation in Example 5 in Section 8.2, where we obtained
it by observing that it is a geometric series with a : I and r : x. But here our
point of view is different. We now regard Equation I as expressing the function

f(*) : 1/(1 - x) as a sum of a power series.

EXAMPLE I r Express l/(l + x2) as the sum of a power series and find the

interval of convergence.

SOtUTfOll Replacing xby -x2 in Equation 1. we have

1l
jli:1-1-r1 ::,(-x')n

Because this is a geometric series, it converges when | -r'l < 1, that is, *' <'1 ,

or lxl < 1. Therefore, the interval of convergence is (-1,1). (Of course, we

could have determined the radius of convergence by applying the Ratio Test, but

that much work is unnecessary here.) ffi

EXAMPLE 2 r Find a power series representation for l/(x + 2).

SOLUTION In order to put this function in the form of the left side of Equation I
we first factor a 2 from the denominator:

2+r / .r\t\'+ t)

1

l-x

: +2,,( ;)" : + (-l)"
) l'".L-1 1tt+l -'

rz:0 /-

ThisSerieSConVergeSwhen|*rl2|<1,thatis,|*|<
conver._qence is (- 2 . 2) . ffi

I

)r'

interval of
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It's legitimate to move J-' across the
sigma sign because it doesn't depend
on r?. [Use Theorem 8(i) in Section 8.2

with c : xl.]

-
x-

x + 2

Another way of writing this series

3x-

x + 2

EXAMPLE 3 r Find a power series representation of x3/(x + 2).

SOLUTfON Since this function is just xr times the function in Example 2, all we
have to do is to multiply that series by xr:

x3i
n:o

l1
1x-

(-l)" ,,- i qr'+3
2u* I 't 

3o 2n+ 
|

i*o + **t *"u +

is as follows:

:i(-ll,-' ,.u^ ),1-
n:5 L

As in Example 2, the interval of convergence is (-2,2).

The sum of a power series is a function/(x) : )l:o c,(x - a)n whose domain is
the interval of convergence of the series. We would like to be able to differentiate
and integrate such functions, and the following theorem (which we won't prove)
says that we can do so by differentiating or integrating each individual term in the
series, just as we would for a polynomial. This is called term-by-term differen-
tiation and integration.

ffi

In part (b),J ct)dx: csr * Cr is written
as cs(r - a) + C, where C : Cr * aco,
so all the terms of the series have the
same form.

NOTE I r

d(c) 
d-

Equations

[z c,,(x

(a)

a

and

)"1

(b) in Theorem 2 can be rewritten in the form
OCt

\'rdr:
n:O AX

(d) I [:

Differentiation and Integration of Power Series

El Theorem If the power series I c,(x a)" has radius of convergence
R

OO

f (x) : co + cr(tr a) + cz(x a)' + -

is differentiable (and therefore continuous) on the int..".t (a R, a+ R)
and

x

(a) f'(x): c1+ 2cz(x a) + 3cs(x a)'+ : 
: 

ncn(x a)"-r

r'(xa(b) J f Q) dx : c+ co(x a)+ ,,-.-++ ,r(l - o)' 
+

3

- c + i ,n(* - o)no'

o= n + I

The radii of convergence of the power series in Equations (a) and (b) are
both R.

I :rcu(x a)" la*-
I n:0*
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We know that, for finite sums, the derivative of a sum is the sum of the derivatives

and the integral of a sum is the sum of the integrals. Equations (c) and (d) assert

that the same is true for infinite sums, provided we are dealing with power

series. (For other types of series of functions the situation is not as simple; see

Exercise 32.)
IIOTE 2 . Although Theorem 2 says that the radius of convergence remains the

same when a power series is differentiated or integrated, this does not mean that
the interval of convergence remains the same. It may happen that the original
series converges at an endpoint, whereas the differentiated series diverges there.
(See Exercise 33.)

NOTE 3 . The idea of differentiating a power series term by term is the basis for
a powerful method for solving differential equations. We will discuss this method

in Section 8.10.

EXAMPLE 4 I In Example 3 in Section 8.5 we saw that the Bessel function

i (-l)'x'"Jok): ?, ,,\r).
is defined for all x. Thus, by Theorem 2, Jsis differentiable for all "r and its
derivative is found by term-by-term differentiation as follows:

J6(x) tl d (-l)'x'" + (- l)n2nx2"-l: 
?, a* -7(')r: z-, 21,,t;'z I

EXAMPLE 5 r Express l/ (l - x)2 as a power series by differentiating Equa-

tion l. What is the radius of convergence?

SOtUTtOt{ Differentiating each side of the equation

\unZr -+

n:0

we get

x)

s.L
n:I

n*n- l

If we wish, we can replace n by n + 1 and write the answer as

I
(r -;r

x

\.L
tt:o

(n + l)x"

According to Theorem 2, the radius of convergence of the differentiated series

the same as the radius of convergence of the original series, namely, R: l.

EXAMPTE 6 r Find a power series representation for ln(l - x) and its radius of
convergence.

sotuTt0t{ We notice that, except for a factor of -1, the derivative of this func-
tion is l/(l - x). So we integrate both sides of Equation 1:

is
i

-ln(l x) : f =l- d-: C + x2 x3

J r- x 
-x + z +T+

- c+i *n,*'.:c+i x" 
l"l

n:o n + | A lt
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The power series for tan-'x obtained
in Example 7 is called Gregary's series

after the Scottish mathematician James
Gregory (1638-1675), who had antici-
pated some of Newton's discoveries. We
have shown that Gregory's series is

Leibniz formula for rr.

This example demonstrates one way
in which power series representations Now we integrate term by term:
are useful. Integrating 1/(l * x') by hand

is incredibly difficult. Different computer
algebra systems return different forms of
the answer, but they are all extremely
complicated. (lf you have a CAS, try it
yourself.) The infinite series answer that
we obtain in Example 8(a) is actually
much easier to deal with than the finite
answer provided by a CAS.

rn(r- x):-x-+-+- :-2,+ l,t<r

The radius of convergence is the same as for the original series: R : 1. I

Notice what happens if we put -r : j in the result of Example 6. Since
ln * : -1n2. we see that

flr
tan-'.tr : J fi o-: J (1 x2 + x4 x6 + "') dx

x3 xs x7:C+x T+T ? +

validwhen-l (-r(l,butitturns.out Tofindcweputr:0andobtain c:tan-to:0.Therefore
(although it isn't easy to prove) that it
is afso vafid when.x : +1. Notice that , xt .tr5 ,1whenx:ltheseriesbecomes tan-lx: *-:-+?-|-+.

n I I L 3 5 7 En' 2n*l
-: I - * + - - - + ..'4357

This beautifut resutt is known as the Since the radius of convergence of the series for l/(l + x2) is l, the radius of

To determine the value of C we put "r - 0 in this equation and obtain

-ln(l 0) - C. Thus, C _= 0 and

1rnl:++*+*+*+...::, r*
EXAMPLE 7 I Find a power series representation for/(x) : tan-rx.

SOLUTION We observe that f'(x)- l/(l + x2) and find the required series by
integrating the power series for U0 + x2) found in Example l.

convergence of this series for tan-'x is also l.

EXAMPLE 8 T
(a) Evaluate I [t/(t + x1)ldx as a power series.

(b) Use part (a) to approximate Jis [t/1t + x7)]dx correct ro within l0-7.

sotuTtoN
(a) The first step is to express the integrand , l/(l + xt), as the sum of a power
series. As in Example l, we start with Equation I and replace xby -x7:

ll
, , j::-- r: ) (-rt),: ) (-t),"t": | - x, + xto -...| -1- X I - (-x , n:o n:o

ffi

f =+, d.: i i (-l)"x7ndx: c+ i (-r)" l':J I + xt J Eu ,,:o , jn + I

- c + x 
18 + Jl5 {" +81522

ThisSerieSconvergeSfor|_"'|<1,thatis,for|x|<
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Evaluation Theorem it doesn't matter which antiderivative
antiderivative from part (a) with C : 0:

6o7

we(b) In applying the

use, so let's use the

f"+dx:[.Jo l+x' L

I

-tr* xtt x"++81522
1l

J-g 28 15.z',s

1t/2
I

Jo

I_+
22.222 

I

2

This infinite series is
alternating series, we

Estimation Theorem.
smaller than the term

the exact value of the definite integral, but since it is an
can approximate the sum using the Alternating Series

If we stop adding after the term with n - 3, the error is
with n - 4:

I

zs:*:6'4xlo-rr
So we have

fOs 1 I I I I
| !dx: ------^+
Jo l+x'wrv Z 8.28 15-zts 2z.z t

Exercises

l. If the radius of convergence of the power series
El:o c,.tr' is 10, what is the radius of convergence of
the series )l-, ncnx"-t? Why?

2. Suppose you know that the series El: s box" converges

for lx | < 2. What can you say about the following
series? Whv?-*

;+.{,.,
rr:o n + 1

3-8 r Find a power series representation for the function
and determine the interval of convergence.

3. f(r) - 
I

v\' | + x

I
5. f(x) : ------ .r'\' 1+4x'

7. f(x) - x3

n= l5-18 r Find a power series representation for f, and graph

/and several partial sums s,,(x) on the same screen. What
happens as ru increases?

13. /(x) : ln(5 x) 14, f(x): ,!N

| 5. /(x) : ln(3 + x) 16. /(;) : -^1-x' + 25

17. f(x) : ln(=") t8. /(x) : tan -,(z*)
\1 x/

lg-22 r Evaluate the indefinite integral as a power series.

fl ,rxte.j,*r-r" 20. ifio-
P arctan J

21. | 

- 

d*
.tX

nr

72. I tan -'(r') dr

23-26 r Use a power series to approximate the definite
integral to six decimal places.

9-14 r Find a power series representation for the function
and determine the radius of convergence.

9.f(x): (rh
ll. /(x) : U+;F

ro.z I23.1 .dx.ro l*x"

zs..,['" x'tan-t(xa) dx

P t/2
24. Jo"-ran-'(x2)dx

ro.s dx
26'.lo 

l+,*6
10. /(x) - ln(l + x)

12. f(x) : xln(l + x) 27 . Use the result of Example 6 to compute ln 1.1 correct to
five decimal places.
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28. Show that the function

f(*) - i ?,1)"!'"
7n Qn)I

is a solution of the differential equation

f"(*)+f(x)-0
29. (a) Show that -/o (the Bessel function of order 0 given in

Example 4) satisfies the differential equation

x'Jd(x) * xJiQ) + x'Jr(x) -o
(b) Evaluat" JJ /o(;) dx correct to three decimal places.

30. The Bessel function of order 1 is defined by

/,(x) :}ffi
(a) Show that 11 satisfies the differential equation

x'J ?(x) * x JiG) + (*t l)/,(x) - o

(b) Show that /6(x) : -/' (x).

3 | . (a) Show that the function
xufl

f(x) - n:0 n!

is a solution of the differential equation

f'(*) : f(x)

(b) Show that f (x) - e'.

32. Let f,,(*) : (sin nx)f n2. Show that the series I f^(*)
converges for all values of ; but the series of derivatives
> f '"(x) diverges when x - Znr, n an integer. For what
values of x does the series ) f 'l,Q) converge?

33. Let
oc 

-fl

/(x) ==

n:l n-

Find the intervals of convergence for / f ' , and f " .

34. (a) Starting with the geometric series )l:o xo, find the
sum of the series

n:I

(b) Find the sum of each of the

(i)
n:I

(c) Find the sum of each of the
m

r
(i)

n:2

*)n-n
(ii)

n:2 2"
x')

n-
(iii)

n:t 2"

following series.
m

s'l n
(tt) Z 

",rr: I 1-

following series.

I

Taylor and Maclaurin Series

In the preceding section we were able to find power series representations for a

certain restricted class of functions. Here we investigate more general problems:
Which functions have power series representations? How can we find such repre-
sentations?

We start by supposing that/is any function that can be represented by a power
series

tr fQ): co+ cl(x - a) + cz(x - a)2 + ca(x - o\'+ cq(x - o)n +...
lx-al 1R

Let's try to determine what the coefficients c, must be in terms of /. To begin,
notice that if we put x: a in Equation l, then all terms after the first one are 0
and we get

f(a): co

By Theorem 2 in Section 8.6, we can differentiate the series in Equation I term by
term:

a f'(x) : c1 + 2c2(x a) + 3c{x a)' + 4cq(x a)t +

lx al
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and substitution of r : ain Equation 2 gives

f'(o) : c'

Now we differentiate both sides of Equation 2 and obtain

E f"(x):Zcz* 2.3c{x- a) + 3.4c{x- a)2 +...
lx-al<n

Again we put.r : c in Equation 3. The result is

f"(a) : 2c,

Let's apply the procedure one more time. Differentiation of the series in Equation 3
gives

4 f"'(x):2.3ct + 2.3.4c0,(x - a) + 3.4.5cs? - a)'+...
lx-al<n

and substitution of x : a in Equation 4 gives

f"'(a) : 2' 3cz: 3lct

By now you can see the pattern. If we continue to differentiate and substitute
x : a, we obtain

f"'(a):2'3' 4'"" ttc,: nlcn

Solving this equation for the nth coefficient c' we get

f'"'(o),": 
nl

This formula remains valid even for n : 0 if we adopt the conventions that 0! : I
and/(o) : f Thus, we have proved the following theorem.

El Theorem If f has a power series representation (expansion) at a, that
is, if

,ic

f(*):)r,(" a)" lx al

then its coefficients are ; by the formula

cn - f'"|!o)
nl

Substituting this formula for c, back into the series, we see that if f has a power
series expansion at a, then it must be of the following form:

tr

* f"(a) ,*2T\ a)'+ Lf o a)3 +..
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The Taylor series is named after the
English mathematician Brook Taylor
(1685-1731) and the Maclaurin series is
named in honor of the Scottish mathe-

matician Colin Maclaurin (1698 -1746)
despite the fact that the Maclaurin series

is really just a special case of the Taylor

series. But the idea of representing par-

ticular functions as sums of power series

goes back to Newton, and the general

Taylor series was known to the Scottish

mathematician James Gregory in 1668

and to the Swiss mathematician John
Bernoulli in the 1690s. Taylor was aPPar-

ently unaware of the work of Gregory
and Bernoulli when he published his

discoveries on series in l715 in his book
Methodus incrementorum directa et inverso.

Maclaurin series are named after Colin

Maclaurin because he popularized them
in his calculus textbook lreotise of Flux-

ions published in '742.

The series in Equation 6 is called the Taylor series of
about a or centered at a). For the special case a - 0 the

the function f at a (or
Tavlor series becomes

This case arises frequently enough that it is given the special name Maclaurin
series.

l{oTE . We have shown that if f can be represeqred as a power series about a,

then/is equal to the sum of its Taylor series. But there exist functions that are not

equal to the sum of their Taylor series. An example of such a function is given in
Exercise 50.

EXAMPLE I r Find the Maclaurin series of the function/(x) : e'and its radius

of convergence.

SOLUTION If/(x) : e',thenf@(x): e', so/(")(O) : eo : I for all n. Therefore,

the Taylor series for/at 0 (that is, the Maclaurin series) is

x x7 -tr31+ + + +1! 2l 3!tt:0

va

I
Z-J
n:0

/(")(0) ,7

-rt 

:

nl

*'. _
n!

Xrr* 
| nl

k+lx 7 : l*l -+o
n + I

To find the radius of convergence we let a,, - x"fn!. Then

CI n*l

4,,

so, by the Ratio Test, the series converges for all x and the radius of convergence

isR:o. ffi

The conclusion we can draw from Theorem 5 and Example I is that if e'has a
power series expansion at 0, then

x"

"T

So how can we determine whether e' does have a power series representation?

Let's investigate the more general question: Under what circumstances is a func-

tion/(.r) equal to the sum of its Taylor series? In other words, iflhas derivatives of
all orders, when is it true that

: fh\(a\f(x): ir- ^ 
(x - a\"

As with any convergent series, this means thatf(x) is the limit of the sequence of
partial sums. ln the case of the Taylor series, the partial sums are

T"(x) -

tt_

-{SE-L
n:0

i./#t' ct)i

E /(.r) :i f"":o) *"
rt:6 n!

^, ^\ f '(0)
/(0)+ u "

f "(0) .,+""x'
2I

+

: f(o)+ ffu d+ ffu a)' + + ffu a)"
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!:e"'
y : 7":(x)

J : Tz@)

(0, l) ): rr(x)

Y: 7:(x)

FIGURE I

As n increases, 71,(x) appears to
approach e* in Figure l. This suggests

that e'' is equal to the sum of its Taylor
series.

Notice that T, is a polynomial of degree n called the zth-degree Taylor potyno-
mial of/at a. For instance, for the exponential function f(x): e',the result of
Example 1 shows that the Taylor polynomials at 0 (or Maclaurin polynomials) with
n : 7.2. and 3 arc

x' x' x'Tlx):l + x Tr(x):l + x+ V Tr(x):l *x* ;.;

The graphs of the exponential function and these three Taylor polynomials are
drawn in Figure l.

In general, /(-t) is the sum of its Taylor series if

f(x) : lim T"(x)

If we let R"(x) be the remainder of the series, then

ft"(") : f(*) 7,,(x) so f(*): T,(x) + R,(x)

If we can somehow show that lim,,--,, Ro(x) - 0, then it follows that

lg T"(x): jg [/(") R,(x)] : /(') lim R,,(x) : f(x)

We have therefore proved the following theorem.

When trying to show that lim,--R,(x) :0 for a specific function/ we usu-
ally use the following fact.

El Tayfor's Inequality If l ft"+rr(x) | < M for lx al
remainder R"(r) of the Taylor series satisfies the inequality

l R,,(") 
| 6 + lX 1. ol"o ' for lx al

To see why this is true
we have f "(x)

for n - l, we assume that | /"(*) | < M. In particular,

E rheorem If /(x) - 7,,(x) + R,(x), where T, is the nth-degree Taylor
polynomial of f at a and

jg R,,(x) - 0

for lx al
interval l " al

ff"tilo, Mdt



6I2 I CHAPTER 8 I}IIII.IIIE SIQUENCET AI{D STRIET

So

An antiderivative of f" is,f', so by the Evaluation Theorem, we have

f '(x) f '(a)

Thus I) r'odt<ftf'@)+ M(t a)ldt

R,(x) = #f. a)'
2

A similar argument, using f "(x)

lR,(") | = ,f ,, l,l.*,

But, from Equation 10, we have

lg cj5l 'l'*':'. y2#:o

This proves Taylor's Inequality for the case where n : l. The result for any n is
proved in a similar way by integrating n * I times.

]{OTE . In Section 8.9 we will explore the use of Taylor's Inequality in approxi-
mating functions. Our immediate use of it is in conjunction with Theorem 8.

In applying Theorems 8 and 9 it is often helpful to make use of the following
fact:

rirn { - 0 for every real number x
n+t nl

This is true because we know from Example I that the series 2 x" f nt converges for
all -r and so its nth term approaches 0.

EXAMPLE 2 I Prove that e' is equal to the sum of its Taylor series.

SOf.UTtOl{ Itf(x) : e',thenf(n+tt(y) : e* for all n. So, for any fixed number x,
we can take M -- e'in Taylor's Inequality (with a : 0) for every value of n:

m
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It follows from the Squeeze Theorem that lim,-- lR,(r) | : 0 and therefore
lim,--R"(x) : 0. By Theorem 8, e' is equal to the sum of its Taylor series,
that is.

x' 
vn

e':
E, n!

:r 1 l I
e:

F, nt l! 21 3!

*, 
f"'(2) , 

*u ez , ,

g nl n:0n!

Again it can be verified, as in Example l, that the radius of convergence is

R - co. As in Example 2 we can verify that lim,,-* R,(") - 0, so

J)?
rSe-e'- Z . (x 2)" forallx

n:o n!

m

;

In particular, if we put x : I in Equation I l, we obtain the following expression
for the number e as a sum of an infinite series:

IB

EXAMPLE 3 I Find the Taylor series for f(x)- e* at a- 2.

SOLUTISF* We have ft")Q)- ez and so, putting a- 2 in the definition of a

Taylor series (6), we get

tr t

We have two power series expansions for e', the Maclaurin series in Equation I I
and the Taylor series in Equation 13. The first is better if we are interested in val-
ues of.r near 0 and the second is better if x is near 2.

EXAMPLE 4 r Find the Maclaurin series for sin x and prove that it represents
sin x for all x.

SOLUTIOI{ We arrange our computation in two columns as follows:

f(x): sinx /(0) - 0

f '(x) - cos x /'(o) - 1

f"(x)- -sinx f"(o)- o

f"'(*): -cos,r f"'(o)- -l

f 'o)(*) - sin x /(4)(o) - o
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Figure 2 shows the graph of sin x
together with its Taylor (or Maclaurin)
polynomials

r'(x)

r.(x)

,r' ,r-
G(x)-x---*-3! 5!

Notice that, as ,? increases, 4,(x)
becomes a better approximation to sin x.

FIGURE 2

The Maclaurin series for e'', sin x, and

cos,r that we found in Examples 2, 4,

and 5 were first discovered, using differ-
ent methods, by Newton. These equa-
tions are remarkable because they say

we know everything about each of these
functions if we know all its derivatives
at the single number 0.

f'(o) f"(o) , f"'(o)f(0)r r " ' _T+' " X' +!'\' rI 2! 3!

-tr 
3 .trs x7++-

3! 5! 7l

Since f @n ')(x) is +sin x or +cos ff, we know that 
I

can take M -- 1 in Taylor's Inequality:

x3+

cc 
*Zn*l) r-t)" ,-,El' (2n + l)!

f t"* "(") | < I for all x. So we

Since the derivatives repeat in a cycle of four, we can write the Maclaurin series
as follows:

-x
3x

--+ 3!
15 lE lR,(")t=t4*l*'-'l<,1"1'.'',"\-'l' (n+l)!' (n+l)!

By Equation l0 the right side of this inequality approaches 0 as n --> oo, so

lR,(r) | --+ 0 by the Squeeze Theorem. It follows that R,,(x) -+ 0 as n --> oo, so

sinx is equal to the sum of its Maclaurin series by Theorem 8. I

We state the result of Example 4 for future reference:

x3 .tr5 xjsinx: x + -r
3! 5! tI

- i t-l) o *'n*t 
for all -,n:o Qn + 1)!

EXAMPTE 5 r Find the Maclaurin series for cosx.

SOLUTION We could proceed directly as in Example 4 but it is easier to differ-
entiate the Maclaurin series for sin.r given by Equation 15:

d a/ x' xt x' \cosx:;(sin*): ar\t-a+ 5! -T*..)

3xz 5xa ix6 xz x4 x6
-l- + r -1 + +3! 5! 71 21 4! 6!

Since the Maclaurin series for sinx converges for all .r, Theorem 2 in Section 8.6
tells us that the differentiated series for cos,r also converqes for all x. Thus

x? x4 .tr6cosx*1- A + 4I e+

::(-1r" # rorall x

tr

ffi

y:sin.t

IE
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EXAMPLE 6 r Find the Maclaurin series for the function/(x) : rcosr.

SOLUTI0N Instead of computing derivatives and substituting in Equation 7, it is
easier to multiply the series for cosx (Equation 16) by.r:

x *Zrt : ,2n*l) f -l)" ;i - ), r-l)' l,= 
.-.;:o' Qn)t tro' 

Lr 
Qn)I

EXAMPLE 7 I Represent /(x) - sin x as the sum of its Taylor series centered
at nl3.

$SttNTlO$e Arranging our work in columns, we have

f(x)- sinx

f '(*) - cos -r

f"(x): -sinx

-( ,\ ,E
/\;/ -;

",( n\ II\T/:'

,'(+): +
We have obtained two different series
representations for sin x, the Maclaurin
series in Example 4 and the Taylor
series in Example 7. lt is best to use the
Maclaurin series for values of x near 0
and the Taylor series for x near n/3.
Notice that the third Taylor polynomial
Z: in Figure 3 is a good approximation to
sin x near rr/3 but not as good near 0.

Compare it with the third Maclaurin
polynomial Ir in Figure 2, where the
opposite is true.

FIGURE 3

'(+)

f"'(x) : -cosx f"'(+\ -- - +"\3/ 2

and this pattern repeats indefinitely. Therefore, the Taylor series at rrl3 is

:g *=]t../--'\ - JT (--,\'- I /--o\'*.2 ' ,.tr \'- T)- 24t \'- T/ - 2.3! \'- 3 /
The proof that this series represents sin.r for all x is very similar to that in
Example 4. [Just replace xby x - n/3 in (14).] ye can write the series in sigma
notation if we separate the terms that contain y'3 :

+)", ffi

The power series that we obtained by indirect methods in Examples 5 and 6 and
in Section 8.6 are indeed the Taylor or Maclaurin series of the given functions
because Theorem 5 asserts that, no matter how a power series representation

f(x):2cn(x - a)" is obtained, it is always true that 6,: f(d(a)fn!. In other
words, the coefficients are uniquely determined.

We collect in the following table, for future reference, some important Maclau-
rin series that we have derived in this section and the preceding one.
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lmportant Maclaurin series and

their intervals of convergence

We can take C - 0 in the antiderivative
in part (a).

x
-rz \le:L

n:0

Now we integrate

I ,-*'dx - J
:c+

One reason that Taylor series are important is that they enable us to integrate
functions that we couldn't previously handle. In fact, in the introduction to this
chapter we mentioned that Newton often integrated functions by first expressing

them as porrer series and then integrating the series term by term. The function

f(x) : e-*' can'l be integrated by techniques discussed so far because its anti-
derivative is not an elementary function (see Section 5.7). In the following example
we use Newton's idea to integrate this function.

EXAMPLE 8 T
(a) Evaluate te-" dx as an infinite series.

(b) Evaluate lle-" dx correct to within an error of 0.001.

$OLUTION

(a) First we find the Maclaurin series for f (x) : e-".
use the direct method, let's find it simply by replacing

for e* given in the table of Maclaurin series. Thus, for

Although it's possible to
-r with - xz in the series
all values of x,

x4 x6+ +...2! 3!

(- *')" :
nl

uzn(-D"L- I -\/nl.
xz

1!
i
n:0

('

This series converges for all x because the original series for e-" converges for
all x.

(b) The Evaluation Theorem gives

xs x7 xs I'
5.zI ?41 + g.4I "'lo

+l' 216

+ * - 0'7475

Iu" 
f:

x3

3 . 1l
+

I
42

I
42

l,l
3Tm
lrl
5Tm

(-1,1)

(-*,*)

(-*,*)

(-*,*)

[-1,1]
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The Alternating Series Estimation Theorem shows that the error involved in this
approximation is less than

1l : ( 0.001ll . 5! 1320

Another use of Taylor series is illustrated in the next example. The limit could
be found with I'Hospital's Rule, but instead we use a series.

ffi

e" 1-xEXAMPLE9rEvaluatelim ,, .

-r-0 X

SOLUTIS?{ Using the Maclaurin series for e*, we have

Some computer algebra systems
compute limits in this way.

e'' l-x
lim
x-0 X- x----'0

- lim
x-+0

I x xz xr \tl+ _ + + + l- l-,r\ r! 21 3! /
,

714x- x" x'+++21 3! 4!

x2

because power series are

F Multiplication and Division of Power Seriesnr

If power series are added or subtracted, they behave like polynomials (Theorem 8
in Section 8.2 shows this). In fact, as the following example illustrates, they can
also be multiplied and divided like polynomials. We find only the first few terms
because the calculations for the later terms become tedious and the initial terms
are the most important ones.

EXAMPLE l0 r pir6 the first three nonzero terms in the Maclaurin series for
(a) e'sin x and (b) tan.r.

have

SSLUTION

(a) Using the Maclaurin series for e" and sinx in the table, we

I

e'sin x - (t + +. ++ ++ )(' x3

\ 1! 2! 3! /\ 3!

We multiply these expressions, collecting like terms just as for

' 
*; + i*': 

!i,l

re

)
/t x xz x3

-liml-+ + + +x-o\2 3! 41 5!

I

2

continuous functions.

\+l
I/

polynomials:
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Thus e'sinx_ x + x' + 1"'+
(b) Using the Maclaurin series in the table, we have

xt xt
sln -r

tanx : 

--
cos -r

We use a procedure like long division:

AT 3! 5!

h*t +

tanx- x + 1r'+ fr*s + r.,Thus

If/(x) : El:o b,(x - 5)" for all x, write a formula
for bs.

2. The graph of f is shown. Explain why the series

2 - 0.8(x 1) + 0.4(x 1)' 0.1(x - l)u +

is not the Taylor series of /centered at 1.

3-6 t Find the Maclaurin series for /(x) using the definition
of a Maclaurin series. [Assume that / has a power series

expansion. Do not show that R"(x) -* 0.1 Also find the
associated radius of convergence.

ffi

Although we have not attempted to justify the formal manipulations used in
Example 10, they are legitimate. There is a theorem which states that if both

f(r):Zcnx" and g(x):2bnx" converge for lxl < R and the series are multi-
plied as if they were polynomials, then the resulting series also converges for

lrl < R and represents f(x)g(x). For division we require bo* O; the resulting
series converges for sufficiently small l.r I.

Exercises

l. 5.,f(x):;l-
\r * x)t

6. /(x) : ,I-l-x

7-12 t Find the Taylor series for f(x) at the given value

of a. [Assume that/has a power series expansion. Do not

show that R,,(x) - 0.1

7. f(x) : e*, a:3
9.f(x)_Ux, a:1
ll. f(x) - sinx, a: n/4

8. "f(x) 
: lnx, a:2

10./(;) -\8, a:4
12. f(x): cosr, a - -n/4

13. Prove that the series obtained in Exercise 3 represents

cos,v for all x.

14. Prove that the series obtained in Exercise l1 represents

sin x for all x.

15-22 t Use a Maclaurin series derived in this section to
obtain the Maclaurin series for the given function.

15. /(x) - et' 16. f(x) - sin 2x3. ,f(x) : cos -r 4. f (x) - sin 2x



18. /(x) - cos(x3)

20. f(x) : xe^'

Use sinzx : l (t _ cos 2x).1

*a
-0
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37-39 I Use series to evaluate the limit.

x - tan-lx I - cosr
37. lim . 38. lim 

-

x*o.I-',r=+ol+xe*

6t9

17.

19.

21.

f(x) - xtcosx

f(x): xsin(x/Z)

f(*) - sinzx lHint:

rsinx
if .uf(x)- I x

Ll ifx

fl zl-ze r Find the Maclaurin series of / (by any merhod) and

its radius of convergence. Graph / and its first few Taylor
polynomials on the same screen.

39. lim
,r-0

sinx - x + *"'

40. Use the series in Example l0(b) to evaluate

li- 'un".- 
t

,t

x -0 X"

We found this limit in Example 4 in Section 4.5 using
I'Hospital's Rule three times. Which method do you
prefer?

22. 5T'

23. /(x) : ..A + t
25. /(x) : (l + x) -'

24.f(x):t/r/ t+2x
26. f(x) : 2'

27. Find the Maclaurin series for ln(l + x) and use it to
calculate ln 1.1 correct to five decimal places.

28. Use the Maclaurin series for sin x to compute sin 3o

correct to five decimal places.

the indefinite integral as an infinite

4l-44 I Use multiplication
find the first three nonzero
for each function.

4f . Y: e-*'cosx

ln(l x)43.v- *

or division of power series to
terms in the Maclaurin series

42. -y 
: sec "r

44. Y : e"ln(l - x)

29-32 r Evaluate
series.

/l

29. I sin(x') dx
J

3t. !,/* * t a-

P sinx30' l-d'JIX

n
32. J e* dx

r Use series to approximate the definite integral to
the indicated accuracv.

sin(;') d* (three decimal places)

45-49 I Find the sum of the series.
* xrn r (-l1nnztr

4s. ) r- l)', 46.
n:o n! n:o 62"(2n)t

48.,2+33-36
within

fl
33' 

Ju

47.

49.

(-l1nn2n+l

W
*n+l

(r, + lX
f 0.5

34. J; cos(x') d*

ro. r dx
35.r 

-

..,0 /l + x3

36. .l;' x2e-*' dx

(three decimal places)

(error

(error < 0.001 )

i
n:0

rt:0

50. (a) Show that the function defined by

f(x): f'^-t'.' 
if x + o

L0 if .r - 0

is not equal to its Maclaurin series.

n= (b) Graph the function in part (a) and commenr
behavior near the origin.

The Binomial Series

on its

the Binomial Tlieorem, which states that tf a and b
a positive integer, then

You may be acquainted with
are any real numbers and k is

(a + b)o:ao + kak-tb + k(k .- I) ao-rb, +
2T

k(k 1) (fr 2)

3l

n + l)

nk*3 63

+ Ok-n6n
n!

+ kabk-l + bk
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The trad

(f)

itional notation

/r\I f :
\"/

for the binomial coefficients is

-1

which enables us to write the Binomial

(a + b)o:

In particular, if we put a - I

tr

One of Newton's accomplish
tion 1) to the case in which k
ject on page 623). In this case

it becomes an infinite series.
of (1 + x)k in the usual way:

f(*):(1 +x)o

f'(x)- ft(l + x)t-t

f"(x) : k(k 1) (l + x)r-z

f"'(*) - k(k l) (k 2) (l +

:

f'"'(*) - k(k 1) "'(k n +

/(0) -l
f'(0) : k

f"(0) :
x) t-: f "'(0) -

:

l) (1 + x)*-" ,f(')(o) -

n-1,2,...rk

in the abbreviated form

k(k l)

k(k 1) (ft 2)

k(k 1)...(k n+1)

n!

Theorem

3,0"k-n6n

and b -- x, we get

t /'\

(t +,r)*:: (;)r'

ments was to extend the Binomial Theorem (Equa-
is no longer a positive integer. (See the Writing Pro-
the expression for (l + x)ft is no longer a finite sum;

To find this series we compute the Maclaurin series

Therefore, the Maclaurin series of f(r) -

xn_|
n:o n'. n:o

This series is called the binomial series. If its Hth term is an, then

A n+l

4,,

a

i /'"'lo) .r, : i k(k

nl.

: lt - nl;r;
n + 1

(n + 1)! k(k 1) "'(k n + r)x"

l. k 
IIr -lI n I: Jl*l+ Irl as /,+ oo

Il+

Thus, by the Ratio Test, the binomial series converges if lx | < I and diverges if
lrl> t.

The following theorem states that (l + -r)- is equal to the sum of its Maclaurin
series. It is possible to prove this by showing that the remainder term R,(r)
approaches 0, but that turns out to be quite difficult. The proof outlined in Exer-

cise 15 is much easier.
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B ttre Binomial Series If ft is any real number and I " I
then

xt+(1 + x)o -1+kx

::- (;)

k(k 1)

+
k(k l)(k 2)

3!

xo

where (:) (n and (f) -ln!

I
(l+r)':(l+x)-2-

Although the binomial series always converges when lrl < t, the question of
whether or not it converges at the endpoints, +1, depends on the value of/<. It turns
out that the series converges at I if -1 < fr < 0 and at both endpoints if ft > 0.
Notice that if t is a positive integer and n ) /<, then the expression for (j) contains
a factor (k - k), so (j) : 0 for n > ft. This means that the series terminates and
reduces to the ordinary Binomial Theorem (Equation l) when /c is a positive integer.

As we have seen, the binomial series is just a special case of the Maclaurin
series; it occurs so frequently that it is worth remembering.

EXAMPTE I I Expand. 1

(l +;P as a Power series'

SOLUTfOH We use the binomial series with k : -2. The binomial coefficient is

(-l)"2. 3 . 4
- (-l)"(n + l)

and so, when l" I

(;) n!

n!

: (:)'

ffi
\l
.L
n:0

(- l)"(n + l)x"

EXAMPLE 2 I Find the Maclaurin
radius of convergence.

S LSY{#$d As given, f(x) is not
follows:

series for the functio n f (x) and,/+ x
its

quite of the form (1 + x)k so we rewrite it as

I
I:--

6-x
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rr4-x

I series with and with x replaced by - x 14, we haveUsin

: L(,
2\

:l[t+
2L

+

: (;*) (

mra

1:-
').1-

)

bi

-r/2

1

2,

(

ne

)

+

ot)gth

"\T,

t_
\

xn
l)rI

- -l I
2L

r'

, (-+)(-;)ez) (-r3l 
\

(-")'+ l\ 4/ I
1'3 5 '(2n

;)'

nl

nl 8"
+]

know from (2) that this series converges when | -*/al < l, that is, Itl < a,

the radius of convergence is R : 4. I

A binomial series is a special case of a
Taylor series. Figure I shows the graphs

of the first three Taylor polynomials

computed from the answer to Example 2.

r. .rit + t

I
J. (l + 2x)"

s' {/t:7

FIGURE I

EXefCiSeS o . o . . . . o . . . . . . .

E3 Lg . Use the binomial series to expand the function as a

Maclaurin series and to find the first three Taylor polyno-
mials 7,, Tz, and 23. Graph the function and these Taylor
polynomials in the interval of convergence.

I7.--;-:
Vs+ x

l-6 r Use the binomial series to expand the function as a

power series. State the radius of convergence.

I
2. ----- -(l * x)'

4.:[+-,

x'
6. -- ,-

J2*x

B. (4 * x)3/z

(b) Use part (a) to estimat 
" Wf correct to four deci-

mal places.

I l. (a) Expand f (x) - xl\ - x)'as a power series.

(b) Use part (a) to find the sum of the series

in
7, 2'

12. (a) Expand f(*): (x * x')10 - x)3 as a power series.

(b) Use part (a) to find the sum of the series

in'
3t 2"

13. (a) Use the binomial series to find the Maclaurin series

of/(x) - F -'
(b) Use part (a) to evaluatelt'0)(0).

14. (a) Use the binomial series to find the Maclaurin series

of /(x) _ ll'h + x3 .

(b) Use part (a) to evaluate,f 'n)(0).

15. Use the following steps to prove (2).

(a)

(b)

(a)

9.

10.

Use the binomial series to expand

Use part (a) to find the Maclaurin

Expand "16 + " as a power series.

UJ I - x2.
series for sin-rx.
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(a) Let s(,r) - Differentiate this series to

show that

kq( xl
9'(x) :T; -l(x(l

(b) Let /z(x) - (l + x) rg(*) and show that h'(*): 0.
(c) Deduce that g(x) - (l * 

")*.
16. The period of a pendulum with length L that makes a

maximum angle 0o with the vertical is

T:4
"m

where k - sin(j0,,) and g is the acceleration due to
gravity. (In Exercise 28 in Section 5.8 we approximated
this integral using Simpson's Rule.)
(a) Expand the integrand as a binomial

the result of Exercise 36 in Section

If 00 is not too large, the approximation
f : ztrffi, obtained by using only the first term
in the series, is often used. A better approximation
is obtained by using two terms:

T:2n (t + *t')

Notice that all the terms in the series after the first
one have coefficients that are at most ]. Use this
fact to compare this series with a geometric series
and show that

'7,(;)"

(b)

dx

'r - )*r 
- 

.Ltt ['+ #r' + !*,0+

series and use

5.6 to show that

rr3r5r I
22+62 

k" + 
l

4 3k2

4- 4k'

(c) Use the inequalities in part (b) to estimate the
period of a pendulum with L - 1 meter and
0s : l0o. How does it compare with the estimate
f : Zn r/Llg? What if 0o : 42"?

How Newton Discovered the Binomial Series

The Binomial Theorem, which gives the expansion of (a + b)*, was known to Chinese
mathematicians many centuries before the time of Newton for the case where the expo-
nent ft is a positive integer. In 1665, when he was22, Newton was the first to discover
the infinite series expansion of (a + D)* when ft is a fractional exponent (positive or
negative). He didn't publish his discovery, but he stated it and gave examples of how
to use it in a letter (now called the epistola prior) dated June 13, 1676, that he sent to
Henry Oldenburg, secretary of the Royal Society of London, to transmit to Leibniz.
When Leibniz replied, he asked how Newton had discovered the binomial series.
Newton wrote a second letter, the epistola posterior of October 24, 1676, in which he
explained in great detail how he arrived at his discovery by a very indirect route. He
was investigating the areas underthecurvesy: (l - ,')n/t fromOtorfor n:0, 1,

2,3, 4,. , . . These are easy to calculate if n is even. By observing patterns and inter-
polating, Newton was able to guess the answers for odd values of n. Then he realized
he could get the same answers by expressing (l - ,z1"tz as an infinite series.

Write a report on Newton's discovery of the binomial series. Start by giving the
statement of the binomial series in Newton's notation (see the epistola prior on
page 285 of [4] or page 4O2 of [2]). Explain why Newton's version is equivalent to
Theorem 2 on page 621. Then read Newton's epistola posterior (page287 in [4] or
page 404 in [2]) and explain the patterns that Newton discovered in the areas under the
curves y : (l - y2)"/2. Show how he was able to guess the areas under the remaining
curves and how he verified his answers. Finally, explain how these discoveries led to
the binomial series. The books by Edwards [1] and Katz [3] contain commentaries on
Newton's letters.

l. C. H. Edwards, The Historical Development of the Calculus (New York: Springer-
Verlag, 1979), pp. 178-187.

L
g

L

g

L

g
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2. John Fauvel and Jeremy Gray, eds. , The History of Mathematics: A Reader
(London: MacMillian Press, 1987).

3. Victor Katz, A History of Mathematics: An Introduction (New York: Harper-
Collins, 1993), pp . 463-466.

4. D. J. Struik, ed., A Sourcebook in Mathematics, 1200-1800 (Princeton, N,J.:
Princeton University Press, 1969).

Applications of Taylor Polynomials

Suppose that/(x) is equal to the sum of its Taylor series at a:

€ ,f'"'(a) .f(x):2" ; g-a)"
n:o n'.

In Section 8.7 we introduced the notation T"(x) for the nth partial sum of this
series and called it the nth-degree Taylor polynomial of /at a. Thus

-, ltr : Zr(X)
r

Ir(xt

FIGURE I

Jt 
: g't

Y: f:(r)

t,n, : frf*1

)': Zr(;r)(,0, l1

Since/is the sum of its Taylor series, we know that T"(x) - f (*) as n ---> m and so

T,can be used as an approximation tof:.f(x) - T"(x). It is useful to be able to
approximate a function by a polynomial because polynomials are the simplest of
functions. In this section we explore the use of such approximations by physical

scientists and computer scientists.
Notice that the first-degree Taylor polynomial

T'(x): f(a) + f'(a)(x - a)

is the same as the linearization of f at a that we discussed in Sections 2.9 and 3.8.

Notice also that 7r and its derivative have the same values at a thatf and/' have. In
general, it can be shown that the derivatives of Tn at a agree with those of /up to
and including derivatives of order rz.

To illustrate these ideas let's take another look at the graphs of 1l : e'and its
first few Taylor polynomials, as shown in Figure 1. The graph of Tr is the tangent

line to ! : e'at (0, 1); this tangent line is the best linear approximation to e'near
(0, 1). The graph of Z2 is theparabolay : 1 + x + x2f2,and the graph of 4 is the

cubic curve y: I + x + x2f2 + x3/6, which is a closer fit to the exponential
curve y : e' than Tz. The next Taylor polynomial 7+ would be an even better

approximation, and so on.
The values in the table give a numerical demonstration of the convergence of the

Taylor polynomials T,(x) to the function ! : e'. We see that when x:0.2 the
convergence is very rapid, but when x : 3 it is somewhat slower. In fact, the far-
ther x is from 0, the slower 7l, converges to x.

When using a Taylor polynomial 7, to approximate a function/, we have to ask

the questions: How good an approximation is it? How large should we take n to be

,{/-'- 
)r

\ (l \ ()

/,{ r l

/ r( r I

l, tl. l

l"(r I

l,' { t tr

tr

I

ul

+

+

-t

+

l{}

l()

).{

)i
li

h 5()( !{}(}(}

tr(r..n75{}{}(}

nrJ"+ l15{}{)

l{}(}(}r}tr_5l

l(l ()i(J{r{r5

l.ll{-+(} l()"{}s55"i7
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in order to achieve a desired accuracy? To answer these questions we need to look
at the absolute value of the remainder:

lR,,(*) l- lf(*) r,,(x)l

There are three possible methods for estimating the size of the error:

1. If a graphing device is available, we can use it to graph lR,,(") | and
thereby estimate the error.

2. If the series happens to be an alternating series, we can use the
Alternating Series Estimation Theorem.

3. In all cases we can use Taylor's Inequality (Theorem 9 in Section 8.7),
which says that rt | ft"+t)(y) | { M, then

M
lR,,(r)l = r, * ltt lr - ol'*'

EXAMPLE I T
(a) Approximate the function /(,r) : i/i AV a Taylor polynomial of degree 2
ata:8.
(b) How accurate is this approximation when 7 < .r < 9?

5otuT;0Fl

(a) f(*) : S : t't' f$) :2

f'(x) : \a-zt' f'(8) : +

f"(*): -3'-''t f'(s): -h
f"'(x) : Dnx-stz

Thus, the second-degree Taylor polynomial is

rzl) :.r(8) + ft, - 8) + ft* - o'

:2+i@_a;_rrr_L1x_s;,

The desired approximation is

l/i - r,(x) : 2 * i@ - s) - *(x - s)'

(b) The Taylor series is not alternating when ; < 8, so we can't use the Alter-
nating Series Estimation Theorem in this example. But we can use Taylor's
Inequality with n : 2 and a: 8:

In,(')l< !t- 8l'

where I ,f "'(r) | < M. Because x

f"'(x) : # -;, = + #.o.oo2l

Therefore, we can take M : 0.0021. Also 7 { I s 9, so -l < r - 8 < I and
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0---..J-

FIGURE 2

0.0003

7
0

FIGURE 3

CHAPTER I rililillIt SEQUilICtS AllD SERIES

grves

" 0.0021
1',

6

in part (a) is accurate to within 0.0004.

il

Let's use a graphing device to check the calculation in Example l. Figure 2
shows that the graphs of y : lx andy : Tr(x) are very close to each other when

x is near 8. Figure 3 shows the graph of lRr(x) | computed from the expression

ln,(") l: l:E - r,Q)l

We see from the graph that

lR,(x) | < 0.0003

when 7 { x { 9. Thus, the error estimate from graphical methods is slightly bet-
ter than the error estimate from Taylor's Inequality in this case.

EXAMPLE 2 T
(a) What is the maximum error possible in using the approximation

. .r' xtsln.r-r- ?l - 5l

Thus, it 7

when -0.3
decimal places.

(b) For what values of x

x7

]T

If -0.3 ( x

(0.3)' :
5040

Use this approximation to find sin 12" correct to six

is this approximation accurate to within 0.00005?

soLUTtotl
(a) Notice that the Maclaurin series

x' xt x'sinx:.r-t+o- .,t+...
is alternating for all nonzero values of .r, so we can use the Alternating Series

Estimation Theorem. The error in approximating sinxby the first three terms of
its Maclaurin series is at most

- Ir I'
5040

the error is smaller than

4.3 x 10-8

To find sin 12" we first convert to radian

o : ,,"f-PI\ :
\ 180/

: n /l\'rs \ ts /
: 0.20791 169

measure.

""(+)
++ (+)'+

lR'(x)l
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Thus, correct to six decimal places, sin 12" -: 0.207912.

(b) The error will be smaller than 0.00005 if

I r Itl-^

5040---' 
0'00005

Solving this inequality for x, we get

l" I'

SothegivenapproXimationisaccuratetowithin0.00005whenl'|<

What if we useTaylor's Inequality to solve Example 2? Sinceft7)(r): -cosx,
we have I f"'(r)l < I and so

Inu(x)l= |lrl'
So we get the same estimates as with the Alternating Series Estimation Theorem.

What about graphical methods? Figure 4 shows the graph of

lR6(r)l : lsin.x - (* - jx'+ fr.t')l
0'3 

and we see from ir rhat I Ru(x) I < 4.3 x 10-s when | .r | < o.:. This is rhe same
esrimate that we obtained in Example 2. For part (b) we want lnu(r) | < O.OOOOS,

so we graph both y : lRu(") | and y : 0.00005 in Figure 5. By placing the cursor
on the right intersection point we find that the inequality is satisfied when

l.r | < O.AZ. Again this is the same estimate that we obtained in the solution to
Example 2.

If we had been asked to approximate sin'72" instead of sin 12o in Example 2, it
would have been wise to use the Taylor polynomials at a : rf 3 (instead of c : 0)
because they are better approximations to sin x for values of x close to n/3. Notice
that'l2" is close to 60' (or r/3 radians) and the derivatives of sin x are easy to com-

r Pute at rr/3.
' Figure 6 shows the graphs of the Taylor polynomial approximations

ffi

-0.3

FIGURE 4

-1

FIGURE 5
f'(x) - x

G(x):x *+*
to the sine curve. You can see that as n

sin x on a larger and larger interval.

?

Tr(x): x - ;

TG): x-++ + x7

3! 5! 7I

increases, Zn(x) is a good approximation to

4.3 x 10-ti

lRo(")l

0.00006

Y : lRo(x)l

Tl
Ts

A=''" ft';sinx
FIGURE 6
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where mo is the mass of the
kinetic energy of the object
energy at rest:

K - mc' fttocL

(a) Show that when u is very small compared with c,

agrees with classical Newtonian physics: K - +fttol)z.
(b) Use Taylor's Inequality to estimate the difference
when lrl
SOLUTION

(a) Using the expressions given for K and m, we get

One use of the type of calculation done in Examples I and 2 occurs in calcula-
tors and computers. For instance, when you press the sin or e' key on your calcula-
tor, or when a computer programmer uses a subroutine for a trigonometric or
exponential or Bessel function, in many machines a polynomial approximation is
calculated. The polynomial is often a Taylor polynomial that has been modified so

that the error is spread more evenly throughout an interval.

I Applications co Physics

Taylor polynomials are also used frequently in physics. In order to gain insight into
an equation, a physicist often simplifies a function by considering only the first
two or three terms in its Taylor series. In other words, the physicist uses a Taylor
polynomial as an approximation to the function. Taylor's Inequality can then be
used to gauge the accuracy of the approximation. The following example shows
one way in which this idea is used in special relativity.

EXAMPLE 3 r In Einstein's theory of special relativity the mass of an object
moving with velocity a is

,'I-7 
- 

*"

\/ | ur/c,

object when at rest and c
is the difference between

is the speed of light. The
its total energy and its

')

K - mc2 ftr^cz - +
,/ I - u=lct

this expression for K

in these expressions for K

ftlgC2

-r3+

With x : -u2/c2, the Maclaurin series for (l * r) -'l'is most easily computed
as a binomial series with k : -i.(Notice that lxl ( I because u < c.)There-
fore, we have

(r + .r)- 1t2 - I - )* + (-+l(-;) 
'' +

L.

"l/ | u' 3K-lztoc'L(r +;A +;
.(r uz 3 u4

-tnoc'\t7+g/+

(-i)(-;)(-;)
3!

I)4

7fG
5 I)b

+
16 c6

and
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very small when

number such that

Wehavef"(x)-lmrc'(l + x)-stz and we are given that lrl

| /"(") | -
3msc 3m,)c2 (- M)4(1 u'lczlstz 4(I 100'lr'1t''

629

If u is much smaller than c,, then all terms after the first are
compared with the first term. If we omit them, we get

^l | ,t\
K : t oc'(; ?)- i*or,

(b) If x - -u'lc', f (*) - fttoctl(t + x)-ttz 1], and M is a

| /'(") | < M, then we can use Taylor's Inequality to write

In,(") l< +*,
L.

Thus,withc:3x

I n,(r) I <

108 m/s,

I 3mscz

2 4(l looz lczlslz

1004

t. @.r7 x 10-ro)*,

So when lrl
expression for kinetic energy is at most (4.2 x 10-r0)*u.

Another application to physics occurs in optics. Figure 7 is adapted from a book
by Eugene Hecht: Optics,2d ed. (Reading, MA: Addison-Wesley, 1987), page 133.

It depicts a wave from the point source S meeting a spherical interface of radius
R centered at C. The rav SA is refracted toward P.

Using Fermat's principle that light travels so as to minimize the time taken,
Hecht derives the equation

*

FIGURE 7

Refraction at a spherical interface

tr ttt
(o

where fl 1 and nz are indexes

+ " -L(ut 
n't')

' (i R\ (i (,o I

of refraction and (oo (,, J,, and s; are the distances
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indicated in Figure 7. By the Law
we have

of Cosines, applied to triangles AC,S and ACP,

p
1.O

01,: 
-

Because Equation I is cumbersome to work with, Gauss, in 1841, simplified it by
using the linear approximation cos { - I for small values of @. (This amounts to
using the Taylor polynomial of degree 1.) Then Equation I becomes the following
simpler equation [as you are asked to show in Exercise 24(a)]:

E

Here we use the identity

cos(rr*.?5) :-cosd

t7t
t-
t-

S;
H

fl t_

Jo

/l.z - lI t

R

The resulting optical theory is known as Gaussian optics, or first-order optics, and
has become the basic theoretical tool used to design lenses.

A more accurate theory is obtained by approximating cos@ by its Taylor poly-
nomial of degree 3 (which is the same as the Taylor polynomial of degree 2). This
takes into account rays for which { is not so small, that is, rays that strike the sur-
face at greater distances ft above the axis. In Exercise 24(b) you are asked to use
this approximation to derive the more accurate equation

llt llt llt llr4
J'",-f;R

The resulting optical theory is known as third-order optics.
Other applications of Taylor polynomials to physics are explored in Exercises 25

and 26 and in the Applied Project on page 632.

Exercises

EE l. (a) Find the Taylor polynomials up to degree 6 for
f (t) - cosr centered at a - 0. Graph./ and these
polynomials on a common screen.

(b) Evaluate f and these polynomials at r : n/4, n/2,
and rr .

(c) Comment on how the Taylor polynomials converge
to /(x).

E= 2. (a) Find the Taylor polynomials up to degree 3 for
f (x) - Ifx centered at a : l. Graph.f ancl these
polynomials on a common screen.

(b) Evaluate f and these polynomials at r - 0.9 and 1.3.

(c) Comment on how the Taylor polynomials converge
to /(x).

EH Lg r Find the Taylor polynom ial 7,,(x) for the function.f
at the number a. Graph./and Z" on the same screen.

3. "f(x) - sinr, 0 - nl6, n - 3

4. f(.x) : cosx, ct : 2n13, n - 4

5./(x)-tan,{. a:0, n-4
6. f (*) - tan -r, (t : rr/4, n : 1

7.f(x) -sec-r, a- n/3, n:3
8../(*)-V?, e- g, n__3

9-10 I Use a computer algebra system to find the Taylor
polynomials 4, at {r: 0 for the given values of rz. Then
graph these polynomials and"f on the same screen.

9. f(x) - sec.r, n-2,4,6,8
f 0. /(x) - tan x,, tt - 1,3, 5,J,9

ll-16 r
(a) Approximate.f by a Taylor polynomial with degree n at

the number a.

(b) Use Taylor's Inequality to estimate the accuracy of the
approximation/(x) :, 4,(x) when x lies in the given
interval.

@

R) cos,f

2R(si R) cos,f
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ll.

Check your result in part (b) bV graphing lR,,(") l.

f(*)-Jl+*,, a:0, n-1, 0<x<0.1
/(t) : l/x, a: l, ft:3, 0.8 < x € 1.2

f(x) - sin,{, cr : rrl4, n - 5, 0 ( x < rr/2

/(r) - cos,r, a : rrl3, n : 4, 0 < x { 2n/3

/(r)-r'1 , e:0, n-3, 0<J<0.1
/(r): lnx, a:4, n -3, 3{x<5

17. Use the information from Exercise 3 to estimate sin 35o

correct to five decimal places.

18. Use the information from Exercise 14 to estimate
cos 69" correct to five decimal places.

19. [Jse Taylor's Inequality to determine the number of
terms of the Maclaurin series for e'' that should be used

ro estimate eo ' to within 0.00001.

20. How many terms of the Maclaurin series for ln(l + x)
do you need to use to estimate ln 1.4 to within 0.001?

E! Zl-72 r Use the Alternating Series Estimation Theorem or
Taylor's Inequality to estimate the range of values of x for
which the given approximation is accurate to within the
stated error. Check your answer graphically.

?

21. sinx : .r - {-. error < 0.01
6

Jt Jo
27. cosx:l- Z* U, error <0.005

23. A car is moving with speed 2A m/s and acceleration
2 mfs? at a given instant. Using a second-degree Taylor
polynomial, estimate how far the car moves in the next

second. Would it be reasonable to use this polynomial to
estimate the distance traveled during the next minute?

24. (a) Derive Equation 3 for Gaussian optics from Equa-
tion 1 by approximating cos,f in Equation 2 by its
first-degree Taylor polynomial.

(b) Show that if cos d is replaced by its third-degree
Taylor polynomial in Equation ?, then Equation I

becomes Equation 4 for third-order optics.

lHint: Use the first two terms in the binomial series

for d, ' and C, t.Also, use ,f : sin d.]

25. An electric dipole consists of two electric charges of
equal magnitude and opposite signs. If the charges are q

and -q and are located at a distance d from each other,
then the electric field E at the point P in the figure is
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By expanding this expression for ^E as a series in powers

of df D, show that E is approximately proportional to
l/D3 when P is far away from the dipole.

-q

l- cl 

-l
75. The resistivity p of a conducting wire is the reciprocal

of the conductivity and is measured in units of ohm-
meters (ft-m). The resistivity of a given metal depends

on the temperature according to the equation

p(t) - prnsa(r-zo)

where r is the temperature in oC. There are tables that
list the values of a (called the temperature coefficient)
and p2,, (the resistivity at 20 "C) fbr various metals.

Except at very low temperatures, the resistivity varies

almost linearly with temperature and so it is common
to approximate the expression for p(r) by its first- or
second-degree Taylor polynomial at t - ?0.
(a) Find expressions for these linear and quadratic

approximations "

(b) For copper, the tables give a - 0 .0039/"C and

pzo : 1.7 x 10-8 f)-m. Graph the resistivity of
copper and the linear and quadratic approximations
for-250oC</<1000"C.

(c) For what values of r does the linear approximation
agree with the exponential expression to within
one percent?

27. In Section 4.8 we considered Newton's method for
approximating a root r of the equation f(*): 0, and

from an initial approximation xr we obtained successive

approximations Jz, .r3, . . ., where

,f(x,, )
Xrr- I : 

'\rt

Use Taylor's Inequality with n: l, a : x,,, and J - r
to show that if/"(x) exists on an interval l containing r,

,{,,, and rn+r, and l,f"(.r) | = M, | /'(*) | > K for all
x € 1. then

l'n*, - rl = ffl*, ,l'

[This means that if x,, is accurate to d decimal places,

then rn+r is accurate to about 2d dectmal places. More
precisely, if the error at stage n is at most l0-"', then the
error at stage n + I is at most (M/zK) 10-to'.1

12.

13.

Dt4.

15.

15.

ngTI

NJ
II

r-qqr':E- e+rtf
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Radiation

Any object emits radiation when heated. A blackbody is a system that absorbs all the
radiation that falls on it. For instance, a mat black surface or a large cavity with a

small hole in its wall (like a blastfurnace) is a blackbody and emits blackbody radia-
tion. Even the radiation from the Sun is close to being blackbody radiation.

Proposed in the late l9th century, the Rayleigh-Jeans Law expresses the energy den-
sity of blackbody radiation of wavelength ,\ as

SzrkTf(i): 

-
t"

where ,\ is measured in meters, Z is the temperature in kelvins, and ,t is Boltzmann's
constant. The Rayleigh-Jeans Law agrees with experimental measurements for long
wavelengths but disagrees drastically for short wavelengths. [The law predicts that

"f(i) -- m as z\ -+ 0* but experiments have shown that/(,\) --+ 0.1 This fact is known
as the ultraviolet catastrophe.

In l90O Max Planck found a better model (known now as Planck's Law) for black-
bodv radiation:

where A is measured in meters,

8rhctr-s
j\n):T

,"-"llkrI I

I is the temperature in kelvins, and

h : Planck's constant : 6.6262 x 10-34 J.s

c - speed of light - 2.997925 x 108 m/s

k - Boltzmann's constant - 1.3807 x 10*23 J/K

l. Use I'Hospital's Rule to show that

lim /(I) - 0
A -*0+

and lim /(I) : 0
,\ ---+m

2.

W.r'al J.

4.

nlZ?
'll t.

for Planck's Law. So this law models blackbody radiation better than the Rayleigh-
Jeans Law for short wavelengths.

Use a Taylor polynomial to show that, for large wavelengths, Planck's Law gives
approximately the same values as the Rayleigh-Jeans Law.

Graph "f as given by both laws on the same screen and comment on the similarities
and differences. Use T - 5700 K (the temperature of the Sun). (You may want to
change from meters to the more convenient unit of micrometers: 1 pm : 10-6 m.)

Use your graph in Problem 3 to estimate the value of A for which /(i) is a maxi-
mum under Planck's Law.

Investigate how the graph of/changes as 7 varies. (Use Planck's Law.) In parti-
cular, graph f for the stars Betelgeuse (T : 3400 K), Procyon (T :6400 K), and
Sirius (T : 92A0 K) as well as the Sun. How does the total radiation emitted (the
area under the curve) vary with Z? Use the graph to comment on why Sirius is
known as a blue star and Betelgeuse as a red star.



sEcTloil 8.10 lJsilrG srRrEt T0 50rI,E DrrrERilrilAL rQUATr0lrs 633

Using Series to Solve Differential Equations

Many differential equations can't be solved explicitly in terms of finite combi-
nations of simple familiar functions. This is true even for a simple-looking equa-
tion like

tr y" - 2xy'+ y:0
But it is important to be able to solve equations such as Equation I because they
arise from physical problems and, in particular, in connection with the Schrildinger
equation in quantum mechanics. In such a case we use the method of power series;
that is. we look for a solution of the form

y : ,f(x) c,rxn- cs + ctx + czx? + ctx3 +

The method is to substitute this expression into the differential equation and deter-
mine the values of the coefficietts co, ct, cz, ....

Before using power series to solve Equation 1, we illustrate the method on the
simpler equation y" + y : 0 in Example l.

EXAMPLE I r Use power series to solve the equation y" * y : 0.

SOlUTlCIN We assume there is a solution of the form

t

y- cs + ctx + czxz + czx3 + -

We can differentiate power series term by term, so

y': c1 + Zczx+ 3czx'+ - t ncnxn-|
t: I

\̂
L

n:o

By writing out the first few terms of (4),

you can see that it is the same as (3). To

obtain (4) we replaced n by n * 2 and

began the summation at 0 instead of 2.

y"- Zcr.+ 2'3czx+ - i
t"t:2

In order to compare the expressions for y and y"
follows:

n-/y,, - Z ln + 2)(n +
n:0

Substituting the expressions in Equations 2 and
we obtain

i @ + z) (n + I)c,+2xn +
n:o

n(n l)c,x'-z

more easily, we rewrite y" as

l)c o*7x"

4 into the differential equation,

CnXo : 0

a

E

4

n:0

E : t(r + 2)(n * l)cn*z * c,)x': o

If two power series are equal, then the corresponding coefficients must be equal.
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Therefore, the coefficients of x" in Equation 5 must be 0:

(n + 2)(n * l)c,*2 * c^: O

tr cn+2:- cn n:0,1,2,3,...(n+1)(n+2)
Equation 6 is called a recursion relation. If co and cr are known, this equa-

tion allows us to determine the remaining coefficients recursively by putting
n : 0,1,2,3,... in succession.

Put n : 0: c2: -;,

Put n - l: c3: -*

Putn:2: ca,: -;i:#:#
Putn :3: c5- :?--#:+

Putn:4: c6: -t'.oU: --::-- -#

Put n-5: c-t: - " -- 't :-cr
6.7 5!6.7 7I

By now we see the pattern:

For the even coefficients , czn: (- I )" #

For the odd coefficients, czn+r : (-l)" 
Ofl 111

Putting these values back into Equation2, we write the solution as

y : co + ctx + czx2 + ctx3 + c+xo + csxs +

/x2x4x6r?n\,(t ;+; A+ +(-r)"6+ 
)

/ x3 x5 x7 xzn*t \+c\,t t+i i+ +(-l)"ffi+ 
)

,,?,(-1)^#+ cri t-l)" t;Iil,
Notice that there are two arbitrary constants, co &nd c r . ffi

NOTE | . We recognize the series obtained in Example I as being the Maclaurin
series for cosx and sin-r. Therefore. we could write the solution as

y(x) : cscos.r * c1 sin x

But we are not usually able to express power series solutions of differential equa-
tions in terms of known functions.
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EXAMPLE2 r Solve y" - 2xy' * ) : 0.

tOLUTlOll We assume there is a solution of the form

v:
n:a

:aC

Then y' :
n:l

!cx

and y" :
n:2 n:0

as in Example 1. Substituting in the differential equation, we get

I?nr.',,-.-":),2rrc,,.r" X (n+ 2)(n+l)c,a2xn - ZZnc,x" * ) c,x":0

3 t(" + 2) (, + r)c n*z Qn r)c,l*' : o

This equation is true if the coefficient of x" is 0:

ll

(n + 2) (" + 7)co*, (2n l)cn : 0

2n1
ctr*Z: 

7ra 117n *, " 
n - o'l'2'3

Put n _ 0: -lc2 : 
r . z 'o

IPutn-1: c3: r.rct

Putn-2: ca: r*cz: - 1.2.34c0: 4I 
,,

5 l'5 1.5Putn:3: c5: 4Uc3: ryct: 
" 

t'

7 3-7 3.J
Putn-4: c6:5tc4:-41 5.6c0: 6l 

to

9 1.5.9 1.5.9Putn-5: c7: 6.7cs 5t3u cr: o ct

We solve this recursion relation by puttrng n

Equation J:
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Putn-6:

Putn:7:

11 3 .',I . l1c3:74c6: gr to

13 1 5.9.13cs: urt': * tt

Cs

In general, the even coefficients are given by

3 7' 11 ""'(4n 5)
nL2n

(2n)I

and the odd coefficients are given by

1.5.9.... (4n 3)
Czn+l :

(2n + l)! Cy

The

v

and

solution

- cg +

/:ro[l
\

is

C tX + Czxz

t,
2!

''(" + + "'

y: .,(1 _

+ ctx3 + cqxa + -..

3 4 3.7 6 3-7.11 * \
fixr t*u f*- )
, 1.5 5 1.5 9 .' 1.5 9.13 o

-L 

r- 

-I 

T 

-I

5! 71 9l
+ +)

' (4n s)

(2n)I

9 '(4n
(2n + 1)!

NOTE 2 . In Example 2 we had to assume that the differential equation had a
series solution. But now we could verify directly that the function given by Equa-
tion 8 is indeed a solution.

ts

".')x+

x'n

3)

n:2

0a

n:l

1.,
-x-2I

/
c'(x 1.5

NOTE 3 . Unlike the situation of Example l, the power
solution of Example 2 do not define elementary functions.

a* 3, Qr\

yzk): x+ i r' 5' 9' "'' (4n - 3)

(2n + 1)!

series that arise in the
The functions

5) )n
FIGURE I

x'n

*2n+ |

are perfectly good functions but they can't be expressed in terms of familiar
functions. We can use these power series expressions for y1 and y2 to compute
approximate values of the functions and even to graph them. Figure I shows the
first few partial sums Io, Tz, Tq, .. . (Taylor polynomials) for yr (r), and we see how
they converge to y1. In this way we can graph both y1 and y2 in Figure 2.FIGURE 2
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NOTE 4 . If we were asked to solve the initial-value problem

.)n" Zxy'+y-0 y(0)-0 y'(0)-l

we would observe that

co:y(0)-0 c1 : )"(0) - 1

637

This would simplify the calculations in Example 2, since all of the even coeffi-
cients would be 0. The solution to the initial-value problem is

-r(x) :" * i t' 5' e-"'-' !!n - i *"-'
n:t 1.n * l)!

Exercises

l-9 r Use power series to solve the differential equation.

f. 1/*S.y 2, _y'-x)t
3, yt : xt), 4. .)," : -)o

5. _)"'+ 3xJ'+ 31' - 0 6. )"': J)'

7. .)t" J]' "I 
: 0, .)'(0) _ l, )"(0) - 0

8. .)," + xt)' - 0, )'(0) - 1, )'(0) - 0

9. y" +.trt.),'* xlo:0, y(0) :0, )"(0)-1

Chapter 8 Review

10. The solution of the initial-value problem

x')," + ry'+ *t)'- o 1'(o)-1 _1"(o) - o

is called a Bessel function of order 0.
(a) Solve the initial-value problem to find a power

series expansion for the Bessel function.
(b) Graph several Taylor polynomials until you reach

one that looks like a good approximation to the
Bessel function on the interval [-5, 5].

;rgTI

I CONCEPT CHECK O

l. (a) What is a convergent sequence?
(b) What is a convergent series?

(c) What does lim,, --,x an - 3 mean?
(d) What does >;: I e,, : 3 mean?

2. (a) What is a bounded sequence?
(b) What is a monotonic sequence?
(c) What can you say about a bounded monotonic

sequence?

3. (a) What is a geometric series? Under what circum-
stances is it convergent? What is its sum?

(b) What is a p-series? Under what circumstances is it
convergent?

4. Suppose I d,, - 3 and s,, is the nth partial sum of the
series. What is lim^+," a,,? What is lim,,*- Jn?

5. State the following.
(a) The Test for Divergence
(b) The Integral Test
(c) The Comparison Test
(d) The Limit Comparison Test

(e) The Alternating Se ries Test
(f) The Ratio Test

6. (a) What is an absolutely convergent series?
(b) What can you say about such a series?

7. (a) If a series is convergent by the Integral Test. how do
you estimate its sum?

(b) If a series is convergent by the Comparison Test,
how do you estimate its sum?

(c) If a series is convergent by the Alternating Series
Test, how do you estimate its sum?

8. (a) Write the general form of a power series.
(b) What is the radius of convergence of a power series?
(c) What is the interval of convergence of a power

series?

9. Suppose /(x) is the sum of a power series with radius of
convergence R.

(a) How do you differentiate /? What is the radius of
convergence of the series for/'?



638 CHAPTER I rr{il1{lTE SEQUE}{CES Al{D SERltS

(b) How do you integrate f ? What is the radius of con-
vergence of the series for .f f k) axZ

10. (a) Write an expression for the nth-degree Taylor poly-
nomial of/centered at a.

(b) Write an expression for the Taylor series of f cen-

tered at a.

(c) Write an expression for the Maclaurin series of .f
(d) How do you show that f (x) is equal to the sum of its

Taylor series?

(e) State Taylor's Inequality.

I l. Write the Maclaurin series and the interval of conver-
gence for each of the following functions.
(a) L/ (1 x) (b) e'
(c) sin x (d) cos,r
(e) tan -rx

12. Write the binomial series expansion of (l + x)t. What is

the radius of convergence of this series?

A rRUE-FALSE QUrz A

Determine whether the statement is true or false. If it is
true, explain why. If it is false, explain why or give an

example that disproves the statement.

f . If lirrlll-- a,, : 0, then 2 an is convergent.

2. If > c,,6" is convergent, then ) c,,(-2)" is convergent.

3. If > cn6n is convergent, then I co(-6)" is convergent.

4. If > c,,x" diverges when x :6, then it diverges when

x-10.
5. The Ratio Test can be used to determine whether 2 lln3

c onverge s.

6. The Ratio Test can be used to determine whether I l/nl
converges.

7. If 0 5. a,r 4 bu and I b,, diverges, then 2 a,, diverges.

+ (-1)" I

Llrr:() n'. e

If -l < a

If > a,., is divergent, then 2 | o,,l is divergent.

If/(x) : 2x F'+ lt' - "' converges for all x, then

f"'(0) - 2.

a2. If {a"} and {b"} are divergent, then {an + b,,} is
divergent.

If {a,,} and {b,,) are divergent, then {o,b,,} is divergent.

If {a,,} is decreasing and a,, } 0 for all n, then {4,,} is
convergent.

If a,, > 0 and 2 a, converges, then > (- l)"a, converges.

If a, > 0 and lim,, -* (e,,nr/a,) { l, then lim,, -* an - 0.

8.

9.

10.

ll.

13.

14.

15.

16.

t ExERcrsEs t -
l-7 I Determine
divergent. If it is

n
f. a,,-

3. cl,t:

5. cr,t :

7. {(l +

whether the
convergent, '"25#

r3.2,#

sequence ls convergent or

find its limit. 12.

14.
2. en: 5 (0.9)"

a,r: nf lnn

ct,, : (sin n) /n

2n + 5

2n + 5

sin n

3/n)o"I

4.

6. 15.
tt: I

x

17.
n:I

x
(--\

18.
tt:l

sln n
al+n-

I

;0" if

8. A sequence is defined recursively by the equations
ot: l, an+t - +(a,, + 4). Show that {o") is increasing
and eu 12 for all n Deduce that {o,,} is convergent and

find its limit.

5" n\.

lnn(- I )n*' .!n

9-18 t Determine whether
divergent.

-L ')

\---r n-9-Z i,Frn''+l

the series is convergent or

n + n'
'4n -r n

19-22 r Find the

x 12rt1_l\--'t L
19. H <n

n:l J

sum of the series.

10.
tt: I

20.
n:I

I

nfu+3)



21.

23. Express the repeating decimal 1.2345345345 . . . as a
fraction.

24. For what values of x does the series Il:, (ln x)"
converge?

* ( _ l),,, r

75. Irind the sum of the series
decimal places. rr:1 n'

25. (a) Find the partial sum s-s of the series El:,lfn6 and

estimate the error in using it as an approximation
to the sum of the series.

(b) Find the sum of this series correct to five decimal
places.

27. Use the sum of the first eight terms to approximate the

sum of the series >:;:, (2 + 5")-'. Estimate the error
involved in this approximation.

28. (a) Show that the series t :-is convergent.
7,:, (Zn)l

n"lim 
- 

:0.
, -x (Zn)I

series >;:, a,, is absolutely convergent,

45. Evaluate f 
e 
t 

r/x as an infinite series.
.) "f

45. Use series to approximate ],i ",t 
+ ,** r/x correct to two

decimal places.

47-48 t
(a) Approximate / by a Taylor polynomial with degree n at

the number a.

EE tUl Graph / and 4' on a common screen.
(c) Use Taylor's Inequality to estimate the accuracy of the

approximation /(x) : 7,,(r) when x lies in the given
interval.

EE COI Check your result in part (c) by graphing 1ft,,(r) l.

47. f(x) - r/i, a: 1, n:3, 0.9 { x { 1.1

aS. /(x) - secx, a : 0, t't : 2, 0 ( x < nl6
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tion of a Maclaurin series) or known series such as geomet-
ric series,, binomial series, or the Maclaurin series for e"'

and sin x.

37. f(.r) - 
'"

l+x

39. /(x) : ln(l - x)

41 . f(x) : sin("*)

43. /(x) - U i16 -;

Use series to evaluate lim.-== ,rt(1 r, -r"rr;.

The force due to gravity on an object with mass rn at a

height /r above the surface of the earth is

L- - 
mgRtr - (n + h)=

where R is the radius of the earth and g is the accelera-
tion due to gravity.
(a) Express F as a series in powers of hlR.
(b) Observe that if we approximate .tr by the first term

in the series, we get the expression F : ttxg that is
usually used when /z is much smaller than R. Use

the Alternating Series Estimation Theorem to
estimate the range of values of h for which the
approximation f : mg rs accurate to within l7o.
(UseR-6400km.)

Use power series to solve the initial-value problem

)," *xy'+-y-0 )'(0)-0 y'(0)-1

Use power series to solve the equation

y"-.{.f,tt-ZV:0

\i
,1-)
n:l

ri:{J

[tan-'(n + l) tan-rn]

(-l)"x"
z'', 

"l
22.

38. /(x)-/t-r'2

f(*) - ,vszr

/(x) - l0 "

/(r) - (l 3*) -'

40.

42.

44.

(b) Deduce that

29. Prove that if the

then the series

i (n + r 
)n,,

rr:l \ ll /

is also absolutely convergent.

30-33 I Find the radius of convergence and interval of con-
vergence of the series.

: (-3)rrt2rr r, 
,T"

30.
F=, n+t 3l':3"n3

+ (x + l)' 'n 2"(x 3)"t7. \7, (rt + l)! 33' ,: ",';TT

49.

50.

rg'll

34. Find the radius of convergence of the series

:fH ''
35. Find the Taylor series of /(") - sin x at a- n/6.

36. Find the Taylor series of/(x) : cos x at a- n/3.

37-44 r Find the Maclaurin series for f and its radius of
convergence. You may use either the direct method (defini-

51.

52.



Before you look at the solution of the following example, cover it up and first try to
solve the problem yourself.

Example Find the sum of the series i y ! 'Yls (n + 3)l'

Solution The problem-solving principle that is relevant here is recognizing some-
thing familiar. Does the given series look anything like a series that we already
know? Well, it does have some ingredients in common with the Maclaurin series

for the exponential function:

:x"x?x3
e*-

En nt 2l 3!

We can make this series look more like our given series by replacing x by x I

ox*2- i k + 2)" : Ic.Ll
n:0 n!

+ (x + z) + (* !^,2)' + (t l, 
2)' 

+2t 3!

But here the exponent in the numerator matches the number in the denominator
whose factorial is taken. To make that happen in the given series, let's multiply
and divide by (x + 2)3:

We see that the series between brackets is just the series for e'*'with the first
three terms missing. So

lDroblt nrs

P5

Figure for Problem 2

l. If /(x) : sin(x3;, findtttst(0).

Let {&} be a sequence of points determined as in the figure. Thus laf' | - 1,

lP,P,*rl: 2'-t, and angle AP^Pn+t is a right angle. Find lim,,*o" LP,,APn+,.

(a) Showthattan jr-cot jx Zcotx.
(b) Find the sum of the series

x
tan 

-2"

4. A function / is defined by

2.

3.

P2

I +r
n:l 2

Where is 
"f 

continuous?



5. To construct the snowflake curve, start with an equilateral triangle with sides of
length 1. Step 1 in the construction is to divide each side into three equal parts,
construct an equilateral triangle on the middle part, and then delete the middle part
(see the figure). Step 2 is to repeat Step 1 for each side of the resulting polygon.
This process is repeated at each succeeding step. The snowflake curve is the curve
that results from repeating this process indefinitely.
(a) Let sn, 1,, and pn represent the number of sides, the length of a side, and the

total length of the nth approximating curve (the
of the construction), respectively. Find formulas

(b) Show that Pu + oc as n --) @.

(c) Sum an infinite series to find the area enclosed
Parts (b) and (c) show that the snowflake curve
only a finite area.

6. Find the sum of the series

1111l+-+-+-+-+2346

curve obtained after Step n

for s,,,ln, and p,r.

by the snowflake curve.
is infinitely long but encloses

I
+

t2

1l
-+-89

where the terms are
tors are 2s and 3s.

7. (a) Show that for xl

the reciprocals of the positive integers whose only prime fac-

x-)'
arctan

l+rlr

if the left side lies between -n/2 and nlz.
(b) Show that

arctan i# - arctan

(c) Deduce the following formula of John Machin (1680-1751):

4arctan{ arctan #:' 4

(d) Use the Maclaurin series for arctan to show that

0.t97395560

0.004184075

(f ) Deduce that, correct to seven decimal places,

n : 3.1415927

Machin used this method in 1706 to find ?r correct to 100 decimal places. In
this century, with the aid of computers, the value of n has been computed to
increasingly greater accuracy. In 1995 Jonathan and Peter Borwein of Simon
Fraser University and Yasumasa Kanada of the University of Tokyo calculated
the value of r to 4,294,967,286 decimal places!

8. If ao * a1 * a2 + * a*: 0, show that

lim (a6 r/i + o,rE + t + orrf,, + z + + uorfn+t):0

If you don't see how to prove this, try the problem-solving strategy of using analogy
(see page 87). Try the special cases k - 1 and k : 2 first. If you can see how to
prove the assertion for these cases, then you will probably see how to prove it in
general.

+ -1,

arctan x arctan.y -

t 
-T239 - +̂

(e) Show that

Figure for Problem 5



Figure for Problem I O

9. Find the interval of convergence of )l:, n3x" and find its sum.

10. Suppose you have a large supply of books, all the same size, and you stack them
at the edge of a table, with each book extending farther beyond the edge of the

table than the one beneath it. Show that it is possible to do this so that the top book
extends entirely beyond the table. In fact, show that the top book can extend any

distance at all beyond the edge of the table if the stack is high enough. Use the fol-
lowing method of stacking: The top book extends half its length beyond the second

book. The second book extends a quarter of its length beyond the third. The third
extends one-sixth of its length beyond the fourth, and so on. (Try it yourself with a

deck of cards.) Consider centers of mass.

I l. Let

u-

U-

w-

x3 -rbl+-+-+
3! 6!

x4 x].r+_+_+
4! 7t

xz r-5 x8

-T--I-2! 5! 8!

Ix

-T9!

,tr 
l0

10!

+

Show that r,l3 + u3 + w3 3uuut - 1.

12. If p > l, evaluate the expression

llll- 2!+---+"'

13. Suppose that circles of equal diameter are packed tightly in n rows inside an equi-
lateral triangle. (The figure illustrates the case n : 4.) If A is the area of the tri-
angle and A, is the total area occupied by the n rows of circles, show that

4,,nm-:
.-rx A

ltll+_+_+-
2P 3t'} 4p

TT

t-
2Jz

14. A sequence {n"} is defined recursively by the equations

ao : at - I n(n l)an : fu 1) (n 2)a,-t (n

Find the sum of the series 27,:o o,.

| 5. Consider the series whose terms are the reciprocals of the positive

can be written in base l0 notation without using the digit 0. Show

is conversent and the sum is less than 90.

3)a,-,

integers that
that this series



16. Starting with the vertices Pr(0, 1), &(1,1), &(1,0), &(0,0) of a square, we con-
struct further points as shown in the figure: P5 is the midpoint of P1P2, P6 is the
midpoint of P2\, P; is the midpoint of P3Pa, and so on. The polygonal spiral path
PtP2P3P4PsP6P1... approaches a point P inside the square.
(a) If the coordinates of P, are (x^,y,,), show that

lx,, I xn*1 r x,,*2 -l xn,1. : 2

and find a similar equation for the y-coordinates.
(b) Find the coordinates of P.

PsPl
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Intervals, Inequalities, and Absolute Values

Q

FIGURE I

Open interval lu,bl

a

FIGURE 2

Closed interl'al lo,bl

Table I lists the nine possible types of
intervals. When these intervals are dis-

cussed, it is always assumed that a I b.

Certain sets of real numbers, called intervals, occur frequently in calculus and

correspond geometrically to line segments. For example, if a < b, the open inter-
val from a to b consists of all numbers between a and b and is denoted by the sym-

bol (a, b). Using set-builder notation, we can write

(a.b\:{rlo<*<b\

Notice that the endpoints of the interval, namely, a and b, are excluded. This is

indicated by the round brackets ( ) and by the open dots in Figure 1. The closed

interval from a to b is the set

lo.bl: {tlo < r < b}

Here the endpoints of the interval are included. This is indicated by the square

brackets I I and by the solid dots in Figure 2. It is also possible to include only one

endpoint in an interval, as shown in Table 1.

We also need to consider infinite intervals such as

(a, co) : {x lx > c}

This does not mean that co ("infinity") is a number. The notation (4, m) stands for

the set of all numbers that are greater lhan a, so the symbol - simply indicates that

the interval extends indefinitely far in the positive direction.

Il taUle of Intervals

Notation Set description Picture Notation Set description Picture

(a, h)

lo,lr)

la, tt)

(a, bf

{rio { x { b}

{"lo €.t < b\

{rln = r < b}

{"ln { x € b}

(a, n)

la, *)

(- *, b)

(- *, b]

(**, *)

{"'

{r

{"

{r
R

x>a\
x >-- aI

r<b)
*<bl

(set of all
real numbers)

6 Inequalities

When working with inequalities, note the following rules:

Rules for Inequalities

l.Ifa
2. If a

3.If a

4.If a

5. If0
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Rule I says that we can add any number to both sides of an inequality, and
Rule 2 says that two inequalities can be added. However, we have to be careful
with multiplication. Rule 3 says that we can multiply both sides of an inequality by

@ a positive number, but Rule 4 says that i.l'trc ntultipl:' btillt sides of'utt inatluu!itt' ltt'
tt ttt',gtttive tttrtnbcr, Ilten we r(rers( tltr dircctiotr ol tlta ittctltrtrlilr'. For example, if
we take the inequality 3 < 5 and multiply by 2, we get 6 < 10, but if we multiply
by -2, we get .-6 > - 10. Finally, Rule 5 says that if we take reciprocals, then we
reverse the direction of an inequality (provided the numbers are positive).

EXAMPTE I r Solve the inequality 1 * x < 7x + 5.

SOLUTIOI'I The given inequality is satisfied by some values of r but not by others.
To solve an inequality means to determine the set of numbers ; for which the
inequality is true. This is called the solution set.

First we subtract I from each side of the inequality (using Rule I with
c : -l):

x

Then we subtract 7x from both sides (Rule 1 with c - -7x):

-6x

Now we divide both sides by -6 (Rule 4 with c - - *)'
\42J 2 -l

All these steps can
than -3 In other

be reversed, so the
words, the solution

solution set consists of all numbers greater
of the inequality is the interval (- 3, *).

#
EXAMPLE 2 I Solve the inequality x2 5x + 6

SCILUTl#tr First we factor the left side:

(x-z)("r-3) <0

We know that the corresponding equation (x - 2)(x - 3) : 0 has the solutions 2
and 3. The numbers 2 and 3 divide the real line into three intervals:

(-*,2)

A visual method for solving Example 2

is to use a graphing device to graph the
parabola y : 12 - 5x + 6 (as in Fig-

ure 3) and observe that the curve lies

on or below the x-axis when 2 < x < 3.

(2,3) (3, *)

On each of these intervals we determine the sisns of the factors. For instance.

Then we record these signs in a chart:

Intc r\ra I \'-2 r-3
,{<2
2{-r
.v)3

+
-r +

+

+
FIGURE 3
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Another method for obtaining the information in the chart is to use /esl
values. For instance, if we use the test value .r : 1 for the interval (-*,2),
then substitution in x' - 5x * 6 gives

r'z-5(l)+6:2

The polynomialx2 - 5x * 6 does not change sign inside any of the three
intervals, so we conclude that it is positive on (-0o,2;.

Then we read from the chart that (x - 2)(x - 3) is negative when
2 I x 1 3. Thus, the solutionofthe inequality (x - 2)(x - 3) < 0 is

{'lz < r < 3}:12,31r+
Notice that we have included the endpoints 2 and 3 because we seek values of .ro 2 

' ,uch that the product is either negative or zero. The solution is illustrated in
FIGURE 4 Figure 4.

EXAMPLE 3 I Solve x3 + 3x'> 4x.

SOLUTIOII First we take all nonzero terms to one side of the inequality sign and

factor the resulting expression:

xt + 3xt - 4x)0 or x(.r - l)(r + 4) > 0

As in Example 2, we solve the corresponding equation x(x - 1)(x + 4) : 0

and use the solutions x : -4,x : 0, andx : I to divide the real line into four
intervals (-*, -4), (-4,0), (0, l), and (1, m). On each interval the product keeps

a constant sisn as shown in the chart:

I tt t r'r'\'it I \ \l \-++ \.( \ l)( r I -l)

\'- -l

-l ":- .f ' ()

0'- r

.\' ' I

I

I

I T

r

Then we read from the chart that the solution set is

ffi

l-+
I

I ncuRE s

0l {*l-+(x
The solution is illustrated in Figure 5.

N Aosoru.e Yarue

The absolute value of a number c, denoted by lo l, is the distance from c to 0 on

the real number line. Distances are always positive or 0, so we have

lol > O for every number a

For example

l:l:: l-31:3 lol:o
lA-rl--Ji-r lz-"-l:o-3

ffi
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Remember that if a is negative,

then -a is positive.

.a

-aJ0a
i"--l"rl--.-1

FIGURE 6

In general, w€ have

B lol: a rf a

l"l: -a if a

EXAMPLE 4 r Express I f" 2l without using the absolute value symbol.

5#LUTf;Oru

Recall that the symbol / means "the positive square root of." Thus, ,,F : t
@ means s': r and s ) 0. Therefore, the equation.,EF: n is not always true. It

is true only when a 2 0.lf a < 0, then -a ) 0, so we have Jo' : -a. In view
of (2), we then have the equation

,E : lol

which is true for all values of a.
Hints for the proofs of the following properties are given in the exercises.

Properties of Absolute Yalues Suppose d and b are any real numbers and
n is an integer. Then

r. lobl: l"llul
z. lg| -l"l ,-rut H @+0)

3. lo"l: lol"

For solving equations or inequalities involving absolute values, it is often very
helpful to use the following statements.

For instance, the inequality l r l < a says that the distance from x to the origin
is less than c, and you can see from Figure 6 that this is true if and only if -r lies
between -a and a.

,t

l:* zt: {1,"
ft* z ifx=t
lz 3x ifx.?,

E

Suppose a

4. lr | - a if and only if
s. l"I
6. lrl

x : +a

-a
x
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l_la_bl__l

l- la - hl---4
ab

FIGURE 7

Length of a line segment - la - bl

l. ) ,1. n)_
l-l-

357

FIGURE 8

lf a and b are any real numbers, then the distance between a and b is the abso-

lute value of the difference, namely, lo - bl, which is also equal to la - al lsee

Figure 7).

EXAI{PLE 5 r Solve lzx - sl : z.

SOIUTIOi{ By Property 4 of absolute values, lZx - S | : f is equivalent to

2x-5:3 or 2x-5---3
So2x:8or2x:2.Thus, x:4orx: l. t
EXAI|PLE 6 r Solve lx - 5l < 2.

SOLUTIOI{ I ByProperty 5 of absolutevalues, lt - 5l< Z isequivalentto

-21x-5<2
Therefore, adding 5 to each side, we have

3<x<7
and the solution set is the open interval (3,7).

SOLUTIOI{ 2 Geometrically, the solution set consists of all numbers .r whose dis-

tance from 5 is less than2. From Figure 8 we see that this is the interval (3,7).

I
EXAMPLET I Solve llx + Zl> +.

S0LUTION By Properties 4 and 6,13x + 2l> 4 is equivalent to

3x*2>4 or 3x+2<-4
In the first case 3x >- 2, which gives x > 1. tn the second case 3.r < -6, which

sives r < -2. So the solution set is

t" l" : (-oo,-2f u [3,*)3) rc

Exercises''''''''

l-10 t Rewrite the expression without using the absolute

value symbol.

f. ls 23| 2. ln-tl
3. 116 - 51 4. lt-z t - l -3ll
5. lx 2l tfx<-2 6. lx-21 tfx)2
T.lx+ll 8. lZr-ll
g. l*'+ll lo. lt 2*'l

25.

ll-26 r Solve the inequality in terms of intervals and illus-
trate the solution set on the real number line.

ll. 2x + 7 > 3 12. 4 - 3x > 6

13.l-x<2 14.l+5x)5 3x

27. The relationship between the Celsius and Fahrenheit
temperature scales is given by C : i(f' - 32), where

C is the temperature in degrees Celsius and F is the

temperature in degrees Fahrenheit. What interval on

15. 0 < I - r < I

17. (x - lXx 2) >

f 9. x2 < 3

21. x3 x2 < 0

22. (r + lXx 2)(x

23.x3)x
I

-<4J

+3)>0
24..r"3+3x{4xz

26. -3< 
1=1
x

16. I < 3x * 4

0 t8. x2<2x* 8

20. xt >- 5



the Celsius scale corresponds to the temperature range
50<F<95?

28. Use the relationship between C and F given in E,xer-

cise 27 to find the interval on the Fahrerrheit scale

corresponding to the temperature range 2fl < C < 30.

29. As dry air moves upwarcl, it expands trnd in so doing
cools at a rate of about I nC for each 100-m rise, up to
about 12 km.
(a) If the ground temperature is 20 oC, write a formula

for the temperature at height /r.

(b) What range of temperature can be expected if an

airplane takes off and reaches tr maximum height
of- 5 krn?

30. If a ball is thrown upward from the top of a building
l2ti ft high with an initial velocity of 16 ft/s, then the
height ft above the ground / seconds later will be

h-12ti+l6t-L6tz
During what time interval will the ball be at least 32 ft
above the sround'J

_to

APPEilDIX B TOORDIt.|ATT GEOI.ITTRY

3l-32 r Solve the equation for x.

3f . lx + 3l: lZ* + 1l

32. l:r + 5l-1

A7

Coordinate Geometry

The points in a plane can be identified with ordered pairs of real numbers. We start
by drawing two perpendicular coordinate lines that intersect at the origin O on
each line. Usually one line is horizontal with positive direction to the right and is
called the -r-axis; the other line is vertical with positive direction upward and is
called the y-axis.

Any point P in the plane can be located by a unique ordered pair of numbers
as follows. Draw lines through P perpendicular to the x- and y-axes. These lines
intersect the axes in points with coordinates a and b as shown in Figure l. Then
the point P is assigned the ordered pair (a,b). The first number a is called the
x-coordinate of P; the second number b is called they-coordinate of P. We say
that P is the point with coordinates (a, b), and we denote the point by the symbol
P(a,b). Several points are labeled with their coordinates in Figure 2.

)'

4 P1u. hy
b "--

3

IIz

33-40 r Solve the inequality.

33. irl
35. lx 4l

37. 1r + sl

3e. lz" 3|

41. Solve the inequality u(hx c) 7 br: for r assuming that
a, b,, and c are positive constants.

42. Solve the inequality rrx + b < c for r assulning that r.r.

b, ancl c are negative constants.

43. Prove that labl: lo I lf l. fHint: [Jse Equation 3.]

44. Show that if 0 1 a < b" then a? {- b2.

-3 -2

III

-t
-7

a

-J

-4

FIGURE I

-1 0

FIGURE 2
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FIGURE 3

A

l', \'
.r - -t l

!

&(xr, )')

(b) The set of all points with )'-coordinate
the x-axis [see Figure 3(b)].

(c) Recall from Appendix A that

I is a horizontal line one unit above

By reversing the preceding process we can start with an ordered pair (a,b) and

arrive at the corresponding point P. Often we identify the point P with the ordered
pair (a,b) and refer to "the point (a,b)." [Although the notation used for an open

interval (a,b) is the same as the notation used for a point (a,b),you will be able to
tell from the context which meaning is intended.l

This coordinate system is called the rectangular coordinate system, or the

Cartesian coordinate system in honor of the French mathematician Ren6

Descartes (1596-1650), even though another Frenchman, Pierre Fermat (1601-

1665), invented the principles of analytic geometry at about the same time as

Descartes. The plane supplied with this coordinate system is called the coordi-
nate plane, or the Cartesian plane, and is denoted by R'?.

The .r- and y-axes are called the coordinate axes and divide the Cartesian
plane into four quadrants, which are labeled I, II, III, and IV in Figure 1. Notice
that the first quadrant consists of those points whose x- and y-coordinates are

both positive.

EXAMPLE I r Describe and sketch the regions given by the following sets.

(a) {(', y) l x

5*t-uTrCIt{

(a) The points whose r-coordinates are 0 or positive lie on the y-axis or to the

right of it, as indicated by the shaded region in Figure 3(a).

(a).r=0 (b) l': I (c) l"r'l< I

lvl

The given region consists of those points in the plane whose y-coordinates lie
between -l and 1. Thus, the region consists of all points that lie between (but

not on) the horizontal lines y : I and y : -1. [These lines are shown as

broken lines in Figure 3(c) to indicate that the points on these lines don't lie in
the set.l G

Recall from Appendix A that the distance between points a and b on a number
line is lo - bl: lb - cl. Thus, the distance between points P1(.x1,y1) and

Pr(xz,yt) on a horizontal line is I x2 - x1 l, and the distance between Pz(xz,y) and
Pr(xz,y,) on a vertical line is llz - lrl (see Figure 4).

P,(xr,)t)

FIGURE 4



FIGURE 5

APPEI{DIX B COORDII{ATT GTOI.IIIRY I A9

To find the distance lP' & | b"t*"en any two points PrGt,yt) and Pz(xz,yz), we
note that triangle n P2h in Figure 4 is a right triangle, and so by the Pythagorean
Theorem we have

lP,Prl - :
:

Distance Formula The distance between the points P,(xr , )r) and Pr(xr,yz) is

lP'P'l:

For instance, the distance between the points (I, -Z) and (5,3) is

: !t4z + sp :6

W circtes

An equation of a curve is an equation satisfied by the coordinates of the points
on the curve and by no other points. Let's use the distance formula to find the
equation of a circle with radius r and center (h,k).By definition, the circle is the
set of all points P(r, y) whose distance from the center C(h, k) is r (see Figure 5).
Thus, P is on the circle if and only it lfC | : r. From the distance formula,
we have

J6(-h)'z+(y-kY:r
or equivalently, squaring both sides, we get

(* - h)'+ (y - k)' : r'

This is the desired equation.

Equation of a Circle An equation of the circle with center (h, k) and
radius r is

(x h)'+(y k)':12

In particular, if the center is the origin (0,0), the equation is

xz + Y2:12

For instance, an equation of the circle with radius 3 and center (2, -5) is

EXAMPLE 2 I Sketch the graph of the
first showing that it represents a circle

(y + 5)t - 9

equation x2 + y', + 2x 6y + 7 : 0 by
and then finding its center and radius.

S*$-ffi?$ffiffi We first group the .r-terms and y-terms as follows:
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FIGURE 6

x2+y'+zx-6y+J:o

FIGURE 7

Then we complete the
constants (the squares

equation:

(*' +

or

Comparing this equation
l't - -1, k- 3, and r -
center ( - 1, 3) and radius

square within each grouping, adding the appropriate
of half the coefficients of x and y) to both sides of the

2x + 1) + (-yt 6y + 9) - -7 + 1 + 9

(x + l)t + (y 3)t : 3

with the standard equation of a circle, we see that
t/T , so the given equation represents a circle with

'/T.It is sketched in Figure 6. ffi

I Lines

,ffi: 5

' m:2

To find the equation of a line L we use its slope, which is a measure of the steep-
ness of the line.

Definition The slope of a nonvertical line that passes through the points
Pt(xr,1lr) and Pr(xr,1,z) is

Ay lz )rrll: :
Ax x2 -r1

The slope of a vertical line is not defined.

Thus, the slope of a line is the ratio of the change in y, Ay, to the change in .r,
Ax (see Figure 7). The slope is therefore the rate of change of y with respect tor.
The fact that the line is straight means that the rate of change is constant.

Figure 8 shows several lines labeled with their slopes. Lines with positive slope
slant upward to the right, whereas lines with negative slope slant downward to the
right. Notice that the steepest lines are the ones for which the absolute value of
the slope is largest, and a horizontal line has slope 0.

Now let's find an equation of the line that passes through a given point P1 (x 
1 , y 1 )

and has slope lz. A point P(x,y) with x I xr lies on this line if and only if the
slope of the line through Pr and P is equal to z; that is,

l-lr
x-xt:m

This equation can be rewritten in the form

!-lt:m(x-xt)
and we observe that this equation is also satisfied when .r : .x1 and I : lr.There-
fore, it is an equation of the required line.

Point-Slope Form

through the point
of the Equation of a Line An equation of the line passing

Pt(xr,)r) and having slope m s

y )/r -: m(x xr)

m-l
m:

m--l
m--2

m--5

m-- 0

m:-

FIGURE 8

Pr(x r, Yr)
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EXAMPLE 3 I Find an equation of the line through the points (-1,2)
and (3, -4).
S*t#Tl0f* The slope of the line is

-4 2

3 - (-D 2

- 2, we obtainUsing the point-slope form with x 
1

v

which can be written as

- -l and y1

2: -|Q + 1)

3x+2y-1

Suppose a nonvertical line has slope la and y-intercept b (see Figure 9). This
means it intersects the y-axis at the point (0, b), so the point-slope form of the
equation of the line, with xr : 0 and lt : $, becomes

y-b:m(x-0)

This simplifies as follows.

Slope-lntercept Form of the Equation of a Line An equation of the line
with slope m and y-intercept b is

y--mx+b

In particular, if a line is horizontal, its slope is m : 0, so its equation is y : b,
where b is the y-intercept (see Figure 10). A vertical line does not have a slope, but
we can write its equation as r : a, where a is the x-intercept, because the x-coor-
dinate of every point on the line is c.

When we say that y is a linear function of x, we mean that the graph of the
function is a line, so we can use the slope-intercept form to write a formula for the
function as

y:f(x):mx*b

EXAMPLE 4 T
(a) As dry air moves upward, it expands and cools. If the ground temperature
is 20'C and the temperature at a height of 1 km is 10'C, express the tempera-
ture 7 (in 'C) as a function of the height /r (in kilometers), assuming the function
is linear.
(b) Draw the graph of the function in part (a). What does the slope represent?
(c) What is the temperature at a height of 2.5 km?

50ruTr0H
(a) Because we are assuming that T is a linear function of h, we can write

T:mhlb

t

FIGURE 9

FIGURE IO

y-mx+h
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FIGURE I I

)

2.5

_p\ \

FIGURE I2

We are given that T : 20 when

20

In other words, the y-intercept is b - 20.
We are also given that T - l0 when ft

10: m'

The slope of the line is therefore m - 10

function is

_ l, so

1+20

20 -- - l0 and the required linear

h:0,
: m'

SO

0 + b- b

J--.?+x J--
?- --

T: -tOh + 20

(b) The graph is sketched in Figure 11. The slope is m: -lo'C/km, and this
represents the rate of change of temperature with respect to height.

(c) At a height of h: 2.5 km, the temperature is

T : -10(2.5) + 20: -5'C r
EXAMPLE 5 r Graph the inequality x * 2y > 5.

SOLUTION We are asked to sketch the graph of the set {(r,y) | x * 2y > 5}, and
we begin by solving the inequality for y:

x*2y>5

2y> -x * 5

y>-)*+]

Compare this inequality with the equation y: -L, + 1, which represents a

line with slope - j and y-intercept J. We see that the given graph consists of
points whose y-coordinates are larger than those on the line i, + tz.

Thus, the graph is the region that lies above the line, as illustrated in Figure 12.

I

s -- x
J\ \

H Paratlel and Perpendicular Lines

Slopes can be used to show that lines are parallel or perpendicular. The following
facts are proved, for instance, in Precalculus: Mathematics for Calculus, Third
Edition by Stewart, Redlin, and Watson (Pacific Grove, CA: Brooks/Cole Publish-
ing Co., 1998).

Parallel and Perpendicular Lines

l. Two nonvertical lines are parallel if and only if they have the same

slope.

2. Two lines with slopes rn 1 and tft2 ara perpendicular if and only if
tnrtllz - - 1, that is, their slopes are negative reciprocals:

1

r/12 :
tll 

1

T--t0h+20
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EXAMPLE 6 r Find an equation of the line through the point (5,2) that is

parallel to the line 4x + 6y + 5 : 0.

SOLUTI0ff The given line can be written in the form

y: -I* ;

At3

which is in slope-intercept form with ne - - i.
slope, So the required line has slope - J and its

v 2: -3(*

We can write this equation as 2x + 3y - 16.

EXAMPLE 7 I Show that the lines 2x + 3v : I
perpendicular.

SOLUTIS${ The equations can be written as

)-: -!* ++ and

from which we see that the slopes are

tn1 - -1 and

Since ftrrlltz - - 1, the lines are perpendicular.

il Conic Sections

Parallel lines have the same

equation in point-slope form

5)

and6x 4v 1-0are

is

il

3l
Y : ax ;

JL-

a

J
lll't : ;

*,

FIGURE I3
Conics

Here we review the geometric definitions of parabolas, ellipses, and hyperbolas
and their standard equations. They are called conic sections, or conics, because

they result from intersecting a cone with a plane as shown in Figure 13.

hype

tr Parabolas

parabolaellipse

A parabola is the set

(called the focus) and

of points in a plane that
a fixed line (called the

are equidistant from a fixed point F
directrix). This definition is illus-



AI4

vertex

FIGURE I4

FIGURE I6
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FIGURE I5

, :2x2

FIGURE I7

t

y-x2
lty: 1x-

trated by Figure 14. Notice that the point halfway between the focus and the direc-
trix lies on the parabola; it is called the vertex. The line through the focus perpen-
dicular to the directrix is called the axis of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into
the air at an angle to the ground is a parabola. Since then, parabolic shapes have

been used in designing automobile headlights, reflecting telescopes, and suspen-
sion bridges. (See Problem 14 on page 265 for the reflection property of parabolas
that makes them so useful.)

We obtain a particularly simple equation for a parabola if we place its vertex
at the origin O and its directrix parallel to the .r-axis as in Figure 15. If the focus
is the point (0, p), then the directrix has the equation y : -p and the parabola has

the equation

xz - 4py

(See Exercise 53.)

If we write a - U @d, then the equation of the parabola becomes

y: ax2

Figure 16 shows the graphs of several parabolas with equations of the form
y : axz for various values of the number a. We see that the parabola ! : ax2

opens upward if a > 0 and downward if a < 0 (as in Figure l7). The graph is
symmetric with respect to the y-axis because its equation is unchanged when x is
replaced by -x. This corresponds to the fact that the function f(x) : ax' is an

even function.
If we interchange.x and y in the equation ! : ax2, the result is.r : ay2, which

also represents a parabola. (Interchanging x and y amounts to reflecting about the

directrix

F(0, p)

(a) -y 
: ex2, a>0 (b) y:ext, a<0



FIGURE I8

diagonal line y : x.) The parabola x : al" opens to the right if a > 0 and to the

left if a ( 0 (see Figure l8). This time the parabola is symmetric with respect to

the r-axis because the equation is unchanged when y is replaced by -y.

(a) r : a!7, a > 0 (b) x : a!2, (t <0

EXAMPLE 8 I Sketch the region bounded by the parabola x
linex+v+1:0.

1
l- v2 and the

SOLUTION First we find the points of intersection by solving the two equations.

Substituting x : -! - I into the equation x : 1 - y2, we get

-y-l:1-y2,whichgives

0:y'-y-2:(Y-2)(Y+l)

so y : 2 or -1. Thus, the points of intersection are (-3,2) and (0, -l), and

we draw the line x * y * 1 : 0 passing through these points.
To sketch the parabola x : | - y2 we start with the parabola x : -y'

in Figure l8(b) and shift one unit to the right. We also make sure it passes

through the points (-3,2) and (0, -l). The region bounded by x : I - y2 and

x * y I I : 0 means the finite region whose boundaries are these curves. It
is sketched in Figure 19. I

An ellipse is the set of points in a plane the sum of whose distances from two fixed
points Fy and F2 is a constant (see Figure 20). These two fixed points are called the

foci (plural of focus). One of Kepler's laws is that the orbits of the planets in the

solar system are ellipses with the Sun at one focus.

P(x, y)t
F,(-c,0) 0 Fr(c,0) J

APPENDIX B COORDII{ATT GTOI.ITTRY At5

FIGURE 2O FIGURE 2I

In order to obtain the simplest equation for an ellipse, we place the foci on the

.r-axis at the points (*c,0) and (c,0), as in Figure 21, so that the origin is halfway

FIGURE I9

Ellipses
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(0, b)

a
(a, o)b

(-c, o) o c (c, o) J

(0, -h\
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FIGURE 23

between the foci. If we
the foci be 2a. then we

tr

let the sum of the distances
can write an equation of the

from a point on the ellipse to
ellipse as

FIGURE 22

x' vt
, f it:la- D-

x' 't,t

a" b'

where c2 : a' - b'. lsee Exercise 55 and Figure 22.) Notice that the .r-intercepts
are +a, the y-intercepts are +b,the foci are (*c,0), and the ellipse is symmetric
with respect to both axes. If the foci of an ellipse are located on the y-axis at
(0,*c), then we can find its equation by interchanging.r and y in (l).

EXAMPLE 9 r Sketch the graph of 9x2 + l6y2 : 144 and locate the foci.

SOLUTfON Divide both sides of the equationby 144:

!-*L:r
169

The equation is now in the standard form for an ellipse, so we have a2 : 16,
b2 : 9, a : 4, and b :3. The x-intercepts are +4 and the y-intercepts are t3.
Also, c2 : a, - b2 : j, so c : fi and the foci are tJ7,O). fne graph is
sketched in Figure 23. #

Like parabolas, ellipses have an interesting reflection property that has practical
consequences. If a source of light or sound is placed at one focus of a surface with
elliptical cross-sections, then all the light or sound is reflected off the surface to
the other focus (see Exercise 6l). This principle is used in lithotripsy, a treatment
for kidney stones. A reflector with elliptical cross-section is placed in such a way
that the kidney stone is positioned at one focus. High-intensity sound waves gener-
ated at the other focus are reflected to the stone and destroy it without damaging
surrounding tissue. The patient is spared the trauma of surgery and recovers within
a few days.

t-Hllperbolas
A hyperbola is the set of all points in a plane the difference of whose distances
from two fixed points Fr and F2 (he foci) is a consrant. This definition is illus-
trated in Figure 24.

Notice that the definition of a hyperbola is similar to that of an ellipse; the only
change is that the sum of distances has become a difference of distances. It is left
as Exercise 57 to show that when the foci are on the.r-axis at (tc,0) and the dif-
ference of distances is I ff', | - | 

pf rl : *2o, then the equation of the hyperbola is

Jr .v2- 
r

a2b2r
E

FIGURE 24
P is on the hyperbola when

IPF'I- lPFrl: *2a
where c2 - a2 + b2. Notice that the x-intercepts are again ta,
in Equation 2 we get)z - -b', which is impossible, so there is
hyperbola is symmetric with respect to both axes.

butif weputx-0
no )'-intercept. The

(0,3)
9x2 + t6y - r44

(-4, 0)

/ (4,0)

(-l/2, o) o 
1rlz, o) '{

(0, -3)

P(x, y)

F,(-c,0) Fr(c, 0)
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To analyze the hyperbola further, we look at Equation 2 and obtain

LJ.y-0 lo. lvl-1

Aa7

FIGURE

r'_ l
q' b2

25

x- v-2:r*F-_,
This shows that x2 2 a2, so lrl: JV > a. Therefore, we have x >- a or
x 4 -a. This means that the hyperbola consists of two parts, called its branches.

When we draw a hyperbola it is useful to first draw its asymptotes, which are
the lines y -- (b/a)x and y : -(b/a)x shown in Figure 25. Both branches of the
hyperbola approach the asymptotes; that is, they come arbitrarily close to the
asymptotes. If the foci of a hyperbola are on the y-axis, we find its equation by
reversing the roles of x and y.

EXAMPLE l0 r pin6 the foci and asymptotes of the hyperbola 9x' - 76y' -- 144
and sketch its graph.

SOIUT|ON If we divide both sides of the equation by 144, it becomes

t_ _ t:,
169

which is of the form given in (2) with a: 4 and b: 3. Since
c2 : 16 + 9 :25,the foci are (*5,0).The asymptotes are the lines y:lx
and y : - J,r. The graph is shown in Figure 26.

7-10 r Sketch the graph of the equation.

7. J - 3 8. y * -2

-l

FIGURE 26

9x2-l6y'-144

Exercises

*

l-2 r Find the distance between the given points.
'1.(1,1), (4,5) 2. (1,-3), (5,7)

3-4 r Find the slope of the line through P and Q.

3. P(- 3, 3) , Q(- l, -6) 4. P(-1,-4), Q(6,0)

5. Show that the points ( -2,9), (4,6), (1,0), and (-5,3)
are the vertices of a square.

6. (a) Show that the points A(-1,3), B(3, 11), and C(5, 15)

are collinear (lie on the same line) by showing that

larl + lrcl: lecl.
(b) Use slopes to show that A, B, and C are collinear.

I l-24 r Find an equation of the line that satisfies the given
conditions.

I l. Through (2, -3), slope 6

17. Through (- 3, -5), slope -l
f 3. Through (2,.1) and (1,6)

14. Through (- 1, -2) and (4, 3)

h
!,-Ax

b

7*,

(5,0) r
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15. Slope 3, .y-intercept -2
16. Slope 3, y-intercept 4

17. x-intercept 1, y-intercept -3
18. x-intercept -8, y-intercept 6

19. Through (4,5), parallel to the x-axis

20. Through (4, 5), parallel to the y-axis

21. Through (1, -6), parallel to the line x *
22. )'-intercept 6, parallel to the line 2x * 3r

23. Through (- 1, - 2), perpendicular to the

line2x+5y+8:0
24. Through (+ , - 3), perpendicular to the

line 4x 8r,' : I

43. (a) Show that the midpoint of the line segment from
Pt(xr , )'r) to Pz(xr, )'l) is

(*, + x2 )r +yr\
\2'2)

(b) Find the midpoint of the line segment joining the
points (1, 3) and (7, 15).

Find an equation of the perpendicular bisector of the
line segment joining the points A(1,4) and B(7, -2).
(a) Show that if the x- and y-intercepts of a line are

nonzero numbers a and b, then the equation of the
line can be put in the form

JV

;*;:r
This equation is called the two-intercept form of
an equation of a line.

(b) Use part (a) to find an equation of the line whose
x-intercept is 6 and whose y-intercept is -8.

The manager of a weekend flea market knows from past
experience that if he charges x dollars for a rental space
at the flea market, then the number y of spaces he can
rent is given by the equation .)' - 200 4x.
(a) Sketch a graph of this linear function. (Remember

that the rental charge per space and the number of
spaces rented can't be negative quantities.)

(b) What do the slope, the y-intercept, and the
;-intercept of the graph represent?

The relationship between the Fahrenheit (F) and Celsius
(C) temperature scales is given by the linear function
F-?c+32.
(a) Sketch a graph of this function.
(b) What is the slope of the graph and what does it

represent? What is the F-intercept and what does

44.

45.

48.

it represent?

Jason and Debbie leave Detroit at
a constant speed west along I-90.
40 mi from Detroit , at 2:50 p"Ha.

(a) Express the distance traveled
elapsed.

(b) Draw the graph of the equation in part (a).
(c) What is the slope of this line? What does it

represent?

49. Biologists have noticed that the chirping rate of crickets
of a certain species is related to temperature, and the
relationship appears to be very nearly linear. A cricket
produces 120 chirps per minute at 70 oF and 168 chirps
per minute at 80 "F.
(a) Find a linear equation that models the temperature Z

as a function of the number of chirps per minute N.
(b) What is the slope of the graph? What does it

represent?

2v-6
+ 4- 0

25-28 r Find the slope and ..t'-intercept
its graph.

25. x +3-|n-0 76.2x-
27. 3x 4v : 12 28. 4x +

of the line and draw

3y + 6 - 0

5y:10

29-36 r Sketch the given region in the x1'-plane.

2s. {(",y) lx < 0} 30. {(r,y) lx > I and } < 3}

3t. {(',.r)ll'l
32. {(r,r')ll"l < 3 and lr'l
33. {(", l')lO = y < 4 and x € 2}

34. {(*,.r') ly > 2x 1}

35. {(*,y) lf + r < } < 1 - ?*}

36. {(",y) | -x { )' . *(* + 3)}

37-38 r Find an equation of a circle that satisfies the given

conditions.

37. Center (3, - l); radius 5

38. Center ( - I , 5); passes through (- 4, - 6)

46.

47.

2:00 p.na. and drive at
They pass Ann Arbor,

in terms of the time

39-40 r Show
the center and

39. -rt + J''

40.xt+yt+

that the equation represents a circle and find
rad ius.

4x + 10_y + 13 -: 0

6y + 2:0

41. Show that the lines 2x y - 4 and 6x - 2y - l0 are
not parallel and find their point of intersection.

42. Show that the lines 3x - 5y + 19 :0 and
10x + 6y 50 : 0 are perpendicular and find their
point of intersection.
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(c) If the crickets are chirping at 150 chirps per min-
ute, estimate the temperature.

The manager of a furniture factory finds that it costs

$2200 to manufacture 100 chairs in one day and $4800
to produce 300 chairs in one day.

(a) Express the cost as a function of the number of
chairs produced, assuming that it is linear. Then
sketch the graph.

(b) What is the slope of the graph and what does it
represent?

(c) What is the )'-intercept of the graph and what does

it represent?

At the surface of the ocean, the water pressure is the

same as the air pressure above the water, 15 lb/inz.

Below the surface, the water pressure increases by

1.34 lb/in2 for every l0 ft of descent.

(a) Express the water pressure as a function of the

depth below the oeean surface.
(b) At what depth is the pressure 100 lb/inZ?

52. The monthly cost of driving a car depends on the

number of miles driven. Lynn found that in May it cost

her $380 to drive 480 rni and in June it cost her $460 to

drive 800 mi.
(a) Express the monthly cost C as a function of the dis-

tance driven d, assuming that a linear relationship
gives a suitable model.

(b) Use part (a) to predict the cost of driving
I500 miles per month.

(c) Draw the graph of the linear function. What does

the slope represent?
(d) What does the y-intercept represent?

(e) Why does a linear function give a suitable rnodel in
th is situation?

53. Suppose that P(x, 1') is any point on the parabola with
focus (0, p) and directrix .)' - - p"(See Figure 15.) Use

the definition of a parabola to show that v7 -- 4p),.

APPENDIX C TRIGO}IOI'IEIRY At9

54. Find the focus and directrix of the parabola )' - -tr2.

Illustrate with a diagram.

55. Suppose an ellipse has foci (tc,0) and the sum of the
distances from any point P(x, y) on the ellipse to the
foci is 2a. Show that the coordinates of P satisfy
Equation l.

56. Find the foci of the ellipse x2 + 41'2 - 4 and sketch its
graph.

57 . Use the definition of a hyperbola to derive Equation 2

for a hyperbola with foci (*c,0).

58. (a) Find the foci and asymptotes of the hyperbola
x' )n2 

: I and sketch its graph.
(b) Sketch the graph of 'y'2 rt : l.

5-Q:d*ffi r Sketch the region bounded by the curves.

59.r+4y:8 and x-2yn 8

60.y:4-,v2 and.r-2t:2

61. Let P(xr,-)r) be a point on the ellipse *tlo'+ 1,2f 67 * 1

with foci F1 and F2 and let a and F be the angles

between the lines PFr , PF, and the ellipse as in the
figure. Prove that a - B. This explains how whispering
galleries and lithotripsy work. Sound coming from one

focus is reflected and passes through the other fbcus.

fHint: Use the formula in Problern 13 on page 265 to
show that tan a - tan B.l

51.

t

I

F1 0 v J

"T-;
u

+*:l
D-

Trigonometry

Here we review the

sure, trigonometric
functions.

M Angles

trigonometry that are used in
trigonometric identities, and

calculus: radian mea-
inverse trigonometric

aspects of
functions.

Angles can be measured in degrees or in radians

given by a complete revolution contains 360", which
(abbreviated as rad). The angle
is the same as 2rr rad. Therefore



A20 APPEI{DIX C TRIGOI{O11T TRY

tr

and

B lrad-

In calculus we use radians
The following table gives the
of some common angles.

rr rad - 180'

(+)'- 57.3"

to measure angles except when
correspondence between degree

1" : L ,ad :0.017 rad
180

(b) Express 5nl4 rad in degrees.

EXAMPLE I T
(a) Find the radian measure of 60"

$s[_tJTtfiN

(a) From Equation I or 2 we see that to convert from degrees to radians we
multiply by n/ 180. Therefore

(b) To convert from

TT

- rad
3

iply by l80lrr. Thus

- 225"

60" : 6of-a) :
\ 180/

radians to degrees we mult

5n _1: 5n (Lqq\
4rao 4 \;) ffi

otherwise indicated.
and radian measures

--T\o
'l \I%,

I
I

,i
/'

Figure I shows a sector of a circle with central angle 0 and radius r subtending
an arc with length c. Since the length of the arc is proportional to the size of
the angle, and since the entire circle has circumference2nr and central angle2tr,
we have

Solving this equation for

2n 2rrr

0 and for a, we obtain

a- r0

FIGURE I

E

r

2

Remember that Equations 3 are valid only
In particular, putting a - r in Equation

angle subtended at the center of a circle by
the circle (see Figure 2).

when 0 is measured in radians.
3, we see that an angle of I rad is the
an arc equal in length to the radius of

Dcg rccs 0 l0 -15' 60 r)0 ll0 r35 1 50' lttO 270 360

Ilutliuns 0
Ti

;
t,

,l

ll

;-
')

It

2

')-
- tt

)
")

3rr

4

5n

6
t,

3rr

2
2rr

a0--
r

FIGURE



EXAMPLE 2 I
(a) If the radius of a circle is 5 cffi, what angle is
(b) If a circle has radius 3 cm, what is the length
central angle of 3nl8 rad?

APPEilDIX C TRIGOilO}ITTRY A2 l

subtended by an arc of 6 cm?
of an arc subtended by a

5#["AJTfiffiN

(a) Using Equation 3 with a - 6 and

0-

(b)Withr-3cmand 0 - 3n/8 rad,

a- r0: 3

The standard position
gin of a coordinate system

we see that the angle is

rad

r - 5,

9.-r''
5 - L./-

the arc

(+)

length

9n:
8

IS

of an angle occurs when
and its initial side on the

cm

we place its vertex at the ori-
positive x-axis as in Figure 3.

t

,

terminal

side

FIGURE 3

d>0

_ 0 initial side
/

3rr ,r 5n
uTi -44

3r r A llrr
T zTl:-44

FIGURE 4
0<o

A positive angle is obtained by rotating the initial side counterclockwise until
it coincides with the terminal side. Likewise, negative angles are obtained by
clockwise rotation as in Figure 4. Figure 5 shows several examples of angles in
standard position. Notice that different angles can have the same terminal side. For
instance, the angles 3n/4, -5rr/4, and l1n/4 have the same initial and terminal
sides because

and 2n rad represents a complete revolution.

FIGURE 5

Angles in standard position

initial

terminal
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hypotenuse
opposlte

For an acute
of sides of a

g

This definition does not
angle 0 in standard position
and we let r be the distance

,77
sln -4

7T
cos 

-4

angle 0 the six trigonometric
right triangle as follows (see

functions are defined as ratios of lengths
Figure 6).

adjacent

FIGURE 6

sino- IPP csco- hYP

hyp opp

adi hvncos0- sec0: "
hyp adj

tano_ oPP coto- adj

adj opp

vrsin0- J csc0:-ry

'xr
cos 0 - - sec0- -rx

vxtan?- r cot0:-x,y

Since division by 0 is not defined, tan 0 and sec d are undefined when x : 0 and
csc 0 and cot d are undefined when y : 0. Notice that the definitions in (4) and (5)
are consistent when 0 is an acute angle.

If 0 is a number, the convention is that sin 0 means the sine of the angle whose
radian measure is 0. For example, the expression sin3 implies that we are dealing
with an angle of 3 rad. When finding a calculator approximation to this number we
must remember to set our calculator in radian mode, and then we obtain

sin3 - O.l4ll2

If we want to know the sine of the angle 3" we would write sin 3o and, with our
calculator in degree mode, we find that

sin3" : 0.05234

The exact trigonometric ratios for certain angles can be read from the triangles
in Figure 8. For instance,

.rrl
Stn U-t

n6
cos--62

rrl
r,arr 

- 
:LErr 

6 6

E

apply to obtuse or negative angles, so for a general
we let P(x,y) be any point on the terminal side of g

IOP I as in Figure 7. Then we define

sln

cos

tan

FIGURE 7

jn,

"lq
J2, "' ooV,

- ""'o i
.r't 7l i

,.A4-- rJ

I

FIGURE 8

t;7T VJ
-:32
7rl
-:-32

I

J2
I

\/z

+:67T
1
I

4

P(x, yl

tan



FIGURE 9

The signs of the trigonometric
can be remembered by means of
Figure 9.
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functions for angles in each of the four quadrants

the rule "All Students Take Calculus" shown in

Znl2nCOS--:-:-- tan ^:-\/3323

EXAMPLE 3 r Find the exact trigonometric ratios for 0 : 2n13.

SOLUTIOI{ From Figure 10 we see that a point on the terminal side for 0 : 2r/3
is P(-l,r/3 ). Therefore, taking

x:-r v:$ r:2
in the definitions of the trigonometric ratios, we have

.2nsln--
3

2ncsc-:
3

2n
sec 7: -2

2ncot-:
3

rE
FIGURE IO

2

FIGURE

r - '{i,t

2

2

J3 re6

-,82-,8
5

re

2

J2r

5

2

5

J2rtl

The table gives some values of sin 0 and cos 0 found by the method of Example 3.

EXAMPLE 4 r If cos0: tand0 < g < rf2,findthe otherfivetrigonometric
functions of 0.

SOLUTIOII Since cos0 : 3, *e can label the hypotenuse as having length 5 and

the adjacent side as having length 2 in Figure 11. If the opposite side has length
.r, then the Pythagorean Theorem gives x2 + 4 :25 and so.r' : 21, and

x : t/21. We can now use the diagram to write the other five trigonometric
functions:

sin 0 tan0

sin0>0 all ratios > 0

0 0
It

6-

ll

4

lt

;
J

lt

;
2n

3

3n
1

5n

? ll

3n

2
2rr

sin 0 0
I

;
I
/-/1\ ^(:

t,'T
')
lL

,T1J
2

I
,-/a

\/L

It 0 -l 0

cos 0 l

E
\iJ

2

I
,-l.)

\/L

It 0
I-t I_/-

/.,v.:

t;
1'J-2 -l 0

csc 0 sec 0 cot 0



APPEI{DIX C TRIGOiIOI.IT TRY424

FIGURE 12

EXAMPLE 5 r Use a calculator to approximate the value of x in Figure 12.

SSL[tTt#f'l From the diagram we see that

Therefore

tan 4oo - 
16

r6
x - 

tun +op 
: 19 '07

Trigonometric ldentities

A trigonometric identity is a relationship
most elementary are the following, which
nitions of the trigonometric functions.

among the trigonometric functions. The
are immediate consequences of the defi-

I
csc 0 : --:-

sin 0

I
sec0 : 

-
cos 0

cot 0 _1
tan 0

sin 0
tan? - 

-
cos 0

cos 0cot0: .-
sin 0

For the next identity we refer back to Figure 7. The distance formula (or, equiva-
lently, the Pythagorean Theorem) tells us that x2 * y' : r2. Therefore

sin2o + cosro: 4 * 4: x' +.y2 : t:,r' r' r' r'

We have therefore proved one of the most useful of all trigonometric identities:

sinzg+cos20-l

If we now divide both sides of Equation 7 by cos"0 and use Equations 6, we get

tan20+l-sec20

Similarly, if we divide both sides of Equation 7 by sin20, we get

ET

n

E

g

The identities

IE
m

1 + cot20- csct0

sin(-0): -sing
cos( -0) : cos 0



Odd functions and even

are discussed in Section
functions
l.l.
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show that sin is an odd function and cos is an even function. They are easily proved
by drawing a diagram showing 0 and - 0 in standard position (see Exercise 19).

Since the angles 0 and 0 * 2trhave the same terminal side. we have

sin(0 + 2n) - sin g cos(O + Zzn) - cos g

These identities show that the sine and cosine functions are periodic with period 2zr.

The remaining trigonometric identities are all consequences of two basic identi-
ties called the addition formulas:

sin(x + y) - sinxcos),'+ cosxsiny

cos(x + y) - cos x cos 1' sin x sin y

The proofs of these addition formulas are outlined in Exercises 51,52, and 53.
By substituting -y for y in Equations l2a and l2b and using Equations lOa and

l0b, we obtain the following subtraction formulas:

sin(x )) -- sin x cosy cos x siny

cos(x y) - cos r cos y + sin x sin y

m

IE

m

IE

m

Then, by dividing the
corresponding formulas

Then, by using the identity sinzx +
forms of the double-angle formulas

formulas in Equations 12 or Equations
for tan(x t y):

13, we obtain the

tanx + tany

I - tanxtany

tan x tan y

1 + tanxtany

If we put y : r in the addition formulas (1 2), we get the double-angle formulas:

sin2x - 2sinxcosx

cos 2x : cos 2x sin2x

IEtr

m

IH

m

IE

cos2x : 1, we obtain the following alternate
for cos 2x:

cos 2x : 2 cos?x I

cos 2x : 1 Zsrn?xm
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coszx and sin2x, we get the following half-
integral calculus:

, | + cos2x
cos-x - )

sin2x -
I - cos2x

There are many other trigonometric identities, but those we have stated are the
ones used most often in calculus. If you forget any of them, remember that they
can all be deduced from Equations l2a and l2b.

EXAi'fPLE 6 r Find all values of x in the interval l},ztrl such that

sinx : sin2x

SOLUTIOI{ Using the double-angle formula (15a), we rewrite the given equation as

sinx:2sinxcosx or sin-r(l - 2cosr):0

Therefore, there are two possibilities:

sinx:0 or l-2cos.r:0

x: 0,q 2tr cosr : i

rr 5r
^ q'l

The given equation has five solutions: 0, n13,, T, 5n/3,, and 2rr.

I Graphs of the Trigonometric Functions

If we now solve these equations for
angle formulas, which are useful in

m

m

re

The graph of the function /(x) - sin x, shown in
ting points for 0
(from Equation 1 l) to complete the graph. Notice
occur at the integer multiples of zr, that is,

sinx-0 whenever x -

Figure 13(a), is obtained by plot-
periodic nature of the function

that the zeros of the sine function

nrr, n an integer

FIGURE I3

(a) /(x) : sin x (b) g(x) - cos r
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Because of the identitv

COS -X -

(which can be verified using Equation l2a), the graph of cosine is obtained by
shifting the graph of sine by an amount nf 2 to the left [see Figure l3(b)]. Note that
for both the sine and cosine functions the domain is (-co,o) and the range is the
closed interval [-1,l]. Thus, for all values of x, we have

-1

The graphs of the remaining four trigonometric functions are shown in
Figure 14 and their domains are indicated there. Notice that tangent and cotangent
have range (--,*), whereas cosecant and secant have range (--,-l] U [1,0o).
All four functions are periodic: tangent and cotangent have period zr, whereas

cosecant and secant have period 2zr.

(a) y - tanr (b) y - cot-r

(a) y-csc-r (b) y-sec,r

f Inverse Trigonometric Functions

When we try to find the inverse functions of the trigonometric functions, we have

a slight difficulty: Because the trigonometric functions are not one-to-one, they

don't have inverse functions. The difficulty is overcome by restricting the domains
of these functions so that thev become one-to-one.

'i'(' + +)

FIGURE I4

Inverse functions are reviewed in

Section 1.6.
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FIGURE I5

FIGURE I7

APPEilDIX C T RlC0l'101'lE IRY

You can see from Figure 15 that the sine function y: sin.r is not one-to-one
(use the Horizontal Line Test). But the function f(x) : sinx, -rrf2 < x < rf2
(see Figure 16), ls one-to-one. The inverse function of this restricted sine function

/exists and is denoted by sin-1or arcsin. It is called the inverse sine function or
the arcsine function.

FIGURE I6

Since the definition of an inverse function says

f-'(*): y €+ f(y)

we have

that

@ sin-rx
I1_7-

sin x

sin-rx:y €> siny-x and
Tr 7r

2'2

Thus, if -1 < x < l, sin-rx is the number between -nf 2 and nf2 whose sine is.r.

EXAMPLE 7 r Evaluate (a) sin-r(l) and (b) tan(arcsin {).

SOLUTION

(a) We have

in-'(l) :'L/ 6

because sin(nl6) - + and nl6 lies between -n/2 and n/2.

(b) Let 0 - arcsin t. ttren we can draw a right triangle with angle 0 as in
Figure 17 and deduce from the Pythagorean Theorem that the third side has
lengthF:2\/,.ThisenableSuStoreadfromthetrianglethat

tan(arcsin {) : 13n7 :
2\E

The cancellation equations for inverse functions [see (4) in Section 1.6] become,
in this case.

I

sin -'(sin x) : x

sin(sin -'x) - x

7T TT
for 22

for -1

y - slnr

) , fa
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The inverse sine function, sin-', has domain [- l, 1] and range l-rr/2,n/2f, and
its graph, shown in Figure 18, is obtained from that of the restricted sine function
(Figure 16) by reflection about the line y : x.

The tangent function can be made one-to-one by restricting it to the interval
(-r/2,n/2). Thus, the inverse tangent function is defined as the inverse of
the function/(.r) : tan x,-rr/2 ( "r ( nf2 (see Figure l9). It is denored by ran-r
or arctan.

tan-lx - ].r <= tany : ,T and
TT TT

2"2
FIGURE I8

FIGURE 2O

FIGURE 2I
) : tan-'J: arctan,r

FIGURE I9
y-tanx,-orax<T

EXAMPLE 8 I Simplify the expression cos(tan-'*).

SSLtiTl$f{ E Let y - tan-'x. Then tany - x and -n/2 ( y
find cosy but, since tany is known, it is easier to find secy

sec2y - I + tan?y - I + xz

Sec y - $ +-7 (sir.rcc scc \

first:

-t')\tt / - l

to

Thus cos(tan-'x)-cosy- I -sec y fi +-F

SOLUTlOll 2 Instead of using trigonometric identities as in Solution 1, it is per-
haps easier to use a diagram. If y : tan-rx, then tany : x, and we can read from
Figure 20 (which illustrates the case y > 0) that

cos(tan -t x) - cos y - JTTT

The inverse tangent function, tan-r : arctan, has domain R and range
(-r/2,rr/2).Its graph is shown in Figure 21. We know thar the lines x : +nf2 are
vertical asymptotes of the graph of tan. Since the graph of tan-r is obtained by
reflecting the graph of the restricted tangent function about the line y : x, it fol-
lows that the lines y : T/2 and y : -rrfT are horizontal asymptotes of the graph
of tan-r.

ffi
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Exercises " .. '

! *Z I Convert from degrees

Of the six inverse trigonometric functions, arcsin and arctan are the ones that

are most useful for the purposes ofcalculus. The inverse cosine function is investi-
gated in Exercise 46. The remaining inverse trigonometric functions don't arise

as frequently.

l5-18 r Find, correct
the side labeled x.

15.

to five decimal places, the length of

16.
l.

2.

(a) 2r0" (b)

(a) - 315" (b)

to radians.

g"

36"

to degrees.

3rr
-8

8rr

3

?, t r Convert from radians

3. (a) 4n (b)

7n
4. (a) - ^ (b)

z

18.
22 cm

5. Find the length of a circular arc subtended by an angle

of rr/12 rad if the radius of the circle is 36 cm.

6. If a circle has radius 10 cm, find the length of the arc

subtended by a central angle of 72".

7. A circle has radius 1.5 m. What angle is subtended at

the center of the circle by an arc 1 m long?

8. Find the radius of a circular sector with angle 3nl4 and

arc length 6 cm.

r Draw, in standard position, the angle whose measure

is given.

t7. 
A

tl
2,/1.
-_-[ls t)

lr ll
8cm

l9-20 I Prove the equation.

19. (a) Equation 10a (b) Equation 10b

20. (a) Equation l4a (b) Equation l4b

7a'-76 I Prove the identitv./\/\
2l. rin{ i + ") - cos.r 22. sin(zr - x) - sinx

\2 /
23. sin 0 cot 0 - cos 0

24. (sinr + cosx)2 - I + sin2x

2 tan?2s'tan2o: r-tanzo
26. cos30 - 4cos30 - 3cos0

27-78 r If sin x - { and secy : ;, where x and y lie
between 0 and n/2,, evaluate the expression.

27. sin(x + y) 28. cos 2y

3rr
8

9. (a) 31 5'

7n
10. (a) 

, rad

3n(b) - O 
rad

(b) - 3 rad

: '. 1 ? I Find the exact trigonometric ratios

whose radian measure is given.

3rr 4n
f f . 12. -_-43

1.3---f .{ I Find the remaining trigonometric ratios.

jrr
f3.sing:;, 0<0. 

Z

TT

14. tana :2, 0 < a 1 t

for the angle

29-32 r Find all values

satisfy the equation.

29.2cosx I : 0

3 l. sin 2x : cos -tr

of x in the interval [0, 2n] that

30. 2sin2x - I

32. ltanxl: I

---txt\



33-36 r Find all values
satisfy the inequality.

33. sin.r < 4

35. -1 ( tanx { 1

of x in the interval [0, 2n] that

2cosx + I > 0

sinx ) cosr

APPEHDIX C TRIGOI{ONETRY A3 l

standard position as in the figure. Express -r and y
in terms of 0 and then use the distance formula to
compute c.l

In order to find the distance lnn I across a small inlet,
a point C is located as in the figure and the following
measurements are recorded:

LC:103" I,qCl :820m lnCl -gtom
Use the Law of Cosines from E,xercise 49 to find the
required distance.

Use the figure to prove the subtraction formula

cos(a p) - cos a cosB + sin a sin B

lHint: Compute ct in two ways (using the Law of
Cosines from Exercise 49 and also using the distance
formula) and compare the two expressions.]

14.

36.

37-40 r Graph the function by starting with the graphs
in Figures 13 and 14 and applying the transformations of
Section 1.2 where appropriate.

| "-\37. )'-cosl -r +l 38. \;-tan2rr ---\r T) 
38.y:

l/\
3e' -v 

: 
T 

,.'(. +) 40. 'tr : I sin x 
I

50.

52.

54.

A

4l-44 r Find the exact

41. (a) sin*'(0.5)

42. (a) tan-rv€-

43. (a) sin(sin -'(0.7)) (b)

44. (a) sec(arct an 7) (b)

45. Prove that cos(sin -'t) -_ ni l -,t

46. The inverse cosine function, cos-t - arccos, is defined
as the inverse of the restricted cosine function

/(x) : cosr,0 { x { n'.

(a) What are the domain and range of the inverse
cosine function?

(b) Sketch the graph of arccos.

47. Find the domain and range of the function

g(x) - sin-'(3r + 1)

EE CA. (a) Graph the function f (*) - sin(sin-'x) and explain
the appearance of the graph.

(b) Graph the function g(x) - sin-'(sin.r). How do you
explain the appearance of this graph?

49. Prove the Law of Cosines: If a triangle has sides with
lengths e, b, and c, and 0 is the angle between the sides
with lengths a and b, then

c' : e' + b2 - Zab cosg

IHint: Introduce a coordinate system so that 0 is in

e of each expression.

arctan(- 1)

arcsin I

t\
arcsin( ti" + )\ 4/
sin(2 sin -' ( ? ))

valu

(b)

(b)

5t.

53.

Use the formula in Exercise 51 to prove the addition
formula for cosine (12b).

Use the addition formula for cosine and the identities

/\/\
.or( i - rl: sino ,in( + - e) - cosd\2 / \2 /

to prove the subtraction formula for the sine function.

(a) Show that the area of a triangle with sides of
lengths a and b and with included angle 0 is

A - iabsin?

(b) Find the area of triangle A BC, correct to five
decimal places, if

lafl:10cm lncl -3cm LABC:t}J'

A (cos c, sin a)

B(cos B, sin p 
)

P(x, ))
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Precise Definitions of Limits

The definitions of limits that have been given in this book are appropriate for intu-
itive understanding of the basic concepts of calculus. For the purposes of deeper

understanding and rigorous proofs, however, the precise definitions of this appen-
dix are necessary. In particular, the definition of a limit given here is used in
Appendix E to prove that the limit of a sum is the sum of the limits.

When we say that/(x) has the limit L as x approaches a, we mean, according to
the intuitive definition in Section 2.2,that we can make/(x) arbitrarily close to L
by taking x close enough to c (but not equal to a). A more precise definition is
based on the idea of specifying just how small we need to make the distance

l* - ol in order to make the distance I/(") - ll less than some given number.
The following example illustrates the idea.

It is traditional
letter a (delta)

to use the Greek
in this situation.

EXAMPLE I r Useagraph

l(r' 5x + 6)

AS

to find a number 6 such that

2| lr 1l

Sffi$-ruT$#$f A graph of/(x) - x3 5x + 6 is shown in Figure l; we are

interested in the region near the point (1 ,2). Notice that we can rewrite the
inequality

FIGURE I

0.8
t.7

FIGURE 2

So we need to determine the values of x for which the curve y : x' - 5x + 6

lies between the horizontal lines y : 1.8 and y : 2.2. Therefore, we graph the

curves ! : x3 - 5x * 6,y:1.8, and y:2.2 near the point (1,2) in Figure 2.

Then we use the cursor to estimate that the x-coordinate of the point of inter-
section of the line y:2.2 and the curve y :,{t - 5x + 6 is about 0.911.

Similarly, ! : x3 - 5x * 6 intersects the liney : 1.8 whenx : 1.724. So,
rounding to be safe, we can say that

1.8(x-1 -5x+6 whenever 0.92

The interval (0.92,1.12) is not symmetric about x: l. The distance from x : 1

to the left endpoint is 1 - 0.92 : 0.08 and the distance to the right endpoint is

0.12. We can choose 6 to be the smaller of these numbers. that is. 5: 0.08.
Then we can rewrite our inequalities in terms of distances as follows.

l("' 5x + 6) 2l whenever lx 1l

This just says that by keeping x within 0.08 of 1, we are able to keep/(x) within
0.2 of 2.

Although we chose 5 : 0.08, any smaller positive value of 5 would also have

worked. *
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Using the same graphical procedure as in Example l, but replacing the number
0.2 by smaller numbers, we find that

l(rt - 5x + 6) - 2l< 0.1 whenever l" - ll< O.O+o

l("' - 5x + 6) - 2l < 0.05 whenever lr - I | < O.Ozq

l(r' - 5.r + 6) - 2l < 0.01 whenever l" - ll < O.Oo+

In each case we have found a number 6 such that the values of the function
f(*) : x3 - 5x * 6 lie in successively smaller intervals centered at 2 if the dis-
tance from x to I is less than 6. It turns out that it is always possible to find such
a number 6, no matter how small the interval is. In other words, for any positive
number a, no matter how small, there exists a positive number 6 such that

l(r' 5x+6) zl

This indicates that

whenever lx 1l

lim(x3 5x+6)-z
x*l

and suggests a more precise way of defining the limit of a general function.

n Def inition Let 
"f 

be a function defined on some open interval that
contains the numbet a, except possibly at a itself. Then we say that the
limit of f (x) as .r approaches a is L, and we wrire

1'T fG) - L

if for every number s
that

l /(') Ll

Definition I is illustrated in Figures 3-5. If e > 0 is given, then we draw the
horizontal lines y : L + e and y : L - e and the graph of/(see Figure 3). If
lim,,o fQ) : L, then we can find a number 6 > 0 such that if we restrict x to lie
in the interval (a - 6,a + 6) and take x * a, then the curve 1, : /(x) lies
between the lines y : L - e and y : L * e (see Figure 4). You can see that if
such a 6 has been found, then anv smaller 6 will also work.

The condition 0 < | x - al ls lust
another way of saying that x * a.

\ .)'-L+t
-L t L. /

a ,\ 7
\ \':L-t\-/

0 /\/ a \ r/\

L* e

{ \ v:L*e

7

//
L- e :-'-y

0 .lr'\/ a\ r,/\

{(l) |lslnl
here '

a-6 cr+6

when;in here
(x* a)

FIGURE 4

a- 6

y : /(r)

FIGURE 3 FIGURE 5

a+ 5
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EXAMPLE 2 I

S0LUTISH Let
a-0andL

It's important to realize that the process illustrated in Figures 3 and 4 must

work for every positive number s no matter how small it is chosen. Figure 5 shows

that if a smaller e is chosen, then a smaller 6 may be required.

that is,

But, since

Use the e,6 definition to prove that }t* x' - 0.

e be a given positive number. According to Definition 1 with
_ 0, we need to find a number 6 such that

l*' ol

x2

the square root function is an increasing function, we know that

x2

So if we choose a : .,/i, thenx2 ( e (9 l"l < 6 (see Figure 6). This shows

that lim,-e x2 : O. I

In proving limit statements it may be helpful to think of the definition of limit
as a challenge. First it challenges you with a number e. Then you must be able

to produce a suitable 6. You have to be able to do this for every e ) 0, not just a
particular e.

Imagine a contest between two people, A and B, and imagine yourself to be B.

Person A stipulates that the fixed number L should be approximated by the values

of /(x) to within a degree of accuracy e (say, 0.01). B then responds by finding a

number 6 such that l/(r) - tl< e whenever 0 < l" - al< 6. Then A may

become more exacting and challenge B with a smaller value of e (say, 0.0001).

Again B has to respond by finding a corresponding 6. Usually, the smaller the

value of e, the smaller the corresponding value of 6 must be. If B always wins, no

matter how small A makes e, then lim,-o f@) : L.

EXAMPLE 3 r Prove that lim (4x - 5) : 7.

s0tuTroN
l. Preliminary analysis of the problem (guessing a value for 6). Let e be a

given positive number. We want to find a number 6 such that

l@t -5) - 7l < e whenever 0 < lt - 3l < 6

But | (4r - 5) - t | : l4x * r2l : lq| - 3) I : 4l r - 3 l. Therefore, we want

4lx- 3l<e whenever 0< lt- 3l <6

thatis, lr-t|.9 whenever 0<lt-31<6'4

This suggests that we should choose 6 -
2. Proof (showing that the 6 works).

0

t 14.
Given e

FIGURE 6

-(;)l(+* s) 7l:lq* nl:al* 3l



y

7*e
7

7 -e

FIGURE 7

!:4x-5
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Thus

l(+* s) 7l

Therefore, by the definition of a limit,

lim (4x 5) - 7

This example is illustrated by Figure 7.

Note that in the solution of Example 2 there were two stages-guessing and
proving. We made a preliminary analysis that enabled us to guess a value for 5.

But then in the second stage we had to go back and prove in a careful, logical fash-
ion that we had made a correct guess. This procedure is typical of much of mathe-
matics. Sometimes it is necessary to first make an intelligent guess about the
answer to a problem and then prove that the guess is correct.

It's not always easy to prove that limit statements are true using the e, 6 defini-
tion. For a more complicated function such as/(.r) : (6x2 - 8x * 9) /(2x'? - 1), a
proof would require a great deal of ingenuity. Fortunately, this is not necessary
because the Limit Laws stated in Section 2.3 can be proved using Definition l, and
then the limits of complicated functions can be found rigorously from the Limit
Laws without resorting to the definition directly.

M r,-,., ". ,r,r-rnrEy

\
3+

3/
-6

Infinite limits and

lowing is a precise
limits at infinity can also be defined in a precise way. The fol-
version of Definition 4 rn Section 2.5.

El Definition Let f be a function defined on some interval (o,*). Then

lg fG): L

means that for every s

I f(*) Ll

In words, this says that the values of /(x) can be made arbitrarily close to I
(within a distance e, where e is any positive number) by taking.r sufficiently large
(larger than N, where N depends on e). Graphically, it says that by choosing x large
enough (larger than some number N) we can make the graph of /lie between the
givenhorizontal lines y : L - e and y : L * e as inFigure 8. This mustbe true

/(x) is

in here

FIGURE 8

lim /(xl: L
.t'+co

.---!: f(x)

when x is
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no matter how small we choose e. If a smaller value of e is chosen, then a larger
value of N may be required.

In Example 5 in Section 2.5 we calculated that

3x2-x-2 3
lim-:-

+ 4x + I 5

device to relate this statement to Defini-In the next example we use a graphing
tion Z wtth L: + and e _ 0.1.

EXAMPLE 4 I Use a graph to

3xzx2

SOLUT|Oi{ We

5xz + 4x + 1

rewrite the given

In other words, for e _
Definition 2.

+1

0.1 we

I
0

x

In computing the limit we may assume x

1

0
x

Therefore, we want

lim
J --+?c

0.5
5x2 + 4x + 1

We need to determine the values of x for which the given curve lies between the

horizontal lines y : 0.5 and y : 0.7. So we graph the curve and these lines in
Figure 9. Then we use the cursor to estimate that the curve crosses the line
y : 0.5 when x = 6.7.To the right of this number the curve stays between the

lines y:0.5 and y:0.7. Rounding to be safe, we can say that

3xzxz
5x2 + 4x

0.6

find a number N such that

0.6

inequality as

3x2x2

can choose N : 7 (or any larger number) in

whenever x

v-0.7

FIGURE 9

ffi

1

EXAMPLE 5 r Use Definition 2 to prove that lim - : 0.

SOLUTION Let e be a given positive number. According to Definition 2, we want
to find N such that

0,

I

x

in which case

:1
x

1

x

1

x
I

whenever

whenever

x

x>N

3,r2- x-2

that is,



A'7

So if we choose N - l/t, then llx < a

limit. Figure l0 illustrates the proof by
corresponding values of N.

APPENDIX D PRECISE DETIilITIOilI OI LII,IITS

<= x > N. This proves the desired
showing some values of a and the

FIGURE I O r

Infinite limits can also be formulated precisely. See Exercise 16.

E s"qu.n.",

In Section 8.1 we used the notation

lYo": t

to mean that the terms of the sequence {a,l approach L as n becomes large. Notice
that the following precise definition of the limit of a sequence is very similar to
the definition of a limit of a function at infinity (Definition 2).

Definition 3 is illustrated by Figure 11, in which the terms a1, a2, e1,. . . are
plotted on a number line. No matter how small an interval (L - e,L + e) is cho-
sen, there exists an N such that all terms of the sequence from a,,ya1 onward must
lie in that interval.

E Definition

if for every s

A sequence

hm a,-
n---+x

lo,, L

{u"} has the lim it L and we write

L or crnlLasn--->oo

a corresponding integer 1/ such that

l<r whenever n

FIGURE I I L-e L L*e
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Another illustration of Definition 3 is given in Figure

graph of {a"} must lie between the horrzontal lines y - L
n > N. This picture must be valid no matter how small e

smaller s requires a larger N.

12. The points on the
+ a andy: L a if

is chosen, but usually a

y:L*t

!:L:e

FIGU RE I2 | 2 3 4

Comparison of Definitions
limn .--* ctn - L and lim, --* f (x)

lowing definition shows how to
n becomes infinite.

N

2 and 3 shows that the only
: L is that n is required to be
make precise the idea that an

difference between
an integer. The fol-

becomes infinite as

El Definition limn .-.n an: oo means that for every positive number M
there is an integer N such that

an

EXAMPLE 5 r Prove that lim 1/n : m.

sotUTfON Let M be any positive number. (Think of it as being very large.) Then

Ji>u <= nlM2

So if we take N : M2, then Definition 4 shows that lim,-* Ji : *. *

Exercises

| . Use the given graph of f (x) - llx to find a number 6

such that
2. Use the given graph of /(x) - xt to find a number 5

such that

lr' ll<+ whenever lx-tl<6I
0.5

x
< 0.2 whenever lt 2l < 6

I

0.7

0.5

0.3

Iv:;

__\N
0 l0 2 l0



n* 3. Use a graph

l''4"t * ' -
E= 4. Use a graph

lsin.' - +l

E= 5. For the limit

to find a number 6 such that

3l<0.5 whenever lx-21<5
to find a number 6 such that

0.1 whenever
TT

6
<5
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(a) How much power is needed to maintain the tem-
perature at 200 "C?

(b) If the temperature is allowed to vary from 200'C
by up to -FloC, what range of wattage is allowed for
the input power?

(c) In terms of the e,5 definition of lirn.5-a1 /(x) : L,
what is x? What is /(x)? What is n? What is t?
What value of e is given? What is the correspond-
ing value of 6?

Use a graph to find

6x2+5x 3

zx'?-l 3

For the lirnit

J4.r) + I

1itt1 *1 r :2

illustrate Definition 2 by finding values of ll that corre-
spond to s - 0.5 and r : 0.1.

(a) Determine how large we have to take ,{ so that

I

"t ' 
0-0001

(b) [Jse Definition 2 to prove that

I

lig ' -o
(a) For what values of x is it true that

I

# . 1,000,000

(b) The precise definition of lirn;-61 f G) - x, states
that for every positive number M (no matter how
large) there is a corresponding positive number 6

suchthat/(x) > M whenever0 ( lx al < 6. [Jse

this definition to prove that lim*--o ( If x21 - a).

(a) [Jse a graph to guess the value of the limit
{

tI-'l*;
(b) Use a graph of the sequence in part (a) to find the

srnallest values of l/ that correspond to e : 0.1 and
r - 0.001 in Definition 3.

Use Definition 3 to prove that lim r" - 0
when lrl

that if lim lo,l: 0, then

lirn(4*x 3x'):2
.r -'l

illustrate Definition I by finding values of 6 that
correspond to s - I and r : 0.1.

5. For the limit

1v?:,
illustrate Definition I by finding values of E that cor-
respond to e - 0.5 and e - 0.1.

7. Use Definition I to prove that lim,*' x't : 0.

8. (a) How would you formulate an e ,5 definition of the
one-sided lirnit limr-.rn /(x) : L?

(b) Use your {gfinition in part (a) to prove that
lim. -11. lx - 0.

9-10 I Prove each statement using the e,6 definition of
limit and illustrate with a diagram like Figure 7.

9. lim (3x - 2)- 4 10. lim (5 2x): *3
-r *2 x -4

I l. A machinist is required to manufacture a circular metal
disk with area 1000 cmt.
(a) What radius produces such a disk?
(b) If the machinist is allowed an error tolerance of

-t5 cmz in the area of the disk, how close to the
ideal radius in part (a) must the machinist control
the radius?

(c) In terms of the e,5 definition of lim.-,, ,f(x) : L,
what is x? What is /(r)? What is a? What is L?

What value of e is given? What is the correspond-
ing value of 5?

12. A crystal growth furnace is used in research to deter-
mine how best to manufacture crystals used in elec-
tronic components for the space shuttle. For proper
growth of the crystal, the temperature must be con-
trolled accurately by adjusting the input power. Suppose
the relationship is given by

ffut)- 0.1w2 + 2.155w + 20

where Z is the temperature in degrees Celsius and au is
the power input in watts.

n= r3.

n= 14.

n= t7.

a number l/ such that

< 0.2 whenever x ) /V

rg
'aa

t5.

16.

NJ
'L

t8.

19. Use Definition 3 to prove

l* e": o'

20. Use Definition 4 to prove that lim n' - nr"

lI 'x
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A Few Proofs

In this appendix we present proofs of some theorems that were stated in the main
body of the text. We start by proving the Triangle Inequality, which is an impor-
tant property of absolute value.

The Triangle Inequality If a and b

la + bl

are any real numbers, then

Observe that if the numbers a and b are both positive or both negative, then the
two sides in the Triangle Inequality are actually equal. But if a and b have opposite
signs, then the left side involves a subtraction and the right side does not. This
makes the Triangle Inequality seem reasonable, and we can prove it as follows.

Notice that

-l"l= o < lol

is always true because a equals either lalor -lal. ttre corresponding statement
for b is

lbl

Adding these inequalities, we get

-(lol+ lbl)

When combined, Properties 4 and 5 of
absolute value (see Appendix A) say that

l*l=o <+ -a{r<rl

The Sum Law was first stated in

Section 2.3.

If we now apply Properties 4 and 5 of absolute value from Appendix A (with x
replaced by a * b anda by lal + lbl), we obtain

la+bl <lal+lal

which is what we wanted to show. !

Next we use the Triangle Inequality to prove the Sum Law for limits.

Sum Law If lim" --" f (x) - L and lim" ..-, g(x) : M both exist, then

lim [/(*) + g(x)]: L + M

Proof Let r
find D

I in Appendix D, we must

0
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Using the Triangle Inequality, we can write

E lfG)+sG)-&+ M\ l:l(rt'l -L)+(sG)- u)l

=l.r(')-Ll+ls?)-ul
We will make I f(x) + SG) - @ + M)l less than e by making each of the terms
I f(r) - Ll and ls@) - M I less than ef2.

Since e/2 > 0 and lim,-o fQ) : L,there exists a number 6t > 0 such that

I r(') rl,2
Similarly,sincelim*.-.o9(x)-M,thereexistsanumber6'>

ls!) - rl. Z whenever O < lr - ol < 6,

Let 6 : min{61,62i. Notice that

if 0<lr-al<6 then 0<lr-ol<6' and 0<lr-ol<6,

and so I f(*) - tl. Z and ls!) - ,1. Z

Therefore, by (l),

| /(") + sG) - @ + M)l = l/(") - Ll+ ls?) - ul
aa( +-:-=:g22

To summarize,

l f(") + s(x) (L + M)l

Thus, by the definition of a limit,

lim [/(") + g(x)]: L + M

Fermat's Theorem It f has a local maximum or minimum at c, and it f'(c)
exists, then f'(r) _ 0.

Proof Suppose, for the sake of definiteness, that / has a local maximum at c.
Then/(c) > f (x) if x is sufficiently close to c. This implies that if ft is sufficiently
close to 0, with ft being positive or negative, then

I

Fermat's Theorem was discussed in
Section 4.2.

and therefore

B
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But since f '(c) exists, we have

f '(c) - lim
h'--0

and so we have shown that f '(r)
rth

bv h:

We can divide both sides of an inequality by a positive number. Thus, if /r > 0 and

ft is sufficientlv small. we have

h

Taking the right-hand limit of both sides of this inequality (using Theorem 2 in
Section 2.3), we get

lim
ll ---0- /r -r0+

f(c + h) f(c)
- lim

h-r0+ h

(2) is reversed when we divide

h

of
0.

the inequality

f(c+h)-f(c)

So, taking the left-hand limit, wo have

/(c)
f'(c) - lim fk + n)

h

f(c + h) f(c)
- lim

h --+O-h-*0 h

We have shown thatf'(c) > 0 and also that/'(c) < 0. Since both of these inequal-
ities must be true, the only possibility is that/'(c) :0.

We have proved Fermat's Theorem for the case of a local maximum. The case

of a local minimum can be proved in a similar manner. I

lntegration of Rational Functions by Partial Fractions

In this appendix we show how to integrate any rational function (a ratio of polyno-
mials) by expressing it as a sum of simpler fractions, called partial fractions, that
we already know how to integrate. To illustrate the method, observe that by taking
the fractions 2/(x - l) and l/(-r + 2) to a common denominator we obtain

2 I 2(x+2) (x 1) x+5
x I x+2 (x 1)(x+2) xz + x 2

If we now reverse the procedure, we see how to integrate the function on the right
side of this equation:

f-+U r( z I \
J xz+ xJdx:J \x r ;;)ax

:21nlx 1l lnlx+21 +C
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To see how the method of partial fractions works in general, let's consider a ratio-
nal function

P(x)I\x): qx)

where P and Q are polynomials. It is possible to express/as a sum of simpler frac-
tions provided that the degree of P is less than the degree of Q. Such a rational
function is called proper. Recall that if

P(x): e,xn + en-txn ' + "' + alx I as

where a, # 0, then the degree of P is n and we write deg(P) : n.

Iflis improper, that is, deg(P) > deg(Q), then we must take the preliminary
step of dividing Q into P (by long division) until a remainder R(x) is obtained such
that deg(R) < deg(Q).The division statement is

where S and R are also polynomials.
As the following example illustrates, sometimes this preliminary step is all that

is required.

P13+x,
EXAMPLEITFiNdIJ,l *-lo*'
SSLI.-| T|SS{ Since the degree of the numerator is greater than the degree of the

denominator, we first perform the long division. This enables us to write

^,, P(x) ^, \, R(x)f(x)-6- s(r)+ 
0G)

tr

x-
xz*x +2

lr^" * r
x3-x?

x2*x
x2- x

2x
2x-2

;=

1x':-
3

x2+ ^ + 2x + 2lnlx 1l+ C
2

The next step is to factor the denominator Q@) as far as possible. It can be
shown that any polynomial Q can be factored as a product of linear factors (of the
form ax * b) and irreducible quadratic factors (of the form ax2 r bx * c, where
b2 - 4ac < 0). For instance, if QG) : xo - 16, we could factor it as

Qk) : G' 4Q2 + 4): (x 2)(x + z)(xz + 4)

The third step is to express the proper rational function R(x) /QG) (from Equa-
tion l) as a sum of partial fractions of the form

Ax + B

(o*'+ bx + c)i

A theorem in algebra guarantees that it is always possible to do this. We explain
the details for the four cases that occur.

A
-.-----------.-_(ax + b)'
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Another method for finding A , B, and C E
is given in the note after this example.

CASE | . The denominator Q@) is a product of distinct linear factors.
This means that we can write

Q$) : (arx * br)(qzx + br)'..(a*x I b*)

where no factor is repeated. In this case the partial fraction theorem states that
there exist constants Ar, Az, , . . , Ar such that

B 4q + A'. + + Ar

QQ) arx + br azx + bz epx + b*

These constants can be determined as in the following example.

{' xz + 2-r I
EXAMPLE 2 r Evaluar. J Zx, + 3xr_ + dx.

S0LUTlOru Since the degree of the numerator is less than the degree of the
denominator. we don't need to divide. We factor the denominator as

zx3 + 3x2 zx : x(Zx' + 3x z) - x(Zx 1) (x + 2)

Since the denominator has three distinct linear factors, the partial fraction
decomposition of the integrand (2) has the form

x'+2x I A B c:; + zx-l + x+z
To determine the values of A, B, and C, we multiply both sides of this equation
by the product of the denominators, x(2x - 1) (r + 2), obtaining

A x'+ 2x-t: A(2x - l)(.r +2) + Bx(x*2\ + Cx(2x- l)

Expanding the right side of Equation 4 and writing it in the standard form for
polynomials, we get

E x2+zx t-(2A+B+zc)x,

The polynomials in Equation 5 are identical,
The coefficient of xt on the right side , 2A +
of xt on the left side-n&rnely, 1. Likewise,
the constant terms are equal. This gives the
B, and C:

2C

C

- _l

fi, and so

I I 1 1l
Tzx-r ro x+z)dx
rnlzx tl fitnlx+zl+K

+ (3A + 28 C)x 2A

so their coefficients must be equal.
B + 2C, must equal the coefficient

the coefficients of x are equal and
following system of equations for A,

Figure I shows the graphs of the inte-
grand in Example 2 and its indefinite
integral (with K - 0). Which is which?

)

, we getA

x? + 2x

-1
a

2A+ B +

3A + 28

-2A

f, and C :

r Ir I
- ll--+J Lzx
-+lnlxl+ *

I
2t

I

lng

/14

I
I

v

Solv B:

FIGURE I

2x3 + 3xz 2x
dx
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In integrating the middle term we have made the mental substitution
u- 2x 1, which gives du: Zdx and dx: du/Z.

445

ffi

NOIE . We can use an alternative method to find the coefficients A, B, and C in
Example 2. Equation 4 is an identity; it is true for every value of r. Let's choose
values of .r that simplify the equation. If we put -r : 0 in Equation 4, then the
second and third terms on the right side vanish and the equation then becomes

-2A: -1, or A: i. Likewise, x: j gives 5B/4: I and x: -2 gives
lOC : -1, so B : * and C : -fr. lYou may object that Equation 3 is not valid
for x : 0, |, or -2, so why should Equation 4 be valid for those values? In fact,
Equation 4 is true for all values of .r, even x:0, i, and -2. See Exercise 35 for
the reason.)

i1

EXAMPLE 3 I Find l ro* r. where a * 0.J x"-a"'
SOLUTIOi{ The method of partial fractions gives

1

x- a-

AB
IT

x a x f a

and therefore

A(x + a) + B(x a)- I

Using the method of the preceding note, we put x : a in this equation and get

A(za) : l, soA : l/(2a). If we put x : -alwe get B(-Za) : l, so

B : -r/(2a). Thus

Since lnx lny - ln(x|fl, we can write the integral as

l' ,o* -:lrf r l -l 

,,J x2 a2 ,i J [x a x+o)*'"
:;[lnlx al lnlx+ol)+c

fdxl
l)'):^rrrJx'a'2a w

x-a
x + a

+C

CASE f l . Q@) is a product of linear factors, some of which are repeated.
Suppose the first linear factor (arx * b1) is repeated r times; that is, (a1x * b)'
occurs in the factorization of 0(.r). Then, instead of the single term
Ar/(atx + b') in Equation 2, we would use

6 ol . + t A'.,-+".+ , o' 
=a1x * b1 (arx + br)' (arx -f b)'

By way of illustration, we could write

x3 x+l A B C D E

rt-lf :;r7 T x-t -r 
G-If r("llF

but we prefer to work out in detail a simpler example.
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Another method for finding the Now we equate coefficients:
coefficients:

Put-r:lin(7):B:2. A + C:0
Putx: -l: C: -1.
Putx:O:A:B+C:1. B-2C:4

_A+B+ C:O

EXAMPLE 4 r Find I 
xo - zx'- + +x j-t 

o*.J x' x' x + I

SOLUTIOH The first step is to divide. The result of long division is

Solving, we obtain A : l, B -- 2, and C -- -1, so

lxo:2x1+4x+to*:ff"+r+-l 2 r-l
J x'-x2-x*t JL *-t*1r-ty-x+l)dtc

x2,.2.
-++x+lnlx tl + tnlx+ll+K2'.xl

x2 2 lx I
- +-r rlnl-

2 x I lx+l

x4 2x2 + 4x + I 4x: x + 1+ , L
X3 X2 X + | '" ' ^ ' X3 XZ X + I

The second step is to factor the denominator Q@) : x3 - x' - x * 1. Since

Q0 :0, we know that.r - 1 is a factor and we obtain

xt - x' - x + I : (x - l)(x'- l) : (x - 1)(x - l)(x + l)
: (" - l)'?(x + l)

Since the linear factor x - I occurs twice, the partial fraction decomposition is

4x ABC
(r-1)1x+D: x-I +(r-lf +x+I

Multiplying by the least common denominator, (x l)t(x + 1), we get

El 4x:A(x 1)(x+1)+B(x+l)+C(x l)'
: (A + C)x' + (B ZC)x + (-A + B + C)

+K il

CASE f ll . Q@) contains irreducible quadratic factors,
none of which is repeated.
It QG) has the factor ax2 * bx I c, where b' - 4ac < 0, then, in addition to
the partial fractions in Equations 2 and 6, the expression for R(x)/Q(x) will have

a term of the form

Ax + B
E

Axz + bx + c
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where A and B are constants to be determined. For instance, the function given
by"f(r) : x/l(x - 2)(x'+ 1)(x2 + 4)l has a partial fraction decomposition of
the form

x A Bx*C Dx*E
ffi: x_2- x\l - xz+4

The term given in (8) can be integrated by completing the square and using the
formula

EXAMPLE 5 I Evaluare | '*' u- ,* .* 
o 

o*.J x' +4x

SOLUTION Since x3 + 4x: x(xz + 4) can't be factored further, we write

g

2x2 x+4 A Bx+C
w:; -r ir+4

Multiplying by x(xz + 4), we have

2x2 x + 4-A(x' + 4) + (Bx + C)x

: (A + B)xt + Cx + 4A

Equating coefficients, we obtain

A+B:2 C: -l 4A:4

Thus A : l, B : 1, and C - -1 and so

f zx2 x+4 {'[r x rll -- dx: l lJ xt +4x u;x x'+41*-"

In order to integrate the second term we split it into two parts:

ll--r I x f I

J *,io': J ;+7d* - ),2 * oax

We make the substitution u : x' + 4 in the first of these integrals so that
du : 2x dx. We evaluate the second integral by means of Formula 9 with a : 2:
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EXAMPLE6 r Evaluare | 4x1 -3x+Z 
O*.J 4x2 4x + 3w^'

S0IUTION Since the degree of the numerator is not less than the degree of the
denominator. we first divide and obtain

4xz 3x + 2 xl
4x'-4x+3- - 4x'-4x+3

Notice that the quadratic 4x2 - 4x * 3 is irreducible because its discriminant is
b2 - 4ac : -32 < 0. This means it can't be factored, so we do not need to use
the partial fraction technique.

To integrate the given function we complete the square in the denominator:

4x2 _ 4x + 3: (2x _ t)2 + Z

This suggests that we make the substitution u:2x - 1. Then, du:2dx and
x: (u + r)/2, so

(4*'-3x+2 / ' \.
) 4F-ffia':)\'. *{*a)0.

:x*+ltui#*
. , f u- |=x+4) 14ta"

:x+ II;.rd,_ II;+0,
= " + * tn(uz + D - +. i*,'(t) .,
: x * jrnl+x' - 4x *, - #,""-'(t';; 

t) . .
*

I{OTE . Example 6 illustrates the general procedure for integrating a partial frac-
tion of the form

Ax + B
where b2 4ac

axz + bx + c

We complete the square in the denominator and then make a substitution that
brings the integral into the form

fcu+o f u P I

| \ +du:cl-; .du+Dl--:-duJ U-+A- J U-+A- t) u'+a'

Then the first integral is a logarithm and the second is expressed in terms of tan-r.

CASE fY . Q@) contains a repeated irreducible quadratic factor.
It QG) has the factor (axz * bx * c)', where b' - 4ac ( O, then instead of the
single partial fraction (8), the sum
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Iu
Atx + Br Azx + Bz A,x + B,

+
axT + bx + c (o*' + bx + c)' (ox'+ bx + c)'

occurs in the partial fraction decomposition of R(x)/Q(-r). Each of the terms in
(10) can be integrated by completing the square.

EXAMPLE 7 I Write out the form of the partial fraction decomposition of the
function

x3 + xz +l
x(x 1) (r' + x + 1) (x2 + 1)'

5OI-UTION

xt + x' + I

+

of

It would be extremely tedious to work
out by hand the numerical values of the
coefficients in Example 7. Most com-
puter algebra systems, however, can find

the numerical values very quickly. For

instance, the Maple command

convert(f, parfrac, x)

or the Mathematica command

Apart[f]
the following values:

:-1. B:*. c:D-
:-*, F:f,, G:H

I : -Lz, J : +

x(x 1) (x2 + x + 1) ("t

-A + B 
+xxl

+ l)'

Cx + D Ex + F
x'?+x+l+ x'z+l +

1 x + Zxz xt

Gx + H Ix + J
(X,+lF.rtr+lr

*
gives

A

E

-I, EXAMPLE 8 I
1

-=- {t

Evaluat. J dx.

$OLLrTlGf{ The form

1-

Multiplying by x(x2

-xt + zxz x + 1

x(x' + l)'
of the partial fraction

x + 2x2 xt A

decomposition ls

Bx + C Dx + E
I

x' + I (*' + l)tx(xz + l)t

+ l)2, we have

I
I

x

- A(xz + l)t + (Bx + C)x(xz

- A(xo + Zxz + 1) + B(xo +

:(A + B)xo + cx3 + (2A +

1) + (Dx + E)x

+ C(x3+x)+ Dxz + Ex

+ D)xz+(C + E)x + A

+

x')

B

If we equate coefficients, we get the system

A+B:0 C:-l 2A+B+D:2 C+E:-l A:l

which has the solution A : I, B : -1, C : -1, D : l, and E : 0. Thus

fl-xr2x2-x3a - J-.
J xk' l- l)'

x+l '=*'.=\r,
r'?+t TTrt)

[;* Ih+ldh
: h lx | - llnlx'+ l) tan-rx 1

z(xz + lt + K

J(+

ldxJX

re'
I

I

I

I

I

il
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Exercises

l-10 r Write out the
sition of the function
the numerical values

5
lo- 2x' 3x 2

I
3'41xx-

x2 + I
5. --;-x'I

x22
7.

x(x' + 2)

J3 + xz + I,.:
xo+x3+Zxz

form of the partial fraction decompo-
(as in Example 7). Do not determine
of the coefficients.

x'+9x-12

x3-x

xt 4x2+z
(*' + l) (x2 + 2)

xo+x2+l
(*' + t) (x2 + 4)'

(x l)3(4x2 + 5x + 3)t

EYzg.Use a graph of

f(x): ' !
x'-Zx-3

to decide whether I3 f fO dx ts positive or negarive.
Use the graph to give a rough estimate of the value of
the integral and then use partial fractions to find the
exact value.

El f O. Graph both y : l/(xt - 2x') and an anriderivarive on
the same screen.

3 l. Find the area of the region under the curve

I
Y: x'z-6r+8 5{x{10

by completing the square and using the result of
Example 3.

32. The region under the curve

I
v

from x : 0 to x - 1 is rotated about the x-axis. Find
the volume of the resulting solid.

@ 33. (a) Use a computer algebra system to find the partial
fraction decomposition of the function

f(x) :
4x3 - 27xz + 5x 32

3ox5 l3xa + 5ox3 ZB6xz - 299x - 70

(b) Use part (a) to find I f Gl dx (by hand) and com-
pare with the result of using the CAS to integrate /
directly. Comment on any discrepancy.

@ 34. (a) Find the partial fraction decomposition of the
function

r2x5 7x3 l3x2 + 8

2.

4.

6.

8.

10.
19x

I t-28

r. J
tn4

r3. 
J,

t5. 
.,['

t7. I'

t2. J

t4. Ir'

r6. J;

r8. ,['

x-----; dxx)

r Evaluate the integral.

x'

-dx
x*l

4xl
(x - l)(x + 2)

2x + 3

-dx

(x + I)'

6x2+5x 3

x3+zL'?-3x

5x2+3x 2
ffi-,nx- -r zx-

x
"dxxo*x+l

3x2 - 4x + 5

(x - 1)(x2 + l)

I
^dxx'l

3x3-xt+6x-4
(*' + 1) (;2 +

xo+1

-*uIr(x " * l)'

x'+x_ rz
x

^dxx'+4x*4

x'
(x 3) (x + 2)'

x-l
^dxx'+2x+2

2x + 3. 
-dxx'+3x

i

x
^dxx*l

dx dx
(x

xt

+ l)(x

+x2-

2)

l2x + I
dx

dx

re. J

zr. 
.,['

23. J

2s. J

27, J

28. J

20. J

22. ,['

24. J

26. J

dx
100x6-80xs+ ll6xa- 80x3+ 4lx2-20x + 4

Use part (a) to find I f ti dx and graph / and its
indefinite integral on the same screen.
Use the graph of f to discover the main features of
the graph of ! 7Q) ax.

35. Suppose that F, G, and Q are polynomials and

F(x) G(x)

O@: Q(*)

for all r except when QQ) - 0. Prove that lo'(x) : G(;)
for all x. lHint: Use continuity.l

36. If f is a quadratic function such that /(0) : I and

r f,;.\
J fk+f dx

is a rational function, find the value of /'(0).

f (x)

(b)

(c)

dx

2)
dx
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SECTION G.I CURViS III POLAR COORDII{AII5 A5 I

Polar Coordinates

Polar coordinates offer an alternative way of locating points in a plane. They are

useful because, for certain types of regions and curves, polar coordinates provide
very simple descriptions and equations. The principal applications of this idea

occur in multivariable calculus: the evaluation of double integrals and the deriva-

tion of Kepler's laws of planetary motion.

Curves in Polar Coordinates

A coordinate system represents a point in the plane by an ordered pair of numbers
called coordinates. Usually we use Cartesian coordinates, which are directed dis-
tances from two perpendicular axes. Here we describe a coordinate system intro-
duced by Newton, called the polar coordinate system, which is more convenient
for many purposes.

We choose a point in the plane that is called the pole (or origin) and is labeled

O. Then we draw a ray (half-line) starting at O called the polar axis. This axis is
usually drawn horizontally to the right and corresponds to the positive x-axis in
Cartesian coordinates.

IfP is any other point in the plane, let r be the distance from O to P and let 0 be

the angle (usually measured in radians) between the polar axis and the line OP as

in Figure 1. Then the point P is represented by the ordered pair (r,0) and r, 0 are

called polar coordinates of P. We use the convention that an angle is positive if
measured in the counterclockwise direction from the polar axis and negative in the
clockwise direction. If P : O, then r : 0 and we agree that (0,0) represents the
pole for any value of 0.

We extend the meaning of polar coordinates (r,0) to the case in which r is nega-

tive by agreeing that, as in Figure 2, the points (-r,e) and (r,0) lie on the same

line through O and at the same distance lr I from O, but on opposite sides of O. If
r ) 0, the point (r,9) lies in the same quadrant as 9; if r ( 0, it lies in the quad-

rant on the opposite side of the pole. Notice that (-r.0) represents the same point
as (r,0 * rr).

EXAMPLE I r Plot the points whose polar coordinates are given:

(a) (r,sr/4 $) Q,3r) (c) (2,-2n/3) (d) (-3,3rrla)

S0f"uTlCIt't The points are plotted in Figure 3. In part (d) the point (-3,3r/4) is

located three units from the pole in the fourth quadrant because the angle 3rf4
is in the second quadrant and r : -3 is negative.

3r
r\

\ \
i

/r\\(-3. ru ) \\ 4/

o

P 1r, 01

polar axis

(r, 0\

(2, 3 rrl

ilG
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In the Cartesian coordinate
in the polar coordinate system
the point (l,5nf4) in Example
(- 1 ,nl4) (see Figure 4).

system every point has only one representation, but
each point has many representations. For instance,
1(a) could be written as (1, -3n/$ or (l,l3n/4) or

5rr

(',-?)
/'

(-', f)

x- rcos0 )' : rsin0

In fact, since a complete counterclockwise rotation is given by an angle 2n the
point represented by polar coordinates (r,0) is also represented by

(r,0 + Znn) and (- r,0 + (2n + l)r)
where n is any integer.

The connection between polar and Cartesian coordinates can be seen from
Figure 5, in which the pole corresponds to the origin and the polar axis coincides
with the positive x-axis. If the point P has Cartesian coordinates (x, y) and polar
coordinates (r,0), then, from the figure, we have

cos 0 sin 0
y

r
x

r

and so

tr

Although Equations I were deduced from Figure 5, which illustrates the case
where r > 0 and 0 < I < rrf2,these equations are valid for all values of rand 0.
(See the general definitions of sin0 and cos0 in Appendix C.)

Equations I allow us to find the Cartesian coordinates of a point when the
polar coordinates are known. To find r and 0 when .r and y are known, we use the
equations

r2: xz +)'t tang- )'

which can be deduced from Equations I or simply read from Figure 5.

EXAMPLE 2 r Convert the point (2,n/3) from polar to Cartesian coordinates.

SOLUTIOIII Since r : 2 and 0 - Tl3, Equations 1 give

x - rcos0- 2cos

y- rsinO- 2sin

B

rrl
-].--l32

rr n t/3 r=
T 

:2';: v3

+ /o/
(t,?)

FIGURE 4

FIGURE 5

(',Y)

P (r, 0) : P(,t, }')

Therefore, the point is (t,.5) in Cartesian coordinates. ffi
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EXAMPLE 3 r Represent the point with
polar coordinates.

Cartesian coordinates (1, -1) in terms of

S#g-*..$Yf&ru If we choose r to be positive, then Equations 2 gle

tan0-

Since the point (1, -l) lies in the fourth quadrant, we can choose 0 -- -nl4 or

0 : 7n/4. Thus, one possible answer tt (O , -n/a); another is (nE,lrr/+). t

NofE . Equations 2 don't uniquely determine 0 when x and y are given because,

as 0 increases through the interval 0 < 0 < 2T, eac,h value of tan0 occurs twice.
Therefore, in converting from Cartesian to polar coordinates, it's not good enough
just to find r and d that satisfy Equations 2. As in Example 3, we must choose 0 so

that the point (r,0) lies in the correct quadrant.

The graph of a polar equation r: f(0), or more generally F(r,0\:0, con-
sists of all points P that have at least one polar representation (r,0) whose coordi-
nates satisfy the equation.

EXAMPTE 4 r What curve is represented by the polar equation r : 2?

SOLUTI0I{ The curve consists of all points (a 0) with r : 2. Since r represents

the distance from the point to the pole, the curve r : 2 represents the circle
with center O and radius 2. In general, the equation r : d represents a

circle with center O and radius la | (see Figure 6). il

EXAMPIE 5 r Sketch the polar curve 0 : l.

9OLUTIOH This curve consists of all points (r,0) such that the polar angle 0 is

I radian. It is the straight line that passes through O and makes an angle of
I radian with the polar axis (see Figure 7). Notice that the points (a l) on the

line with r ) 0 are in the first quadrant, whereas those with r ( 0 are in the

third quadrant. #

EXAMPLE 6 T
(a) Sketch the curve with polar equation r : 2cos0.
(b) Find a Cartesian equation for this curve.

goLuTt0fi

(a) In Figure 8 we find the values of r for some convenient values of 0 and plot

the corresponding points (r,0). Then we join these points to sketch the curve,

H t'- 2cosf/

0

Trl6

-/lu/'r

nl3
*l')

1*-/1

3rrl1
5nl6
t,

2
T

1J
trt
I

0

-l 't\;
-nT

.)

-l -l

FIGURE 6

FIGURE 7

FIGURE

Table of values and graph of r : 2 cos

I
0
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FIGURE 9

FIGURE IO

r - | * sin d in Cartesian coordinates.
0< P<2rr

(a) (b)

which appears to be a circle. We have used only values of d between 0 and z
since if we let 0 increase beyond z', we obtain the same points again.

(b) To convert the given equation into a Cartesian equation we use Equations 1

and 2. From -r : rcos0 we have cos0 : xfr, so the equation r -- 2cos0
becomes r : 2xfr, which gives'

n.- .-Z --Z ILA I - I -T xz +v2 2x:0
Completing the square, we obtain

(x l)t+1't:1

which is the equation of a circle with center (1,0) and radius l.

Figure 9 shows a geometrical illustration that the circle in Example 6 has the
equation r : 2cos0. The angle OPQ is a right angle (Why?) and so rf2 : cos?.

EXAMPLE 7 r Sketch the curve r : I * sin9

SOLUTION Instead of plotting points as in Example 6, we first sketch the graph
of r : I * sin 0 in Cartesian coordinates in Figure l0 by shifting the sine curve
up one unit. This enables us to read at a glance the values of r that correspond
to increasins values of 0.

For instance, we see that as 0 increases from 0 to n/2, r (the distance from O)
increases from I to 2, so we sketch the corresponding part of the polar curve in
Figure ll(a). As 0 increases from zrf2 to z', Figure l0 shows that r decreases
from2 to l, so we sketch the next part of the curve as in Figure 1l(b). As 0
increases from zr to 3,n/2, r decreases from I to 0 as shown in part (c). Finally,
as 0 increases from 3n/2 to 2r, r increases from 0 to I as shown in part (d). If
we let 0 increase beyond 2r or decrcase beyond 0, we would simply retrace our
path. Putting together the parts of the curve from Figure ll(a)-(d), we sketch
the complete curve in Figure ll(e). It is called a cardioid because it's shaped
like a heart.

)'2 or

ffi

0-
(c)

0-
(d)

3rr
2

3rr
2

(e)

ffiFIGURE | | Stages in sketching the cardioid r - l* sin d
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EXAMPLE I r Sketch the curve r - cos 20.

A55

FIGURE I7
r - cos 20 in Cartesian coordinates

SOLUTlOll As in Example 7, we first sketch r : cos 2e,0 < 0 < 2r, in Cartesian
coordinates in Figure 12. As 0 increases from 0 to r/4, Figure 12 shows that r
decreases from 1 to 0 and so we draw the corresponding portion of the polar
curve in Figure 13 (indicated by a single arrow). As 0 increases from z-/4 to
rf2,r goes from 0 to -1. This means that the distance from O increases from
0 to l, but instead of being in the first quadrant this portion of the polar curve
(indicated by a double arrow) lies on the opposite side of the pole in the third
quadrant. The remainder of the curve is drawn in a similar fashion, with the

arrows and numbers indicating the order in which the portions are traced out.

The resulting curve has four loops and is called a four-leaved rose.

0

0: rr

FIGURE I3
Four-leaved rose r - cos 20

When we sketch polar curves it is sometimes helpful to take advantage of sym-
metry. The following three rules are explained by Figure 14.

(a) If a polar equation is unchanged when 0 is replaced by -0, the curve is

symmetric about the polar axis.
(b) If the equation is unchanged when r is replaced by -r,the curve is

symmetric about the pole. (This means that the curve remains unchanged

if we rotate it through 180" about the origin.)
(c) If the equation is unchanged when 0 is replaced by n - 0, the curve is

svmmetric about the vertical line 0 : rr/2.

ffi

(a)

The curves sketched
since cos( -0) - cos 0.

e : nlz because sin(zr

(b)

in Examples 6 and 8 are

The curves in Examples
0) - sin 0 and cos 2(rr

(c)

symmetric about the polar axis,
7 and 8 are symmetric about

0) - cos 20. The four-leaved

FIGURE I4
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rose is also syrnmetric about
used in sketching the curves.
points for 0
plete circle.

E tangents to Polar Curves

the pole. These symmetry properties could have been
For instance, in Example 6 we need only have plotted

then reflected about the polar axis to obtain the com-

To find a tangent line to a polar curve
write its parametric equations as

r : f(0) we regard g as a parameter and

y- rsing : f(0) singx _ rcos0 : f(0)cosg

Then, using the method for finding slopes of parametric curves (Equation 7 in
Section 3.5) and the Product Rule, we have

dy
lL dL 

sin o + rcos od0 d0
E

dx dx dr
- ' cos0 rsin0d0 d0

We locate horizontal tangents by finding the points where dy/dO : 0 (provided
that dx/d0 I 0). Likewise, we locate vertical tangents at the points where
dx/d0 :0 (provided that dy/d0 * 0).

Notice that if we are looking for tangent lines at the pole, then r : 0 and
Equation 3 simplifies to

tan 0

For instance, in Example 8 we found that
This means that the lines 0 - rrl4 and 0
gent lines to r - cos 20 at the origin.

EXAMPLE 9 I
(a) For the cardioid r
linewhene-n13.
(b) Find the points on
vertical.

drif 
-+ 

0
d0

r - cos20 : 0 when 0 - n/4 or 3rrf4.
: 3nl4 (or y - x and y : -x) are tan-

dy_
dx

: 1 + sin 0 of Example 7, find the slope of the tangent

the cardioid where the tangent line is horizontal or

SOLUT|O}{ Using Equation 3 with r : 1 + sin 0, we have

dy

dr
d0 

sin0 + rcos0
cos0sinO + (l + sing)cosg

dr . A cos0cos0 (1 +sing)sin0--- cos 0 r sin 0
d0

cos 0(l + 2sing) cosg(1 + 2sing)

dx

1 - 2sin20 sin0 (l + sin 0) (1 2 sin 0)



tangent at the point

cos(rr/3) (1 +

sEcTtoil G.t cunvES [{ P0LAR c00RDrr{AIt5 I

where 0- nl3is

2 sin(n/3))

wheng:+,+,+,+

when o - 
3n

2' 6' 6

the points (2,n12), (+ ,7nf6),
and (tr , Sn/6). When 0 - 3nf 2,

careful. Using I'Hospital's Rule,

A57

(a) The slope of the

I

#1,:,,, (1 + sin(nl3))(1 - Zsin(n/3))

i(t + /T) l+t/'

1+'/t
1
I

-1 6
(b) Observe that

dY 
- coso(l + 2sing)- o

d0

dx

*: 
(1 + sino)(1 Zsino)- o

Therefore, there are horizontal tangents at

(+ , 1 11116) and vertical tangents at (tr ,nl6)
both dyld| and dx/d0 are 0, so we must be

we have

dv l+2sin9 cos0lim lim lim
0---(3n/2)- dx 0-'(3n/z)- I - 2stn0 a-Qn/z)- | + sin0

1 -sin 0
- lim : oo

3 s-.--13nlz)- coS 0

Bysymmetry, lim +:-oo0 ,(3r/2)* AX

Thus, there is a vertical tangent line at the pole (see Figure l5). I
FIGURE I5
Tangent lines for r - I + sin d

FIGURE I6
r:sing*sin36ep)

I|OTE . Instead of having to remember Equation 3, we could employ the method
used to derive it. For instance, in Example 9 we could have written

x : rcos 0 - (1 + sin 0) cos 0 - cos g + !, sin20

y- rsinp: (l + sing)sing- sing + sin2g

dy _ dyld? _ cosO * 2sinOcosO _ cos0 * sin20

dx dxld| - sin g + cos 20 - sin 0 + cos 20

W n= Graphing Polar Curves with Graphing Devices

Although it is useful to be able to sketch simple polar curves by hand, we need to
use a graphing calculator or computer when we are faced with a curve as compli-
cated as the one shown in Figure 16.

Some graphing devices have commands that enable us to graph polar curves
directly. With other machines it is necessary to convert to parametric equations

(t,;)

(;,?)

\

A
(0,0) /

* #,1)

(i ,;)

\
(L
\2' +) (+,Y)
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FIGURE 
'7r - sin(8015)

In Exercise 45 you are asked to prove
analytically what we have discovered
from the graphs.

first. In the latter case we take the polar equation r : f(0) and write its paramet-
ric equations as

x: rcosO : f(O)cos0 y: rsing : f(0)sin0

Some machines require that the parameter be called t rather than 0.

EXAMPTE l0 r Graph the curve r : sin(8d/5).

SOLUTIO}I Let's assume that our graphing device doesn't have a built-in polar
graphing command. In this case we need to work with the corresponding para-
metric equations, which are

x: rcosd: sin(80/5)cosO y: rsinp: sin(80/5)sin0

In any case we need to determine the domain for 0. So we ask ourselves: How
many complete rotations are required until the curve starts to repeat itself? If
the answer is n. then

. 8(g + 2nn) 80
Slfl-:Sln-

and so we require that l6nn/5 be an even multiple of a'. This will first occur
when n : 5. Therefore, we will graph the entire curve if we specify that
0 < 0 < l0zr. Switching from 0 to t, we have the equations

x : sin(8rl5)cost y : sin(8r/5)sint 0 < t < l0z'

and Figure 17 shows the resulting curve. Notice that this rose has 16 loops. I

EXAMPLE ll r Investigatethefamilyof polarcurvesgivenbyr: I * csin0.
How does the shape change as c changes? (These curves are called limagons,
after a French word for snail, because of the shape of the curves for certain
values of c.)

SOLUTION Figure 18 shows computer-drawn graphs for various values of c. For
c ) I there is a loop that decreases in size as c decreases. When c : I the loop

c--l

FIGURE l8 Members of the familv of limacons /'- I + csin 0
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disappears and the curve becomes the cardioid that we sketched in Example 7.

For c between 1 and j the cardioid's cusp is smoothed out and becomes a

"dimple." When c decreases from ] to 0, the limagon is shaped like an oval.
This oval becomes more circular as c --> 0, and when c : 0 the curve is iust the
circle r : 1.

The remaining parts of Figure 18 show that as c becomes negative, the shapes

change in reverse order. In fact, these curves are reflections about the horizontal
axis of the corresponding curves with positive c. t

Exercises

whose polar coordinates are given.
pairs of polar coordinates of this point,
onewithr<0.

19. J2 * 1'2 - 25 20. J2 J,t : Il-2 r Plot the point
Then find two other
onewithr)0ancl

| . (a) (1, rr/2)

2. (a) (3, 0)

(b) (-1,n/5)

(b) (2, - n/7)

(c) (3, 2)

(c) (- l, n)

2l-32 r Sketch the curve with the

21. r - 5 72.

23. r- 2sin0 24.

75. r:0,0>O 25.

27. r - I - 2cos0 28.

29. r - 2cos40 30.

3f. 12:4cos2g 32.

given polar equation.

0 : 3n/1

r - I + cosO

r:l/0
r :2 + cos0

r - 2cos30

r : 2 cos(3012)

3-4 r Plot the point whose polar coordinates are given.
Then find the Cartesian coordinates of the point.

3.(a)(rtr,nl4) (b)(1.5,3rr/2) (c)(-t,nl3)
4. (a) (2,2n/3) (b) (4,3n) (c) (-2, -5nla1

5-6 r The Cartesian coordinates of a point are given.
Find the polar coordinates (r,0) of the point, where r > 0

and0<0<2n.
5. (a) (-1,1) (b) (2"6, -2)
6. (a) (- t, -vT ) tnl (3, 4)

7-12 I Sketch the region in the plane consisting of points
whose polar coordinates satisfy the given conditions.

33. Show that the polar curve r - 4 + 2 sec 0 (called ar

conchoid) has the line .t - 2 as a vertical asymptote
by showing tl-rat lim,-r- t - 2. [Jse this fact to help
sketch the conchoid.

34. Show that the curve r - sin 0 tan 0 (called a cissoid
of Diocles) has the line x - I as a vertical asyrnptote.
Show also that the curve lies entirely, within the verti-
cal strip 0 < x ( 1. Use these facts to help sketch the
cissoid.

35-38 t Find the slope of the tangent line to the given polar
curve at the point specified b)' the value of 0.

35. r:3cos0, g:rrl3
36. r- cos0+sin0, 0:rrf4
37. r :0. H - rr/2

38. r- sin30. 0- 1116

39-42 r Find the points on the given curve where the

tangent line is horizontal or I'ertical.

40. F : cos0 + sin0

42. r : eu

43. Show that the polar equation r - a sin 0 + b cos 0,

where ab # 0, represents a circle and find its center
and radius.

44. Show that the curves r - asin0 and r : dcos0 inter-
sect at right angles.

7. r ) I

9.0<rs?., nlz<0<n
f0. 1<r{3, -nl4 <0<
fl.3<r{1,, -nlz<0<
12. -l { r { 1, nl4 < 0 <

8.0<0<n/3

n/4

'It

3n/4

l3-16 t Find a Cartesian equation for
by the given polar equation.

f3. rsin?-2 14. r-

the curve described

2sinO

sin 20

39. r - cos20

41. r : I + cosO
I

t5.
1 - cos0

f 5. r' :

l7-20 I Find a polar equation for the curve represented by

the given Cartesian equation.

17. )' : 5 18. -)' 
: r + I
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45.

46.
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(a) In Example 1l the graphs suggest that the limaqon
r - 1 + csinO has an inner loop when lcl
Prove that this is true, and find the values of 0 that
correspond to the inner loop.

(b) From Figure 18 it appears that the limagon loses its
dimple when c - j. Prove this.

Match the polar equations with the graphs labeled I-VI.
Give reasons for your choices.

Ei S l. How are the graphs of r - I + sin(0 n/6)
and r - I + sin(0 nl3) related to the graph
of r - I + sin 0? In general, how is the graph of
r - f(0 - a) related to the graph of r : f@)?

EISZ. Use a graph to estimate the y-coordinate of the highest
points on the curve r - sin 20. Then use calculus to
find the exact value.

EE Sf . (a) lnvestigate the family of curves defined by the polar
equations r - sin n0, where n is a positive integer.
How is the number of loops related to n?

(b) What happens if the equation in part (a) is replaced
by , - lsin nTl?

EIS+. A family of curves is given by the equations

r - I + csin n0

where c is a real number and n is a positive integer.
How does the graph change as n increases? How does
it change as c changes? Illustrate by graphing enough
members of the family to support your conclusions.

EI SS. A family of curves has polar equations

I - acos0| - I + acosg

Investigate how the graph changes as the number a

changes. In particular, you should identify the transi-
tional values of a for which the basic shape of the curve
changes.

ElSt. The astronomer Giovanni Cassini ( 1625-1712) studied
the family of curves with polar equations

ru - 2c2r2 cos 26 + co aa - 0

where a and c are positive real numbers. These curves
are called the ovals of Cassini even though they are
oval shaped only for certain values of a and c. (Cassini
thought that these curves might represent planetary
orbits better than Kepler's ellipses.) Investigate the vari-
ety of shapes that these curves may have. In particular,
how are a and c related to each other when the curve
splits into two parts?

57 . Let P be any point (except the origin) on the curve
r : f(0).If ,lt is the angle between the tangent line

(a) r - sin(0/2)

(c) r - sec(30)

(b) r-
(d) r:

sin(1la)

0sin0
r/rl o(e) r - I + 4cos50 (f) r :

El 4J-50 r Use a graphing device to graph the
Choose the parameter interval to make sure

produce the entire curve.

47. r: I + 2sin(012) (nephroidof Freeth)

49. r: re (hippopede)

49. r - sin(90/4)

50. r:1 + 4cos(0/3)

polar curve.
that you

r-f(0)



at P and the radial I ine OP. show that

tan 0 - '-.' dr/dO

lHint: Observe that ,! : O 0 in the figure.l

58. (a) Use Exercise 57 to show that the angle between the
tangent line and the radial line is f - nf 4 at every
point on the curve r : eu.

FIGURE I
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(b) Illustrate part (a) by graphing the curve and the
tangent lines at the points where 0 - 0 and n/2.

(c) Prove that any polar curve r : f (0) with the prop-
erty that the angle Q between the radial line and
the tangent line is a constant must be of the form
r - Ceko, where C and k are constants.

Areas and Lengths in Polar Coordinates

In this section we develop the formula for the area of a region whose boundary
is given by a polar equation. We need to use the formula for the area of a sector of
a circle

tr e -- |r'o
where, as in Figure l, r is the radius and 0 is the radian measure of the central
angle. Formula 1 follows from the fact that the area of a sector is proportional to
its central angle: A : (0/2rr)rrr2 : ir'e.

Let 91. be the region, illustrated in Figure 2, bounded by the polar curve
, : f (0) and by the rays 0 : a and 0 : b, where / is a positive continuous func-
tion and 0 < b - a 4 2zr. We divide the interval fa,blinto subintervals with end-
points gs, 0r,02,...,0n and equal width A0. The rays 0:0i then divide 9t into
n smaller regions with central angle A0 :0i - 0i:.If we choose 0I in the ith
subinterval 10,-r,|tJ, then the area AA; of the ith region is approximated by the
area of the sector of a circle with central angle A0 and radius/(0,t) (see Figure 3).

0-
L0

o

FIGURE 2 FIGURE 3

Thus, from Formula I we have

AA, : +lf @f )l'A0

and so an approximation to the total area A of 9t is

irflor )l'Ao

It appears from Figure 3 that the approximation in (2) improves as n ---> oo. But the
sums in (2) are Riemann sums for the function S(0): l[/(9)]'z, so

A:
j: I

B

:!:i
j: I

NJ'ta

lim
n---+&

r-f(0) f (?tr)

irror)l'ag if f toll' do
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We use the half-angle formula

costr : i(l * cos2x)

This is Formula l7a from Appendix C.

Alternatively, we could use Formula 64

in the Table of Integrals.

It therefore appears plausible (and can ln
area A of the polar region 9t is

fact be proved) that the formula for the

A: t +L /(o)l' do

Formula 3 is often written as

with the understanding that r : f @). Note the similarity between Formulas I and 4.

When we apply Formula 3 or 4 it is helpful to think of the area as being swept

out by a rotating ray through O that starts with angle a and ends with angle b.

EXAMPLE I r Find the area enclosed by one loop of the four-leaved rose

r : cos20.

$*LUT$SN The curve r - cos 20 was sketched in Example 8 in Section G.l.
Notice from Figure 4 that the region enclosed by the right loop is swept out

by a ray that rotates from 0- -nf4 to 0- n/4 Therefore, Formula 4 gives

E

q

A-

:

l''o I,' do
J -r/4 '

t fnl+- i )-,,rcos=20do

l"'o + (t +J0'

TT

8

Iu'',*

+10

cos'zo do -

+ j sin 4oll,/-

cos 40) d0

FIGURE 4

EXAMPLE 2 I Find the area of the region that lies inside the circle r: 3sin0
and outside the cardioid r : I * sin0.

S0LUTION The cardioid (see Example 7 in Section G.l) and the circle are

sketched in Figure 5 and the desired region is shaded. The values of a and b

in Formula 4 are determined by finding the points of intersection of the two
curves. They intersect when 3sin0: I * sing, which gives sind : l.to
0 : n/6,5r/0.fhe desired area can be found by subtracting the area inside

ffi

A- .l,i +r' do

r - cosT9

r:3 sin d

Jrr
6

FIGURE 5
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0 : nl6 and 0 - 5rr/6 from the area inside the circle fromthe cardioid between
nl6 to 5n16. Thus

Since the region

A:

the

I
/

(8 sinZg I - 2 sin o) d0

r f5rrf6
* J,,f' f t + sin o)2 dg

vertical axis 0 - nlL, we can

fn/2 I
.l i,,o 

(l + 2 sin o + sinr o) dg 

)

A: + I;:' (3 sin ilz ao

is symmetric about

l- F -/.
2l + | 

'/- gsintodg
l- J n/6

wrlte

Here we use the identity

sin?d: i(l - cos2o)

(See Formula l7b in Appendix C.)

Alternatively, we could use Formula 63

in the Table of Integrals,

o

FIGURE 5

: I:,,
: I:,,
-r- 30

Example 2 illustrates the procedure for finding the area of the region bounded
by two polar curves. In general, let 9t be a region, as illustrated in Figure 6, that is
bounded by curves with polarequations r: f@),r: S(0),0: a,and 0:b,
where/(O) -- S@) > 0 and 0 < b - a < 2ir. The area A of A. is found by sub-
tracting the area inside r : S(e) from the area inside r : f(e), so using Formula 3

we have

ffi

(3 4 cos 20 2 sin 0) d0

Z sin Z0 + 2 cos o)y,:- n

r
ls(s

ilstsn'do

)J') d0

@ CAUTION . The fact that a single point has many representations in polar coordi-
nates sometimes makes it difficult to find all the points of intersection of two
polar curves. For instance, it is obvious from Figure 5 that the circle and the car-
dioid have three points of intersection; however, in Example'2 we solved the equa-
tions r : 3sin 0 and r: I * sing and found only two such points. (i,rr/6) and
(1 ,5r/6). The origin is also a point of intersection, but we can't find it by solving
the equations of the curves because the origin has no single representation in polar
coordinates that satisfies both equations. Notice that, when represented as (0,0) or
(0,2), the origin satisfies r : 3sin0 and so it lies on the circle; when represented
as (0,3n/2),it satisfies r : | * sing and so it lies on the cardioid. Think of two
points moving along the curves as the parameter value 0 increases from 0 to 2n.
On one curve the origin is reached at 0 : 0 and 0 : n: on the other curve it is
reached at 0 : 3n/2.The points do not collide at the origin because they reach the
origin at different times, but the curves intersect there nonetheless.

Thus, to find all points of intersection of two polar curves, it is recommended
that you draw the graphs of both curves. It is especially convenient to use a graph-
ing calculator or computer to help with this task.

EXAMPLE 3 r Find all points of intersection of the curves r: cos20 andr: Lr.

SOLUTIOH If we solve the equations r : cos20 and r : ),we get cos20 : j and,
therefore,20: r/3,5r/3,7n/3,1lzr/3. Thus, the values of gbetween O and2rr

r - f (0)

r - g\o)
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that satisfy both equations are 0 : n/6, 5n/6,7n/6, llrr/6. We have found four
points of intersection: (i,n/6), (I,5rr/6), (i,7n/6), and (i ,lhl6).

However, you can see from Figure 7 that the curves have four other points
of intersection-namely, (I,n/Z), (|,2n/3), G,anQ), and (1, 5z/3). These

can be found using symmetry or by noticing that another equation of the circle
is r : -l and then solving the equations r : cos20 and r : -1.

FIGURE 7

I Arc Length

ffi

(;' 1)
/' /1

,,(i'f )

To find the length of a polar
ter and write the parametric

x- rcoso :

Using the Product Rule and

dx dr
- - 

cos0 rsin0de d0

so, using cos2g + sin2g - 1, we have

curver: f(0),a
equations of the curve as

f (0) cos 0 _I,: rsing - J'(0)sin0

differentiating with respect to 0, we obtain

dy dr

-- 
sin0 + rcos0d0 d0

coszg ZrLcosgsing + r2sin2g
d0

("-)'

+rz

(#)'* (#)
+

: (#)'

sin20 + ZrLsingcos0 + r'cos'L
d0

Assuming that/' is continuous, we can use Formula I in Section 6.3 to write the

arc lensth as

Therefore,thelengthofacurVewithpolarequationr:f(0),,a<

d0(#)'* (#)'L: 
T,'

E L:l'm*
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EXAMPLE 4 r Find the length of the cardioid r : I * sin 0.

soLUTloN This cardioid was sketched in Figure 1l in Section G.1. Its full length
is given by the parameter interval 0 < 0 < 24 so Formula 5 gives

L- L*
.! 1_do:J." aB

,t 1_

- | '/2 + 2sin0 d0
J0

Using a computer algebra system to evaluate this integral, we find that the
length of the cardioid is I : 8. il

Exercises

5-8 I Sketch the curve

5. 12:4cos20

7. r - 4 sin0

and find the area that it encloses.

6. r - 4(I cos 0)

8. r - sin30

a-4 r Find the area of the region that is bounded by the
given curve and lies in the specified sector.

l. r-0. 0<0{zr
2. r : €0, -rr/2 < P < rrl2
3. r-2cos9, 0<0<nl6
4.r:I/0, n/6<0<5n/6

21. r- sin20. r- cos20 22, 7'2 - 2sin20, r - I

23. Find the area inside the larger loop and outside the
smaller loop of the limaEon r - j + cos 0.

Elzq. Graph the hippopede r : @ ancl the circle
r - sin0, and find the exact area of the resion that lies
i nside both curves.

25-28 r Find all points of intersection of the given curves.

25. r- cos0,, r: l-cos0
26. r- cos3d, r- sin30

27.r- sin0, r--srn20
28. y2 - sin 20. 7.2 - cos 2d

ElZg. The points of intersection of the cardioid r : I + sin g

and the spiral loop r : 20, -rrl2 < 0

be found exactly. Use a graphing device to find the
approximate values of 0 at which they intersect. Then
use these values to estimate the area that lies inside
both curves.

EE ro. [Jse a graph to estimate the values of g for which the
curves r:3 + sin59 and r:6sin0 intersect. Then
estimate the area that lies inside both curves.

3l-34 r Find the exact length of the polar curve.

31. r-20,0<g<2r
32. r-€-0,0<0<3r

@33. r:0',0<0<Zr
@34. r:0, 0<0<2r

35-36 I Use a calculator or computer to find the length of
the loop correct to four decimal places.

35. One loop of the four-leaved rose r - cos 20

36. The loop of the conchoid r - 4 + 2 sec 0

n= 9. Graph the curve r - 2 + cos 69 and find the area that it
encloses.

n= t0. The curve with polar equation r - 2 sin0cost0 is called
a bifolium. Graph it and find the area that it encloses.

ll-14 r Find the area of the region enclosed by one loop of
the curve.

ll. r-sin50 12. r- 2cos40

13. r- 1+2sin0 (innerloop)

f4. r:2 +3cos0 (innerloop)

l5-18 r Find the area of the region that lies inside the first
curve and outside the second curve.

f5. r- l-cosg, r_ t"

16. r:3cos0, r:2 -cos0
17. r - 4sin0, r :2
18. r- l+cos0. r_ 3cos0

l9-ZZ r Find
curves.

19. r - sind,

the area of the region that lies inside both

r- cos0 20. r: sin20, r- sinO
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FIGURE I

Conic Sections in Polar Coordinates

In this project we give a unified treatment of all three types of conic sections in terms
of a focus and directrix. We will see that if we place the focus at the origin, then a

conic section has a simple polar equation. In Chapter 10 we will use the polar equation
of an ellipse to derive Kepler's laws of planetary motion.

Let F be a fixed point (called the focus) and / be a fixed line (called the directrix)
in a plane. Let e be a fixed positive number (called the eccentricity). Let C be the set

of all points P in the plane such that

lrrlW:"
(that is, the ratio of the distance from F to the distance from I is the constant e). Notice

that if the eccentricity is e : 1, ttren lff'l : I ptl and so the given condition simply
becomes the definition of a parabola as given in Appendix B.

| . If we place the focus F at the origin and the directrix parallel to the y-axis and

d units to the right, then the directrix has equation x : d and is perpendicular to
the polar axis. Ifthe point P has polar coordinates (r,0), use Figure 1 to show that

r: e(d - rcos0)

By converting the polar equation in Problem I to rectangular coordinates, show

that the curve C is an ellipse if e < 1. (See Appendix B for a discussion of
ellipses.)

3. Show that C is a hyperbola if e > 1.

4. Show that the polar equation

r

represents an ellipse if e < l, a parabola if e - l,or a hyperbola if e > l.

5. For each of the following conics, find the eccentricity and directrix. Then identify
and sketch the conic.

2.

* t/.. 
..

I + ecosg

(a) r: I + 3cos0
(b) rH

3 + 3cos0
(c) r:

2 * cos0
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6. Graph the conics r : e/(1 - ecas9) with e : 0.4,0.6,0.8, and 1.0 on a common
screen. How does the value of e affect the shaoe ofthe curve?

(a) Show that the polar equation of an ellipse with directrix x -*- fl can be written
in the form

r -.= a(l * e2)

I - ecosO

(b) Find an approximate polar equation for the elliptical orbit of the planet Earth
around the Sun (at one focus) given that the eccentricity is about 0.017 and the
length of the major axis is about 2.99 X 108 km.

(a) The planets move around the Sun in elliptical orbits with the Sun at one
focus. The positions of a planet that are closest to and farthest from the Sun
are called its perihelion and aphelion, respectively. (See Figure 2.) Use
Problem 7(a) to show that the perihelion distance from a planet to the Sun is
a(l e) and the aphelion distance is a(l + e).

aphelion perihelion

(b) Use the data of Problem 7(b) to find the distances from Earth to the Sun at
perihelion and at aphelion.

9. (a) The planet Mercury travels in an elliptical orbit with eccentricity 0.206.
Its minimum distance from the Sun is 4.6 X 107 km. Use the results of
Problem 8(a) to find its maximum distance from the Sun.

(b) Find the distance traveled by the planet Mercury during one complete orbit
around the Sun. (Use your calculator or computer algebra system to evaluate
the definite integral.)

8.

FIGURE 2

planet

Complex Numbers

FIGURE I

Cornplex numbers as points in
the Argand plane

A complex number can be represented by an expression of the form a + bi,
where a andb are real numbers and i is a symbol with the property that i2 : -1.
The complex number a -t bi can also be represented by the ordered pair (a,b) and
plotted as a point in a plane (called the Argand plane) as in Figure 1. Thus, the
complex number i : 0 + I . i is identified with the point (0,1).

The real part of the complex number a'f bi is the real number c and the
imaginary part is the real number b. Thus, the real part of 4 - 3i is 4 and the
imaginary part is -3. Two complex numbers a * bi and c * di are equal if
a : c and b : d, that is, their real parts are equal and their imaginary parts are
equal. In the Argand plane the.r-axis is called the real axis and the y-axis is called
the imaginary axis.

The sum and difference of two complex numbers are defined by adding or sub-
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tracting their real parts and their

(a + bi) + (c

(a + bi) (c

For instance.

(1 r) + (4 + ti)

The product of complex numbers
tributive laws hold:

lmaglnary parts:

+ di): (a + c)

+ di):(a c)

(b + d)i

(b d)i

+

+

:(1+4)+(-1+

is defined so that the

7)i:5 + 6i

usual commutative and dis-

(a + bi) (c + di) : a(c + di) + (bi) (c + di)

: ac + adi + bci + bdiT

Since i2 - - 1, this becomes

(a + bi) (c + di) : (a, bd) + (ad + bc)i

EXAMPLE I I

(-1 + 3i)(2 sr): (-1)(2 sr) + 3i(2 si)

: -2 + 5i + 6i l5(-1) - 13 + llt

Division of complex numbers is much like rationalizing the denominator of a

rational expression. For the complex number z : a * bi, we define its complex
conjugate to be 2 bi. To find the quotient of two complex numbers we

multiply numerator and denominator by the complex conjugate of the denominator.

EXAMPLE 2 r Express the number ;:+in the form a t bi.

SOLUTlOll We multiply numerator and denominator by the complex conjugate of
2 + 5i, namely 2 - 5i, and we take advantage of the result of Example l:

-r+3i _-r+3i.2-si _ 11 +llt:-11 
*_1-L,2+si z+5i z-5i 2'+5' 29 29- I

The geometric interpretation of the complex conjugate is shown in Figure 2; 7 is

the reflection of z in the real axis. We list some of the properties of the complex

conjugate in the following box. The proofs follow from the definition and are

requested in Exercise 18.

Properties of Conjugates

z+w--z+w zw: zw nfl
L z"

ffi

FIGURE 2



z-Q+bi
The modulus, or absolute value, 

I

distance from the origin. From Figure
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z I of a complex number z -- a +
3 we see that rf z - a + bi, then

A69

hi is its

FIGURE 3

lft'>lrl: ,/ a'+ b2

Notice that

zi - (a + bi) (a bi) - a' + abi abi b2i2 - a' + b?

and so zi: lrlt

This explains why the division procedure in Example 2 works in general:

zzizw
;-,r*-W

Since i2: -1, we can think of I as a square root of -1. But we also have
(-i)' : i2 : -l and so -i is also a square root of -1. We say that i is the princi-
pal square root of - I and write /- I : i. In general, if c is any positive number,
we write

,/-c : 1/c i

With this convention, the usual derivation and formula for the roots of the qua-
dratic equatio\ ax' * bx * c : 0 are valid even when b2 - 4ac I 0:

-b -r \Jtb2 - 4ac

2a

EXAMPLE3 I Findtherootsof theequationx2 + x + I -0.
SOLL3TIOH Using the quadratic formula, we have

_l_F ffi _l rrl _z _l trllt

Notice that the solutions of the equation in Example 3 are complex conjugates
of each other. In general, the solutions of any quadratic equation ax2 + bx * c : 0
with real coefficients a, b, and c are always complex conjugates. (If z is real,
2 : z, so z is its own conjugate.)

We have seen that if we allow complex numbers as solutions, then every qua-
dratic equation has a solution. More generally, it is true that every polynomial
equation

enxn + an-txo-t + + arx + ao: 0

of degree at least one has a solution among the complex numbers. This fact is
known as the Fundamental Theorem of Algebra and was proved by Gauss.
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I Forar rorm

We know that any complex numb er z - a + bi can
and that any such point can be represented by polar
In fact,

be considered as a point (a,b)
coordinates (r,0) with r

FIGURE 4

FIGURE 5

z -- a + bi - (rcos9) + (rsin?)i

Thus, we can write any complex number z in the form

z- r(cos0 + i sin0)

a- rcos0

as in Figure 4. Therefore, we have

where r- lrl: JF + u'

(b) Here we have r
the fourth quadrant,

z: Jr(."r; + i sin +)

- l*l- J3 + | - Z and tanl- -Ur/t Since r,u lies in
we take 0- -nl6 and

l- / "'\ 
/ \r

w - 2l e
L "'( -+) + i sin(- +))

t0 are shown in Figure 5. #

b- rsin0

band tan? : -a

The angle 0 is called the argument of z and we write 0 : arg(z). Note that arg(z)
is not unique; any two arguments of z differ by an integer multiple of 2z'.

EXAMPLE 4 r Write each of the following numbers in polar form.
(a)z:l+i (b)w:J3 -i
soLuTroN
(a) We have r : ltl : Jlz + 1z : JZ andtan? : l, so we can take 0 : r/4.
Therefore, the polar form is

The numbers z and

The polar form
sion. Let

of complex numbers gives insight into multiplication and divi-

z1: rr(cos0r + i sin0r) 22 : rz(cos gz + i sin 0:)

be two complex numbers written in polar form. Then

z'lzz: 

""""[:: 

H: 1':|*::J,;'T?],.g cos0z + cos0 sin 0,)l
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Therefore, using the addition formulas for cosine and sine, we have

A7a

ztzz: rlr2fcos(O, + 0r) + i sin(gr + 0r)l

This formula says that to multiply two complex numbers we multiply the moduli
and add the argumenrs. (See Figure 6.)

A similar argument using the subtraction formulas for sine and cosine shows
that to divide two complex numbers we divide the moduli and subtract the
arguments.

tt _ A[cos(o, 0z)+isin(or 0r)]
22 f2

z2+0

ztzz

FIGURE 6

FIGURE 7

FIGURE 8

fn., l1): vJ_/

In particular, taking z1: I
have the following, which is

and 22: z (and therefore 0t:0 and 0z:0),, we
illustrated in Figure 7.

+)

,"( +) l

n+
4

\
Tr\

I

6/

EXAMPLE 5 I Find the product of the
polar form.

SSf-uTlOl{ From Example 4 we have

1+ i-,/r(.o,
\

and '/t i -, [.", (L\

complexnumbersl+ iandrf3 i in

I sin

+ i s

So, by Equation l,

(t+i)(/:-,) :z.Jrl /n -\
f.o'(;' t)

: zJr(rora+ i sin\12
This is illustrated in Figure 8.

of Formula I shows how to compute

ru

powers of a complex num-Repeated use

ber. If

then

and

r(cosg + i sing)

r2(cos20 + isin 20)

zz' : r3(cos 30 + i sin 39)
I

I

I

z:

-2L

_3

If z : r(cos0 + isin0), then
1

z
t (.o, a I sin g).

z:I]-i

zrlz
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In general, we obtain the following result, which is named after the French mathe-
matician Abraham De Moivre (1667-1754).

B 0e Moivre's Theorem If z- r(cosg + i sing) and n is a positive

integer, then

7n : [r(cosg + i sin 0)]" : rn(cosn| + isin n0)

This says that to take the nth power of a complex number we take the nth power
of the modulus and multiply the argument by n.

EXAMPLE 6 r Find (l + *;)'0.

solulloH Since | + +i : i(l + ,), it follows from Example 4(a) that + + j; has

the polar form

I I O( rr "'\t*tt: 2 \"otT+tsLn7)
So by De Moivre's Theorem,

It \ro / /i\ro/ l}n , l0zr\l-+ii) :l+f ("o,
\t*, / \z / \ ' 4 

-rtstn 
4 )

2' | 5rr .. 5r\ I

,r\"or z+t"r"r):n, il

De Moivre's Theorem can also be used to find the nth roots of complex num-
bers. An nth root of the complex number z is a complex number at such that

Ir":z

Writing these two numbers in trigonometric form as

ar: s(cosd + isind) and z : r(cos? + lsin0)

and using De Moivre's Theorem, we get

s"(cos n$ * isinnf) : r(cosd + isin0)

The equality of these two complex numbers shows that

sn:r or s:r'/"

and cosn@ : cosO and sinn{ : sinO

From the fact that sine and cosine have period 2zr it follows that

nO:o*2kn or f-o+2ktn

Thus *: ,,,^l 
"or(e 

+ z*'\ * ,r,n(' * 'ot\lL \ n / \ n /)
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Since this expression gives differents values of ta for k : 0, l, 2, ..., n - l, we
have the following.

El Roots of a Complex Number Letz- r(cosO + isin0) and letn be a

positive integer. Then z has the n distinct nth roots

l- /s+2krr\ .^( s+ztrr\f
,il1,: r"'lcos(-/ + isint- 

/ J
where k - 0, 1,2, ..., fl 1.

Notice that each of the

roots of z lie on the circle
ment of each successive

Trrf n, we see that the nth

nth roots of z has modulus larol - rt/n. Thus, all the nth
of radius rtl" rn the complex plane. Also, since the argu-
nth root exceeds the argument of the previous root by
roots of z are equally spaced on this circle.

EXAMPLE 7 I Find the six sixth roots of z : -8 and graph these roots in the

complex plane.

$ffiLffiTfi#$* In trigonometric form, z-8(coszr + i sinrr).Applying Equation 3

with n : 6, we get

,,,/ 7T+Zkn rT+2ftrr\wk:t'"\cos , +isin j )

We get the six sixth roots of -8 by taking k - 0, 1,2,3,4,5 in this formula:

^)o:a'^(.orf +isin+) :r/T(++ 
+,)

w1: s'^(.o , + + i sin +): '/i i

w2: s'rc(.o, + + isin +) :,/r( ++
1il3:s'rc(ro'++ isin +): Jz(+

tila: s'^(ro r ++ i sin +) : -,lT i

rils:s'^(.or++isin+) : Jr(+ +,)

All these points lie on the circle of radiu* l8 ut shown in Figure 9.

;,)

;,)

FIGURE 9
The six sixth roots of e : -8 ffi
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t! Complex Exponentials

We also need to give a meaning to the expression e' when z : x * ly is a complex
number. The theory of infinite series as developed in Chapter 8 can be extended to
the case where the terms are complex numbers. Using the Taylor series for e'
(Equation ll in Section 8.7) as our guide, we define

*nh-Z-3
-E-\LLZe':

E, n! 21 3!

and it turns out that this complex exponential function has the same properties as
the real exponential function. In particular, it is true that

If we put z : iy, where y is a real number, in Equation 4, and use the facts that

i2: -1, i3: i2i: -i, ia: l, is: i,

we get

: cosy * isiny

Here we have used the Taylor series for cosy and siny (Equations 16 and 15 in
Section 8.7). The result is a famous formula called Euler's formula:

e'! : cosy + i siny

Combining Euler's formula with Equation 5, we get

,x+ir : e*eit -- e"(cosy + i siny)

EXAMPLE 8 r Evaluate: (a) ei' (b) ,-t+intT

SOLUTION

(a) From Euler's formula (6) we have

ei' - cos?r + isinzr - -l + t(0) - -l
(b) Using Equation 7 we get

/\
,*t+int\: r-,(cos + + isin +) : l[o +,(l)] _ i

\ 2 2/ e- e

4

E

6

1T

ffi



Finally, we note that Euler's
proving De Moivre's Theorem:

[r(cosg + isin 0)]"-
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equation provides us with an easier method of

(rr")" - r'nsino - r"(cos no + i sin no)

Exercises

l-14 r Evaluate the expression and write your answer ln
theforma+bi.

2.(1 +l) (2

4. (4 7i)(r +

6.r{=
5i

8. 3+4i
3

10. 43t
12. 1l0t)

14. l= J-n

33-36 I Find the indicated
Theorem.

33. (1 + i)tn
3s. (z r/I + zi)'

power using De Moivre's

34. (r ,/T i)'
36. (1 i) *

f . (3 + 2i) + (7 3i)

3. (3 tX4 + i)

5. n+7i
2 + 3i

7. l-5t
I

9. 1+i
ll. i3

r3. J -2s

3i)

3i)

3740 t Find the indicated
complex plane.

37 . The eighth roots of I

39. The cube roots of i

roots. Sketch the roots in the

38. The fifth roots of 32

40. The cube roots of 1 + i

4146 r
4 | . ,in/2

44. e-'n

Write the number in the form a +

42. ,2n 
i 43. ,i3nl4

45. u2+irr 46. et+zi

l5-17 r Find the complex conjugate and the modulus of the
given number.

t5.3+4i t5.6-i 17.-4i

18. Prove the following properties of complex numbers.
(a) z + w -7 + w

(b) 4:r*
(c) v', - ln ,, where n is a positive integer

lHint: Write z : a + bi, w : c + di.]

a9-24 I Find all solutions of the equation.

f9.4x2+ 9:0 20.J0:l
2l.x' 8x+t7 -0 22.x' 4x+5:0
23. z'+z +2-0 24.2'+1, ++-0

25-28 r Write the number in polar form with argument
between 0 and 2rr.

/;.
tJ t

79-32 r Find polar forms for zut,, z/w, and llz by first put-
ting z and w rnto polar form.

29.z-tE+i, w-1+"Ei
30. z-4Jt-4i,, w_ 8i

47. Use De Moivre's Theorem with n - 3 to express cos 30

and sin 30 in terms of cos 0 and sin 0.

48. Use Euler's formula to prove the following formulas for
cos x and sin x:

e,* + e-,"*
cosx - 2

e''' - e -''sinx: 
Zi

49. If u(x) : f(*) + ig(*) is a complex-valued function of
a real variable x and the real and imaginary parts /(x)
and g(x) are differentiable functions of x, then the
derivative of r,r is defined to be u'(x) : f'(x) + ig'(x).
Use this together with Equation 7 to prove that if
f(x) : e"o then F'(x)- re''' when r - a + bi is a

complex number.

50. (a) lf u is a complex-valued function of a real variable,
its indefinite integral I u(x) dx is an antiderivative
of u. Evaluate

25. -3 + 3i

27. 3 + 4i

26. I

28. 8i

I

3i

J ,(t+i)"r 4*

(b) By considering the real and imaginary parts of the

integral in part (a), evaluate the real integrals

Pf
I e" cos x dx and I e'' sin x dx

JJ

Compare with the method used in Example 4 in
Section 5.6.
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Answers to Odd-Numbered Exercises

CHAPTER I 29. (-*, *)

Exercises l.l I page 23

1. (a) -2 (b) 2.8 (c) -3, 1 (d) -2.5,0.3
(e) [-3, 3], l-2,3) (f ) [- 1, 3]
3. [-95, 115], l-325,4951, l-zto,2ool

31. (-*,0) U (0,*)

35. (-oo

10.000 20,000 / (in dollars)

/ (in dollars)

4 39. /(x) - I - l--
xa2
<4

r0

0<x(6
(b) $400, $1900

m)

y

midnight

37.

41.

43.

45.

47.

49.

51.

f(x) :

f(*) :

A(L) :
A(x) :
s(x) :
v(x) :
(a) R(va)

15

l0

-Ix-1,-2<x{
f* + I if -l
{
L6 l.5x if21x
l\L L2,0 < L <

ttr *'l4,x ) o

x'+(8/x),x)0
4x3 - 64xz + 240x,

15. Height
of grass

17 . (a) T

60

Wed. Wed. Wed. Wed. Wed. I

(b) 59'F

2 4 6 8 10 t2r

zO,s + 7 rfi,zx2 3x - 4,2x2 + 7x + l,
8,8x?+6x 4
3h+2).,x*h x' Zxh-h',

-3, 2I : (-*, -3) U (-3,2) U (2,n)

I (in dollars)

2s00

I 000

(a) (-5,3) (b) (-5, -3)

52
50

ul

0,

+
h

#
rc)

rc)

(c)

19. -4, I

4xz + 6x
21. - (h'
l-2x
23. {rlt
25. (-*, * 53.

PFJ5.

5. Yes, [-3, 2], l-2,2]
7, No 9. Diet or illness

27. (-*, * Even y

)



57. Neither 59. Odd

Exercises 1.2 r page 38

1. (a) Root (b) Algebraic (c) Polynomial (degree 9)

(d) Rational (e) Trigonometric (f) Logarithmic

3. (a) s (b) h (c) f
5. (a) y : f(x) + 3 (b) y : f(x) 3

(c) y - f(x - 3) (d) y : f(x + 3) (e) y : -f(*)
(f) y : f(-x) (g) .y : 3f(x) (h) y : *f(")

APPEIIDIX I At{SWtR5 T0 0DD-iltJ}'lBtRED tIERCIStS

: f (x) to the right of

A77

7. (a)

(d)(c)
27.

the

(a) The portion of the graph of y
y-axis is reflected in the y-axis.

(b) y : sin lxl

33. (f " g)(x) : 3(6xz + 7x + 2), (-n
(g " f) (x) - 6x2 - 3x + 2, (-*, *)
(f . f) (*) - 8ra - 8x3 + x, (-oo, *)
(g " g) (x) : 9x * 8, (-*, *)

oo)

(b)

l*2x-x'

y -Z sinx

y: tanZx

31. rW

0
l.

y: cos(x/2)
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35. (f " g)(x) - J-x, (-*,01

7. l-4,61 by [-50, lool

100

9.

-50

[-0.1,0.1] bv [-1.5, 1.5]

(c)

1.5

At\A
JV V\

ll.
0

v(t)

51.

53.
(d)

:
Yes

(a)

v

(f " /) (") : ,f *, - 2, (-oo, - Ol U IrE,*)

37. ( f " g " h) (x) _ ll Qz + 2)t

39. g(x) - x 9, f(*) - ,r5

41. g(x) : x',,f (*) : xf (x * 4)

43. h(x) - x' , g(*) - 3 ", ,f (x) - 1

45. (a) 4 (b) 3 (c) 0 (d)
is not in the domain of g. (e) 4

47. (a) ,(r) - 60t
(b) (A " r) (r) : 3600 rtz: the area
of time

49. (a)

240H(t

5

5)

P(a,s(a)), Qkk), s(o)) (b) (s(a),f(g(")))

a J1 ,f4 ;t

-x
Does not exist; /(6) - 6

(f)-2

of the circle as a function

0

V(t) : l20H(t)

5. [- 10, l0] by [- 0. l, 0.1]

-t "5

[-250, 250] bV [- 1.5, 1.5]

-250

13. [-5, 5] by [0, 4]

15.

0.r

\

-0.1

250

\
\-./

1.5

A A
V V

-1.5

Exercises 1.3 r page 47

l. (c)

3. l-20,201 by l-2,61

6

a
-2

I

( \

\ )

-l

-20
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(b) y - | - x2, x 7 0

A79

L7. 0.67 19. - 1.90, 0, 1.90

23.-0.85(x<0.85
25. (a) 3

21. g 3. (a)

5.
(b)

(b)
-l

2

/
,'j

-=f /

-2

(a)xt+y':1,x70 (a) x + y : l, 0 s x { I7.

(b)

(a) x: I - !', -l < y < I(c)
Vx

\t'.

a

J

9.
(b)

2

Jr,#
/)

-/.
-l

(d) Graphs of even roots are similar to .rE , graphs of odd

roots are similar to :f As n increases, the graph of
rt /-- ,y : dx becomes steeper near 0 and flatter for x ) 1.

27.

-6
If c < 0, the graph has three humps: two minimum points
and a maximum point. These humps get flatter as c
increases until at c - 0 two of the humps disappear and

there is only one minimum point. This single hump then
moves to the right and approaches the origin as c increases.

29. The hump gets larger and moves to the right.

31. If c < 0, the loop is to the right of the origin;
if c ) 0, the loop is to the left. The closer c is to 0, the

larger the loop.

Exercises 1.4 t page 53

ll. Moves counterclockwise along the circle x' * y' : I

from (-1,0) to (1,0)

13. Moves once clockwise around the ellipse
(*'/+) + bt lq : 1, starting and ending at (0, 3)

15. Moves down the first quadrant branch of the hyperbol
r.y - I from (+, l) to (sin 1, csc l)

17. 6 5

J

,-r/

a
-L

21.

-r.75

l. (a)

(-Z st

-3

23. (a) x:2cost,!:
(b) x:2cost,!:1+
(c) x- 2cost,y:1+

1-2sinr,0<t42rr
2sint,0 < t { 6n
2sin t, rrf2 < t < 3n/2

-22 6 40-4

5

(
/

\ \--
-3

3

)
( \(b) x +2y-3, -7<x<5



25.
(b)
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(a) x: asint,!: bcos/,0<t42n
8

-8
As b increases, the ellipse stretches vertically.

x - d cos 0, y - bsinO; (x2 /az) + (y' lb') - 1, ellipse

v

2a

5' ,:(+)' ,:(*)'5 ):lo'r l,:3'

The functions with base

those with base less than
reflections of the former

(c)

29.

greater than I are
I are decreasing.

about the y-axis.

increasing and

The latter are

31. 7. y 9. . )

,{

> 0, there is a loop

-l

35. As n increases, the number of oscillations increases;
a and b determine the width and height.

Exercises 1.5 r page 62

l. (a) f (x) - a*, a ) 0 (b) R (c) (0, *)
(d) See Figures 4(c), 4(b), and 4(a), respectively.

33. For c : 0o there
whose size increases

is a cusp; for c

as c increases.

5 Y-20"'y-5' y=t''

+ -@, all pass through (0,

the base, the faster the rate

-3

I

15.
(d)

17.

23.
(d)

(a) Y : e' - 2

!:e-* (e) y
f(x):3'2'
(a) 3200 (b)
60,000

(b) Y : e'-2
: -e-x

(c) y - -e*

21. Atx:35.8
l0o . 2'/z (c) 10,159

t-26.9h

3.

-l

Exercises 1.6 r page 73

l. (a) See Definition l.
(b) It must pass the Horizontal Line Test.

3. No 5. No 7. Yes 9. Yes 11. No
13. No 15. No 17. 2 19. 0
2I. F - ?C + 32;the Fahrenheittemperatureasafunction
of the Celsius temperature; (-273.15, oo)

23. f -'(x) : (5x I)/(zx + 3)

25. f-'(") - (x? - 2)/5, x 2 0

27.y-e"-3

0

All approach 0 as x
increase. The larger
forx > 0.

l), and all
of increase
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2s.f-'(*):n 59. (a) y: lnx + 3

(d) y: ln(-x) (e)
(g) y : -e* (h) y

A8l

- ln(x + 3) (c) y : -lnx
(f) ! : e-*

3

33. (a) It's defined as the inverse of the exponential func-
tion with base a, that is, log ax : )r <= a! : x.
(b) (0, *) (c) R (d) See Figure 13.

35. (a) 6 (b) -2 37. (a) 2 (b) 2 39. 3ln2
4I. (a) 2.321928 (b) 2.025563
43.

,--- 
- y: log,.-, x

y:lnx
Y = log,or
4
y - logro x

-5
All graphs approach
and all increase. The
increase forx ) 0.

45. About 1.084.588

-oo as J -+ 0*, all pass through (1,0),
larger the base, the slower the rate of

mi
47. (a)

Exercises 1.7 r page 82

l. (a) 15

aa

61,000

Yes, appropriate
(b) y : -0.000105357x * 14.521429

l5

61,000

(c) y : -0.0000997855x + 13.950764 [See graph in (b).]
(d) About 11.5 per 100 population (e) About 6Vo

3. (a) y : 301.813054 r-o'1e8762x'

y: -0.00243042x4 + 0.13515gx3 - 2.014322x2
4.055294x + 199.092227
(b) Exponential model: about 202.8 million tons in 1972,
27.8 million tons in 1982. Polynomial model: about
184.0 million tons in 1972, 43.5 million tons in 1982

5. y : 0.0272238976x3 - l62.l725g3lxz +
322,017.833x 213,136,407.3:
1982, 3l.4Vo; 1995,21.7Vo; about I year

f-t ,r'

,'f

-2

(b)

49. (a) 4ln2 (b) I/e
51. (a) 5 + logr3 or 5 + (ln3)/lnz
53. 4

(b) i(t + Jr + +'7

ChapterlReviewrpage

True-False Quiz
1. False 3. False 5.

84

True 7. True

Exercises

l. (a) 2.1
(e) l- 4, 4l
(e) odd; its

(b) 2.3,5.6 (c)
(f ) No; / fails the

graph is symmetric

[- 6, 6] (d) l- 4, 4l
Horizontal Line Test.
about the origin.

(b) 150 ft3. (a) d

150

r00

50
55. ,f -'(") :_-(w/o)(ffi-ffi+w),
whereA - 3 6 ;twoof theexpres-
sions are complex.

57. (a) f -t(n) : (3/ln2)ln(n/ 100); the time elapsed when
there are n bacteria (b) After about 26.9 h

5. l-z JT /z, z ,E /3], [0, 2] 7. ( - oo, m), (0, ll
9. (a) Shift the graph 8 units upward.
(b) Shift the graph 6 units to the left.

45r

\

I
i
t
I

It./l/t,/\/
,\--

f-l

-2
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(c) Stretch the graph
I unit upward.
(d) Shift the graph 2
downward.
(e) Reflect the graph
(f ) Reflect the graph

APPENDIX I AI{SWERS TO ODD.I{Ul.IBERED E)(ERCIITS

vertically by a factor of 2, then shift it

units to the right and 2 units

about the x-axis.
about the line y : x (assuming/is

31.

13.

17. (a) Neither (b) Odd (c) Even

19. (f " g) (x) _ ln(x2 - 9), (-@, -3) U
(g " /) (x) - (ln x)2 9, (0, *)
(f " /) (x) - lnlnx, (1,*)
(g " g) (x) - (x2 - 9)' - 9, (-*, *)
21. | 23. (a) 9 (b) 2

25. (a) * g (b) m(t) - 2-tt+

(c) t(m) - -4log 2m; the time elapsed when there are

m grams of 'noPd
(d) About 26.6 days

27. ? -l -Z -4

-l

33. .y : 0.263x - 450.034; about 76.0 years

Principles of Problem Solving I page 92

1. a : + ttW - te t&, where a is the length of the altitude
and h is the length of the hypotenuse

3. -\,g
5.

9.5
17. f^(x)

6) u (t + 
'E,zl

CHAPTER 2

Exercises 2.1 t page 100

l. (a) -0.43, -0.35, 0.2, 0.8, 1.1 (b) 0.5 (c) 0.57

3. (a) (i) 0.236068 (ii) 0.24264t (iii) 0.2484s7
(iv) 0.249844 (v) 0.249984 (vi) 0.267949
(vii) 0.258343 (viii) 0.251582 (ix) 0.2s0156
(x) 0.2s0016 (b) i (c) .y - i" + I

5. (a) (i) -32 ftls (ii) -25.6 ftls (iii) -24.8
(iv) -24.16 ftls (b) -24 ft/s

7. (a) (i) f rtls (ii) Irr/s (iii) fitrls (iv) #
(b) I ft/s (c)

(ii)

' (1il)

"'(iv)

-l

7.

(d) Neither

(3, *)
11. x € [-t,t

';ttt I

-x-

ftls

ftls

-39
>;

t'2

.f

4

J

2

I

4

For c < 0,/is defined everywhere. As c increases, the dip
at x - 0 becomes deeper. For c > 0, the graph has asymp-
totes at x - !r/c.

7

one-to-one).

y: cos 3x

\r
,\ !,

itiit\it
il

tt!ttl
ili
t ti
i li
/,fi
rti

29. (a) .y: .rF;
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9. (a) 0,

-2.1651,
(b) r

I.732t, - r.0947, -2.7 433.

-2.6061, -5, 3.4202; no

4.3301 , -2.9173, 0,

(c) -3r.4

(vi) Does not exist

31. (a) (i) -2 (ii) Does not exist (iii) -3
(b) (i) n 1 (ii) n (c) a is not an integer.

39. 15; - I
Exercises 2.2 r page 109

l. Yes

3. (a) 3 (b) 2

(e) 1 (f) -l
5. (a) I (b) 0

(c) -2 (d) Does not exist
(e)-l (h)-l (i)-3

(c) Does not exist Exercises 2.4 r page 128

1. lim" -o f Q) : f (4)

3. (a) -5 (jump), -3 (infinite), - I

3 (removable), 5 (infinite), 8 (jump),
(b) -5, left; -3,left; - 1, neirher; 3,

8, right; 10, neither

7. y

9. 0.806452, 0.64t026, 0.5 t0204,0.409936, 0.369004,
0.336689, 0. 165563, 0. 1 g37gg, 0.229359, 0.274725,
0 .3021 I 5, 0.33002 2: I
11. 0.459699, 0. 499670, 0.493369, 0.496261, 0 .499336,
0.499593, 0. 499g96, 0 .499gg6; *

13. (a) 4
15. (a) 2.71828; it is the value of e

(b) 6

\
\

-2

17. (a) 0.998000, 0.638259, 0.358484, 0.158680, 0.038851,
0.008928, 0.001465; 0
(b) 0.000572, -0.000614, -0.000907,, -0.000978,
-0.000993, -0.001000; -0.001
19. Within 0.182: within 0.095

Exercises 2.3 I page ll8
l.(a)s (b)e (c)2 (d)-+ (e)-i (f)0
(g) Does not exist (h) - *
3. 75 5. - 3 7. 0 9. Does not exist 11. - l0
13. 6 15. -rEt+ 17. t 2L. | 25, o

27. Does not exist

29. (a) (i) 0 (ii) 0 (iii) 1 (iv) 4 (v) 6

(b) Discontinuous
t - 1,,2,3, 4

11. "f(- l) is not defined 13. lim, -.0 f U) + f (4)

(undefined),
l0 (undefined)
neither; 5, neither;

7 ' (a) 
cosr

(in dollars)

3

J

-l

17. R 19. (-*, -1) U (1,*)

r--

Time
(in hours)

at

15. {xl x +
2l.x-0

-+,+)

23, i 25. I
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27. At - 1, continuous from the left;
at l, continuous from the right

29. + 37. (b) (0.44,0.45) 39. (b) 5.016 43. Yes

Exercises 2.5 r page 140

1. (a) As x approaches 2 , f (*) becomes large.
(b) As x approaches I from the right,/(x) becomes large

negative.
(c) As r becomes large , f (*) approaches 5.

(d) As x becomes large negative,"f(x) approaches 3.

3. (a) co (b) oo (c) - oo (d) I (e) 2
(f) x: -l,x-2,!:I,y:2

9. 0 11. 1.5 13. x : -1.62,x : 0.62,x : l,y : 1

15. oo 17. -co Ig. 0 21. -3 23. i
25. Does not exist 27. n 29. 0

31.J:-l,y:l,y:l
33. (a) IV (b) III (c) II (d) VI (e) I (f) V
35. (2 x)/lx'(* - 3)l 37. (a) 0 (b) oo or -oo

39. 4 4L. (b) Concentration approaches that of the brine.

43. (b) 23.03 (c) Yes, x ) 10ln 10

Exercises 2.6 I page 149

- .,.f(x) -/(3) .,\ f(x)-f(3)l. (a) ------- - tbt lim 

-

x3x-3x3
3. Slopes at D, E, C, A, B

5. (a) (i) -4 (ii) -4 (b) y : -4x - 9

(c) s y-x2*2x

-4

13. (a) 0 (b) C (c) Speeding up, slowing down,
neither (d) The car stopped.

15. -24 ft/s 17. ILaz + 6,18 m/s, 54 mfs, Il4 mls

Greater (in magnitude)

2t. (a) (i) -r.z"clh (ii) -l.25"clh (iii) - 1.3 "c/h
(b) - 1.9 'C/h
23. (a) (i) $20 .Z\/unit (ii) $20.05/unit (b) $20lunit

Exercises 2.7 r page 156

[. The line from (2, f(2)) to (Z + h, f(Z + h))

3. g'(0), O, g'(4), g'(2), g'(-Z)

(c)

7.

9.
(b)

7;y:7x 12

(a) -2;y:-2x- I

8

\
\/

\/
(1, -3) ----.\-

-6

\,
\

11.3.296 13. I-4a 15.-(o'+l)/(a' l)t
L7. f(A :,8, a - I 19. f(x) - 16e,, a : 1

2L. f(x) - sin x, a - nf 2 23. -2 mls

25. (a) The rate at which the cost is changing per ounce of
gold produced; dollars per ounce
(b) When the 800th ounce of gold is produced, the cost of
production is $17/oz.

15 (c) Decrease in the short term; increase in the long term
7. y - +x + +

11. (a) 3az - 4

-2

g. y - Ix + i
(b) y:-x l,y-8x

(in "F)

Z Time
(in hours)



27. (a) The rate at which the fuel consumption is changing
with respect to speed; gal/mi
(b) The fuel consumption is decreasing by 0.05 gal/mi as

the car's speed reaches 20 mi/h.
29, The price of coffee beans was rising by about

$0.54/kgfyear rn 1983 and falling by about $0.065/kg fyear
in 1990.

31. Does not exist

Exercises 2.8 I page 168

1. (a) -2
(b) 0.8
(c) -l
(d) -0.5

APPE]{D|X I At{SWtRS T0 0DD-ilU],tBtItD t)(tRCtSil A85

t r988 I 989 l 990 I 991 t992

u'(t) - 0.45 0 0.7 0.95 0.7

29. 4 (discontinuity); 8 (corner); -1, 1l (vertical tangents)
31. z

-l

Differentiable at - l; not differentiable at 0
33. a-f,b:f',c:f"
35. a- acceleration,b: velocity,c: position
37. f'(x) : 4 2x, f"(x) - -2

(a) II
v

(b) rv (c) I

4x39. 7'1x1 -
,fto'(") - o

4L. (a) I o-'')

43.7'1x1 - J -l
Ir

if;
ifx

y4

6
or

6

f '(x) : sx

17. (a) 0, 1,2,4 (b) -1, -2, -4 (c)

19. f'(x) : 5, R, R
zt. s'(x) - r/'m,[-*,*), (-*,*)
23. f '(x) : -2/(x l)', {*l* * l}, tr l* *
25. (a) f'(x): l+2/*'
27. (a) The rate at which the unemployment
changing, in percent unemployed per year

Exercises 2.9 r page 174

l. (a) 1.0986 (b) 1.0549, 1.1099
(c) z

f'(x) - 2x

1)

rate is
Less; the tangent line
lies below the curve.

Jt----\
/

(d) rrr
6

1',\,fi'
f"

\

3

/\ \/'
ryn

f 'f
I

\ilf
-7

t l 983 r984 l 985 I 986 r987

u'(t) -2.1 -r.2 -0.25 - 0.5 - 0.75

(b)
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3.(a)+ (b)i"+3
(c) 0.83333, 0.96667, 0.99667, 1.00333, 1.03333, 1.16667,

1.33333; overestimates; those for 0.99 and 1.01

(d) 2

(l,l)
The tangent lines lie
above the curve.

1.1, 1.2; underestimates5.
(c)

2

I .02,

7. 148 'F; underestimate 9. 32.5Vo, 35Vo

11. (a) 4.8, 5.2 (b) Too large

Exercises 2.10 I page 180

1. (a) Increasing on (-cc,0) and (3, *); decreasing on (0,3)
(b) Local maximum at 0, local minimum at 3

(c) -v

(a) Increasing on (0, *); decreasing on (-*,0)
Minimumatx:0
b

25.

Chapter 2 Review I page I82

True-False Quiz
1. False 3. True 5. False 7. True
11. True 13. False 15. False

0

(a)

2

19.
(b)

2L.
23.

Exercises

L. (a) (i) 3 (ii) 0

(iii) Does not exist; lim.,--: - f(x) # Iim.-,-3+ f(*)
(iv) 2 (v) oo (vi) - oo (vii) 4 (viii) - I

9. False

13. 0

(iv) 0 (v) 0

3. Increasing on (2,5); decreasing on (-F, 2) and (5, *)
5. If D(t) is the size of the deficit as a function of time,
then at the time of the speech D'(t) > 0, but D"(r) < 0.

7. (a) The rate starts small, grows rapidly, levels off, then

decreases and becomes negative.
(b) (1932,2.5) and (1937, 4.3); the rate of change of popula-
tion density starts to decrease in 1932 and starts to increase

in 1937.

9. ,((3) K(2); concave downward

ll. (a) Increasing on (0,2), (4,6), and (8, *);
decreasing on (2,4) and (6, 8)

(b) Local maxima at x - 2, 6; minima at x - 4, 8

(c) Concave upward on (3,6) and (6, *), concave downward

3.0 5.2 7,0 9. oo 11.-l
15.0 L7. x:0,y-0 19. 1

2L. (a) (i) 3 (ii) 0 (iii) Does not exist
(vi) 0 (b) At 0 and 3 (c) y

3

25. (a) (i) 3 m/s (ii) 2.75 m/s (iii) 2.625 m/s
(iv) 2.525 m/s (b) 2.5 m/s
21. f "(5), o, /'(5) ,f '(2), l,,f '(3)

29. (a) -0.736 (b) Y : -0.736x + 1.104

(c) t.s
on (0, 3) (d) 3 (e) )



AA7

31. (a) The rate at which the cost changes with
the interest rate; dollars/(percent per year)
(b) As the interest rate increases past lOVo, the
increasing at a rate of $1Z}1/(percent per year).
(c) Always positive

33.

APPENDIX I AI{5WERI TO ODD-IIUI'lBERED I)(TRCISTS

CHAPTER 3

Exercises 3.1 r page 199

l. (a) See Definition of the Number e (page 198).
(b) 0.99, 1.03; 2.7 < e { 2.8
3. !', : gx7 5. y' : -?x-tts 7. f,(x) - 2x l0
9. V'(r) : 4rrt 11 . Y'(t) - _ 54t-ta
13. F'(*) : 12,288x2 15 . g'(x) - Zx - (2/*')
17. y' :ir/i + (zt ,li) - 3/(zxrl;) tg. y' :3 + ze,
21, 4x 4x3 23. 45xta 15x 2 25. I - x -2/t

27 . (a) 0 .264 (b) zttt /5 : e. 263902
29..y:4 31..y-3x++

3

T,,

-2

33. f '(x) : 4x3 - 9x2 + 16, f "(x) - l2x2 18x
35. f'(x) : 2 - f x-'t4, f"(x) - H x-st+

37. (a) u(t) - 3tz - 3, a(t) - 6t (b) tZ mfsz
(c) a(l) - 6m/s'
39. (a) 16 million/year; 80 millionfyear
(b) P'(t) - 3at2 + 2bt + c
(c) 14.0 million fyear (smaller); 78.8 million fyear (smaller)
(d) 86.5 million /year
41. (tn * , *) 43. (1, o), (- + , #)
47. (*2,4) 49. y - +r - I

53. P(x):x'-x +3
55. (a) F(r) - *xt + C, C any real number; infinitely many
(b) F(x) - i"o + C,**'+ C, C any real number
(c) F(x) : r"nt /(n + 1) + C, C any real number
57.!:2x2 x 59. 1000

Exercises 3.2 r page 205

l. y' : 5xa + 3xz + 2x 3. f'(*) - x(x + Z)e"
5. y' : (x 2)e. fxt 7. h'(x) - -316 l)t
9. G'(s) - (2s + l) (s2 + 2) + (rt + r + 1) (2s)

[:4s'+3s2+6s+2]
11. y' :1,/i + (zt ,/i) - 3lQxG)
13. y' : (r' 2)e'
15. .y' : -(4x3 + 2x)/(xa + x' + l)t

respect to

cost is

35.
(c)

-3

(a),f'(x) - -ifl Sx)-tz:

6

(b) (- *, i ], (-.o, 3 )

37. -4 (discontinuity), I (corner),2 (discontinuity),
5 (vertical tangent)

39. (a) I (b) x + I (c) 0.8, 0.9, 0.99,, 1.01, l.l,
(d) Underestimates; those for e-00r un6 e0'0r

41. (a) Increasing on (-2,0) and (2,*);
decreasing on (-co, -2) and (0,2)
(b) Maximum at 0; minima at -2 and 2
(c) Concave upward on (-*, -l) and (1, *);

45. (a) About 35 ft/s (b) About (8, 180)
(c) The point at which the car's velocity is maximized

Focus on Problem Solving t page 187

1.i 3. -4 5. | 7.a:*tir[
g. (b) Yes (c) Yes; no 11. (tr/TlZ, i)
13. (a) 0 (b) I (c) f '(*) : x' + I 15. i

T,2

f

f'
)

-6

l0

t
12,4)

A
-10

concave downward on (- 1, 1)
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17.f'(x):Zcxl(x' + c)'
19. (a) )' - +r + I (b)

APPEiIDIX I Al'lSWERS T0 0DD-tlUl'lBERtD t)(ERCISES

-0.5

2L. (a) (r' 3x?)e',l*u l- e 
*(x -3 3x -o)]

23. (a) xe', (x + l)e'
25. (a) - 16 (b) - T (c) 20 27. 7
2s. (a) 0 (b) - .1

31. 97.322 billion per year

33. (-3, *) 35. Two, (- 2 4- ,8,(r ; tlT)12)
39. (*' + }x)e.', (.rt + 4x + 2)e", (x2 + 6x + 6)e"
(rt + 8x + l})e', (rt * lox + Zo)e.;

,f ""(r) - [r2 * 2nx + n(n 1)]e.'

19. (a) 0.926 cm/s; 0.694 cm/s; 0

(b) 0; -92.6 (cmls)lc^; -185.2 (cm/s)lcm
(c) At the center; at the edge

2I. (a) C',(x) -3 *0.02x+0.0006x2
(b) $1l/yd, the rate at which the cost is changing as the

100th yard is being produced
(c) $l l.07yd
23. (a) ["p'(t) - p(x)] l*': the average productivity
increases as new workers are added.

25. -0.7436 K/min
27. (a) 0 and 0 (b) C : 0

(c) (0,0), (500,50); it is possible for the species to coexist.

Exercises 3.4 r page 225

1. cos,T sin x 3. 2x cos x x2 sin x

5. -2 csczx -' ..,6 t.a x tan x - | x*'/t sec x

7. (x sec 
2x tan x) f xz

9. (sinx + cosr * xsinx rcos x)10 + sin 2x)

11. e*(tan2x + tanx - x) 17. )' : 2x * 1 - nlT
19. (a) .)' - - x (b) I

21. (a) 2 csc tx

23. g'(s) - 2s cos s s2 sin s,

g"(s) - (2 sz) cos s 4s sin s

25. (2n + l)n + n/3, n an integer
27. (nl3,5rr/3)
29. (a) a(t) - 8 cos /, a(t) - -8 sin r
(b) 4,,8, _ 4, -aJT; to the teft; speeding up

31. 5 ft/rad 33. - cos -r

35, A: -t,B: -ro-]-

37. 4 39. + 4r. t

Exercises 3.5 r page 734

l. 10(x2 + 4x + 6)o(x + 2) 3. -sin(tan r) sectx

s. e''r / (z Ji ) 7. s'(x) - (2x 7) I Q ,ff - 7- )
g. y' : _3x? sin(*') 11. y' : S-t/'(ln 5)/x2

13. )" : e-*'(l - 2x')
15. G'(x) : 6(3x - 2)e(5x2 - r + 1)'1(85x2 - 51x + 9)

17. y' : (cosx - xsinx)e'cosx
19. F'(y) - 39(y 6)'/(y + 7)r

2I. f'(z): -zr(Zt l)-ers

23, .y' : sin(Ux) cos(Ux)lx
25. y' : 6x 2 tan(*') sec 

t(x 3 
)

27. )'- [l + UQJ;)]/(zrl * + 6)
29. y' : cos(tan .t6i" 'r ) (sec t uisin x )lttQ..,6it t )] (cos x)

31. ),: -ftx + i

1.5

v-4

Exercises 3.3 r page 217

1. (a) 3t2 24r + 36 (b) -9 m/s

(d) 0< t<2,t>6 (e) 96m
(f) r:6,

(c) t:2,6

(g) 6t 24: -6 mfsz

-l

*25

(i) Speeding up when 2

slowing down when 0 < t < 2 or 4 { t < 6

3. (a) r-4s
(b) t - 1.5 s; the velocity has an absolute minimum.
5. (a) 30 mm'l^^; the rate at which the area is increasing

with respect to side length as ,r reaches l5 mm
(b) AA : 2x L,x

7. (a) (i) 5n (ii) 4.5rr (iii) 4.rn (b) 4n
(c) AA : Znr L,r

9. (a) 8n fr? lft (b) l6n ft? lft
(c) 24n ftz lft The rate increases as the radius increases.

ll. (a) 6 kg/m (b) 12 kglm (c) 18 kg/m;
At the right end; at the left end

13.(a) 4.75A (b)5A; t -3s
15. (a) dvldP : -ClPt (U) At the beginning
!7. (a) a'kl(akt + l)t
(c) It approaches a moles/L
(d) It approaches 0
(e) The reaction virtually stops.

,4.

-5



33. (a)

(b)
y:i*+1

a

J

19. (a)
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8 points; 0 .42, 1.58

(b)y:-x+1,
y-*x+2

(c) r+ \E13

35. (a) -U6'z \E - x'? ) Sl. 28

39. (a) i (b) Does not exist (c) -2 41. -17.4
43. (a) (0, *) (b) G'(x) - h'(6 ) /Q t/i )

45. (a) F'(x) - e.f'(e.) (b) G'(*) - tr@f'(x)
47. x - Znr or (2n + l)n -r rrl3, n any integer

51. -zso cos 2x

53. u(r) - (5n12) cos(l}rrt) cm/s,

a(t) - -25n2 sin( I}nt) cm/s2

55. (a) dBldt : (7nl5a) cos(Znrfs.4) (b) 0.16

57. daldt is the rate of change of velocity with respect to

time; da/ds is the rate of change of velocity with respect to
displacement.

59. (a) Y : 100.01 2437e*ro'oo553rr

6l.y:(l/n)x-n
63. (a) y: JT* 3\/t,y_ -rE* + 3\/t
(b) Horizontal at (1 ,t2); vertical at (0,0)
(c) 3

65. (b) The factored form
67. (b) - n cos"-'x sinf(n + l)t]

Exercises 3.6 I page 245

1. (a) y' : -(2x + y + 3)lx
(b) y : (5lx) - x - 3, !' : -(51*\ I
3. ( y 2x) /(3yt - ") 5. - "' ly'
7. 1 + [e.(1 + x)]/sin(x - y) 9. -y/x
11. y:-Jx-4 13.):.r 15.y
17. (a) y - Z* - 1,

(b) 5

/,

/\
-2

-3
zl. 1rs.,6 /+,tsl+)
23. (a) y' : -*t ly' (U)

25. Y' : Z*/ ,lT - f 27.
29. H'(x)- I + Zxarctanx
31. f '(x) - e"\ - x2 lQ + x')
35. A

4

(

(

--
\

3*'y' - 3*'y'(- *'/yt)
-yu

y':e-l(+e")

2x arctan x

(b) -670.625828 p.A

43.(t\/T,O) 45.(-1,-l),(1,1) 47.(b)+
49. (a) 0 (b) - +

Exercises 3.7 r page 252

1. The differentiation formula is simplest.
3. f '(0) : -tan? 5. ,f'(;) - ZxllQz a) ln 3]
7. g'(x): -2al @'- *') 9. F'(x) - l/(zx)
ll. f'(x) - (2 + lnx)lQ'/*)
13. y' : (3x 2) llx(x - 1)l 15. y' : - x/ (I + x)

- -f;x + f$ I7. y' : Il Qln 10),!" 
= 

-U(xtln t0)
19. f',(x) - Zxln(I - ,') Zx3 /(t - xt), (-1, 1) 21. 0
23. (a) (0,1/e) (b) (0, *)
25. y', : (3x 7)4(8x2 - 1)t[12/(3x - 7) + 48x/(8xt - 1)]

27.)., : (x + l)a(x I 5)3 f+ *' - -+l' (x 3)* fx+l x-5 x 3l
29. y' : x"(ln x + 1) 31. y' : J*'n"[cosx ln x + (sin x)/r]
33. y' : (ln x)'(ln ln x * l/ln x)
35' Y' : 2x/(x' + Y' - 2Y)

37.fh)(x)-(-l)"-t(o l)I/(x l)'



a

_)

\y-l-*x

\
1'-nrnf--

(0, l)

\
(1,0) \

A90

Exercises 3.8 r page 258

l. t(x) : 3x 2 3. l,(x) - I

5..1 -_x:l-*t;
Jo.g : 0.95,

Vb.99 : Q.995

APPENDIX I Al{TWERS TO ODD.t'lUl.tBERID EXERTIIIS

True-False Quiz
1. True 3. True
11. True

Exercises

5. False 7, False 9. True

25. ]" :
(x 2)o(3"t - 55-r 52)

27. *120
zn/f + t (" + 3)*

29. 2'(ln 2)"
31. (a) (10 3x) l(Z ttr ,- t
(b) .l' -_ ]x + i, ),- -.f, + I

35. (a) 2

39. /'(x) -
43. f '(x) :
45. h'(x) -

(b) 44 37. f '(x) : Zxg(x) * x'g'(*)
2g(*) g'(x) 4L. f '(x) : g'(e ')e'
s'(x) / s(x)
./'(x) [g(x)]2 + .g'(r) [ /(x)]2 ,- ,

t/(r) + g(")l ? :- 47' (-3' o)

49. (tzl ,la ,q/116 )

51. u(t) - - Ae-t'rlc cos(c.rr + 6) + or sin(ror + E)],
a(t) - At-'"I(r' - a.,2) cos(arr + 5) + 2ctosin(rrrr + 6)]
53. 4 kg/m
55. (a) C'(x) - 2 0.04x + 0.00021x2
(b) 0.1; the approximate cost of producing the l0lst unit
(c) C(101) C(100) - 0.10107
(d) About 95.24; at this value of x the marginal cost is
minimized.
57, (a) L(x): 1 * x; ln + 3" : I + r; .,7TJ3 : 1.01

(b) -0.?3 {x<0.40
59. (cos 0)'l r:,/, : - rli tZ 61. *

Focus on Problem Solving r page 264

l. (0,:)
3. (a) [- 1, 2]

, I i- 

-- 

r t- / /-------_-.-- \(b)-tl(ttv3 x12 v3 rVl-i2 /3 x)
5. (a) +n rlz /"IT radls (b) 40(cos 0 + VE-+.d'g-) r*
(c) - 480rr sin 0 (l + sin g ror B/.u&-l-coi:?- ) cm/s
9. Jr € (3,*), )'r € (2,*), r,1, € (O,i), -)',n,€ (- i,O)
ll. /(")(r) - nll(l - r)"*'
13. (b) (i) 53' (ii) 63' (or 117")

15. R approaches the midpoint of the radius AO.
17. (1, - 2), ( - I , 0) lg. Jzg /59

CHAPTER 4

Exercises 4.1 r page 272

2x

7. -0.69 ( x ( 1.09 9. -0.045
11. (b) -0.344 { x < 0.344
13. (a) dy : --sin x clx

(b) dr- - -0.025, AJ': -0.02607
15. (a) 270 cm-' (b) 36 cm2 17.

Chapter 3 Review I page 260

-l

( x { 0.055

5nl
iTr: /.m

l.
3.
(b)

is

clVfdt - 3x? dxfrtt
(a) The surface area
The rate of decrease

10 cm

decreases at I cmrfmin.
of the diameter when the diameter

(d) S - rrx'
(e) l/(20n) cm/min

(c)
(c)

-10

33. e'in-'(JCosJ + l)

-6r

-50
The sizes of the oscillations of l'and /' are linked.

5. (a) The plane's altitude is I mi and its velocity is
500 mi/h.
(b) The rate at which the distance from the plane to the sta-
tion is increasing when the plane is 2 mi from the station
(c) (d) .yt : x' + I

,- i.j zsorinilhll -/,/'
7. 65 mi/h g. 8371 j8614 - g .99 t'tls

N,,

40

fY'
,r! ,,'Yr

I 'i 
,,'if

il

VV
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11. - 1.6 cm/min 13. l0l .rret : 0.87 ft/s

15. f cm/min 17. 616rr) ft/min 19. 0.3 m2/s

21. 80 cm3/min 23. (a) 360 ft/s (b) 0.096 radfs

25. 1650/ ",ff - 296 km/h 27. 7 trc h : $.78 m/s

Exercises 4.2 I page 279

l. Absolute minimum: smallest function value on the entire

domain of the function; local minimum at c: smallest func-
tion value when x is near c

3. Absolute maximum at b,local maxima
absolute minimum at d, local minima at d

5. Absolute maximum f (4) - 4; absolute

f(7) : 0; local maximaf(4) - 4 and f(6)
local minima f(2) - I and/(5) : 2

7.yt9.)

13. (a)

at b and e,

and s

minimum

-3;

No maximum, absolute
minimum f(-l) : -l

Local
local

Local and absolute maximum

/(0) : l, absolute
minimumf(-2): -3

and absolute maxi ma f (rrl2) - f (-3n/2) - l,
and absolute minima f (3rrl2) - f (- n/27 : - I

(b)

21. No maximum or minimum

23. No maximum,
absolute minimum

/(0) - 0

zs. - ),2 27. o, (-3 + t5)lz 29. +1

31. O, +, 4 33. nn/4 (n any integer) 35. Ue

37. f(3) - 5,,f(l) : I 39. f(2) - 55, f(-2) : -57
41. f(2) : 5,/(l) - 3 43. f(nl4) - t/r,/(0) : I

45. f (l) - lle, f(0) : 0

47. (a) 9 .71, -7 .71 (b) | 1- 32 J 6 /9
49. (a) 0.32, 0.00 (b) 3 11116, 0 51. 3.9665'C

53. a(126) : 62.87 m/s?,, a(23.12) : 21.52 mls'

55. (a) , : tru (b) a - *t rtu

(c) r'

*r,,?,
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Exercises 4.3 r page 292

Abbreviations: CD, concave downward; CU, concave
upward; HA, horizontal asymptote; IP, inflection point;
VA, vertical asymptote

l. 0.8, 3.2,4.4,6.1
3. (a) I/D Test (b) Concavity Test
(c) Find points at which the concavity changes.
5. J - 1,7
7. (a) Increasing on (-2, *), decreasing on (-ffi, -Z)
(b) No local maximum, local minimum f(-2) : -303
(c) CU on (-oc, cc), no IP
9. (a) Increasing on (- I, co), decreasing on (-ffi, - 1)

(b) No local maximum, local minimum/(-1) : -l/t
(c) CD on (-cc,, -2), CU on ( -2,m); IP (-2, -2r-')
11. (a) Increasing on (0, et), decreasing on (et, *)
(b) Local maximum f(u') - 2lr, no local minimum
(c) CD on (0, e8l3), CU on (e*/t, *); IP (r*''', te:+r':;
13. (a) Increasing on (j, :);
decreasing on (-oo, 1), (1, o")

(b) Local maximum /(3) : 10,

local minimum/(+) - #
(c) CD on (i,*), CU on (-*, i);
rP (i,#)
(d) See graph at right.

15. (a) Increasing on (0, *),
decreasing on (- *. 0)

(b) Local minimum /(0) : - I
(c) cD on (-t, -tlr/i), (tl*/5, t);
CU on (- m, - I ), (- l/r,r5, 1I t/i ) ,

(1, *): Ip (t l. 0), (t ll ,tT , - # )

(d) See graph at right.

17. (a) Increasing on (-m, -3), (-1,
decreasing on (-3, - 1)

(b) Local maximum/(-11 - 0,
local minimum .f(-l) : -:/T
(c) CD on (0, *), CU on ( -@, -3),
(-:, o); IP (0, o)
(d) See graph at right.

19. (a) Inereasing on ((2n

decreasing on (2nn,(2n +
(b) Local maxima f(Znrr)
loeal minima f((2n + 1)rr)
(c) CD on
(Lnn-ln,Znr+3tr),
CU on remaining
intervals:
IP (Lnn !?rn,-+)
(d) See graph at right.

l)r,Znn),
r)n)

.l
L,

--2

23. (a) HA )' - 0
(b) Decreasing on (-*, *)
(c) No local maximum or minimu
(d) CU on (-*, oc); no IP
(e) See graph at right.

25. (a) HA)': l, VAr -
(b) Increasing on (-*, -1),
(c) No local maximum or
minimum
(d) CD on (- + ,*);
CU on (-co, -1), (-t,-*);
IP (- +, Ut')
(e) See graph at right.

27. CD on (-oo, -2.1), (0.25,2): CU on ( -2.1,0.25),
(1.9, m); IP (-2.1,380), (0.25,L 3), (1.9, -gZ)
29. (a) Local and absolute maximum/(l) - J2,
no minimum ( b) (l ,tT ) t+
31. When t : 7.I7 33. CD on (-oc,0.l), CU on (0.1, oo)

35. /(x) : + (2*t + 3x2 IZx + 7) 43. l7

Exercises 4.4 I page 300

1. Increasing on ( - I . l, 0.3), (0.7, *); decreasing on
(-m, -l.l), (0.3,0.7); local maximum /(0.3) : 6.6, local
minima/(-l.l) : - 1.0, f(}.7) : $.3; CD on (-0.5,0.5),
CU on (-oo, -0.5), (0.5, *); IP (-0.5,2.5), (0.5,6.5)

21. (a) VA x - -F1, HA y : -l
(b) Increasing on (0, l), (1,-);
decreasing on (-*, -1), (-1,0)
(c) Local minimum "f(0) - I
(d) CD on (-oo, -1), (1,*);
CU on (-1,1); no IP
(e) See graph at right.

3. Increasing on (1.5, *),
decreasing on (- *, 1.5);
no local maximuffi,
minimum/(1.5) : -1.9;
CD on (-oo, -1.2), (4.2, oo);

CU on (-1.2,4.2):
IP ( -t.2,0), (4.2,A)

"-f
I

):-l J_T

(0, l)

-1(-1,*) 
I
IJ

9

\/

J

-2

a

-1

\ (

\. _)
-2

-3



5. Increasing on (-7, -5.1), (- 2.3,2.3), (5.l,l); decreasing
on (-5.1, - 2.3), (2.3,5.1); local maxima f(-5.1) : 24.1,

f(2.3) : J.9; minima f(-2.3) : -3.9,/(5.1) : -24.1;
CD on (-6.8, -4.0), (- 1.5,0),
(1.5,4.0), (6.8,7); CU on
(-7, -6.9), (-4.0, -1.5),
(0, 1.5), (4.0,6.8);
IP (-6.9, -24.4), _7
(-4.0, 12.0), (-1.5, -2.3),
(0, o), (1 .5, 2.3),
(4.0, -12.0), (6 .9,, 24.4)

7. Increasing on
( - co, o), (i , *);
decreasing on (0, i );
local maximum

/(0) - -10, minimum
/(t) : -#: -lo-l;
CD on (-*, *);
CU on (*, *);
rP (*,- -#)

-0.3

9. Local maximum

f(-l/'/T) : ,zns1e '= 1.5;

Iocal minimum
f 0/ t/T ) : '-2 

''tT ts : 0 '7:
IP (-0.15, 1.15), (- I .09, 0.92)

APPENDIX I A1'|TWE[5 TO ODD.l'|tJI'IBERED I)(TRCISES A93

x(x * l)2(x3 + t8x2 - 44x 16)

f"(x)-
^ (x * l)(xu + 36x5 +

(x 2)'(* - 4)' ''

6xo - 628x3 + 684 x' + 672x + 64)
2 (.r-2)*(.r-4)u
CU on (-oo, -5.0), (-1, -0.5), (-0.1,2), (2,4), (4,*);
CD on (-5, -l), (-0.5, -0.1); IP (-5.0, -0.005), (-1,0),
(-0.5, 0.00001), (-0. l, 0.0000066)

15. Maxima/(0.S11 - l,"f(0.68) : l,,f(l.96) : 1; minima

f(0.64) : 0.99996,f(r.46) : Q.49, f(2.13) : -0.51;
Ip (0.61, 0.ggg98), (0 .66,0.99998), (1.t7,0.72),, (t.75,0.77),
(2.28,0.34)

0.73

-2n

L7.

-2

ll. Local maximaf(-5.6) : Q.018,"f(0.82) -' -281.5,
f (5.2) : Q.0145; minimum /(3) : 0

0.02 Vertical tangents at (0,0), (- *, ;), (-8, 6);

horizontal tangents at (- (z rlI + 5)lg, -2 rlT /g),,
((z ,E s) /s,,2,lt /e)

19. For c : 0, there is a cusp; for c > 0, there is a loop
whose size increases as c increases and the curve intersects
itself at (0, c); leftmosr poi fi (2c ,/i lg, cn), righrmost
point (-2, '/i /9, cft)

25

A _^. I

V
-25

40

/a
-40

7.5

--_._/

-l

500

Il n
-1500
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2I. For c > 0, the maximum and minimum values are

always * + , but the extreme points and IP move closer to
the y-axis as c increases.

c :0 is a transitional value: when c is replaced by -c,
the curve is reflected in the x-axis.

0.2

0.5

Iz
;-4
-l

-0.6

23. There is no maximum or minimuffi, regardless of the
value of c. For c < 0, there is a vertical asymptote at r : 0,
lim* -ofG) : @, and lim a-t-x f (*) - l.
c:0 is a transitional value at which/(x) : I for x * 0,

For c > 0, lim"-o,f(x) : 0, lim,_-r*f(x) : l, and there are

two IPs, which move away from the y-axis as c ---> 6.

37.HAy:0,VAx-0

39. (a)

-0.25 t.75

-0.25

(b) lim,,--s* /(x) : 0
(c) Local minimurr,f(l/G ) : -I/(2e);
CD on (0, e -t/z)i CU on (e-3/2,oo)

4L. (a)

(b) lim*--*s* f(x) - 0 and lim, _-* f (x) _ I

(c) Local maximum/(e) : et/";IP at x - Q.58,4.37

43. For c > 0, lim,-- f(x) - 0 and lim*-*-*f(x)- -oo.
For c < 0, lim* -* f(x) - oo and lim,-+-oc f(x) - 0. As I c 

I

increases, the maximum and minimum points and the IPs
get closer to the origin.

3

-2

2

-3

49. f;a

2

c:0.5
*+
c:l \, ,r=

-l

4J li\-'--z
\+.'--,>\--

c = -0.5

-l

25. For c > 0, there is no IP and only one extreme point,
the origin. For c <-0, there is a maximum point at the ori-
gin, two minimum points, and two IPs, which move down-
ward and away from the origin as c -+ -oo.

4 t -l -2

Exercises 4.5 :
l.i 3. I
15. 0 17. 0
27. e-z 29.
35. HAy-0

-2.3

page 308

5.+ 7. oo 9.+
19. 0 21. 0

1 31.5 33.i

11. 0
23. I

13. 3

25, I

0.6

\
"/\

\
\

\-r/
,r'\/- /'\ ,./

I

(*'-;) 
/

X-lr-Z

''[\ 1,,/ /,'/



Exercises

l. (a)
50

4.6 r page 316

APPENDIX I Al|SWTRS TO ODD.}lUI.IBIRTD T)TRCIIES

7. (a) c(x) - 37o0lx + 5 0.04; + 0.0003x2,

C'(x) - 5 0.08x + 0.0009x2
(b) Between 208 and 209 units (c) c(209) :
(d) $3.ZZ/unit
9. 333 units 11. (a) About

13. (a) p(x) -- 19 (x/3000)

15. (a) p(x) - 550 (x/ 10)

Exercises 4.8 I page 331

l. x2:2.3,x2:3 3. i

12.500 ft2

75
7 . 2.t6573617 9. 1 .895494

11. -2.n490154. 0.25410169, 1.86080585

13. 0, 1.10914418, 3.69815361

15. -3.20614261 , I .37506 410

17. 0.15438500, 0.84561500 19. (b) 31.622177

25. (0.90455J,1.855217) 27. 11.28 ft 29. 0.76286c/o

Exercises 4.9 I page 338

l.4xr+3x2 5x+C
3. -31(2x1) + ct if x ) 0, -31 Qxa) + C2if x ( 0

5. (Ztt'/l) + (+t5t2 lSl + C

7. ran/ + (t'/Z) + C,,, (2n l)rrl2 < r < (2n + l)n/z
9. -rt + 5sin'rx + C ll.,r-t (*olz) + 4

13. /(x) - (x4 /tz) + (x5 lzo) + Cx * D

15. /(x) - 2ln(-x) + 1 17. f(x) - xt + 3x2 5x + 4
19. /(x) : - ln x + (ln 2)r ln 2 2l- l0
23. )

2

I

)1

t) )t

I

I
II
I

//-\\
/ /t-",\\-/

,/--\-\\\\--
.//-\'\-\\\

0

_-I

29.

IS

31. s(/) - 2t3/2 + 3

33. (a) s(r) : 450 1.9t t ( U)

(c) -9.8 J4so/4s : -s3.9 mls

'"mr2'soorr2
125b,'mI

(c) A-r), (d)5x+2y:750 (e) A-375x -itt
(f ) 14,062.5 ft2

3. 4000 cm3 7. (1.2, -0.6) g. Square, side tli ,
11. 3 cmt
13. Wi dth 601 V + zr) ft; rectangle height 3O/(4 + n) ft
15. (a) All of the wire for the square

(b) 40 Jt lO + 4 
'/T ) 

m for the square

r7. v - 2nR3 l(g /t )

19. (a) i st csc 0(csc g r/T cot g)

(b) cos '(rl '/t ) : 55' (c) os fft + sl Q J, )]
21. l0 lt /0 + Vt ) ft from the stronger source

23..y : -ix + l0 27. x :6 in. 29. 9.35 m

31. At a distance 5 2 tE from A

33. (a) About 5.1 km from B

(b) C is close to B; C is close to D;

WL - rlzs + *l*, where x:lB!
(c) :1.07; no such value (d) ,l4l 14:1.60
35. (a) Tt - Dlct, Tz: (2hsec7')lc1 + @ ?htan?)lrr,
Tt : ,Et,, + Dt lr,
(c) c1 :3.85, c2:7-66, h : 0.42

Exercises 4.7 r page 325

l. (a) C(0) represents fixed costs, which are incurred even

when nothing is produced.
(b) The marginal cost is a minimum there.
(c) c'

3. $l7.4}funtt; the cost of producing the l00lst unit
about $17.40

5. (a) $19,600; $19.60; $28/unit (b) 400 units
(c) $16lunit

0

)

0.6

0.4

0.2

200 yards (b)
(b) $e.s0

(b) $17s (c)

5. -0.6860

1.6 -r

\/ 45014 .9 : 9.58 s

(d) About 9.09 s

A95

$Zl .45f unrt

192 yards

$100

250

//t-r\\-//l
//t-.\\\-//I
/ / z-\, \ \-/ /

/ / z-...,\ \-/ /

rrArt?u

,/

-//./
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37. 225 ft 39. s rt/st 41. $742.09
45. (a) 22.9125 mi (b) 21.675 mr (c) 30 min 33 s

(d) 55.425 mi

Chapter 4 Review r page 340

True-False Quiz
l. False 3. False 5. True 7. False 9. True

Exercises

l. Absolute and local maximum f(-2) - 21, local
minimum f(2) - -11, absolute minimum/(-5) _ -60
3. Local and absolute minimum f@/a) - @/4) 1,

absolute maximum f(n) : n
5. (a) None
(b) Increasing on (i , *),
decreasing on (- *, I )
(c) Minimum f(i) - - #
(d) CD on (l , t);
CU on (-*, i), (1, *);
IP (+,-*a), (t,o)
(e) See graph at right.

7. (a) None
(b) Increasing on (-*, i ),
decreasing on (i , t)
(c) Maximum /(i ) - i
(d) CD on (-*, l)
(e) See graph at right.

9. (a) HAy - 0
( b) Decreasing on ( - co

(c) None
(d) CD on (-co, - 1),

CU on (1, *)
(e) See graph at right.

11. (a) None
(b) Increasing on (i tn 3, *),
decreasing on (-cc, j tn :)
(c) Minimum
1(i tn:) - 31t4 + 3-t/+
(d) CU on (-*, *)
(e) See graph at right.

15. Increasing on (-0.2, 0), (1.6, *); decreasing on
(-oo, -0.2), (0,1.6); local maximum/(0) : 2; minima
f(-0.2) - 1.96,/(1.6) : -19.2;CD on (-0.1,1.2);
CU on (-m, -0.1), (1.2,*); IP (-0.1,2.0), (1.2, -12.1)

-0.5

tY (+r/13 ,, , - ''t)

-5

19. Maximum at x: 0, minima at x : +0.87,
IPatx:-t-0.52
21, For C ) -l,f is periodic with period2rr and has
local maxima atZnrr + rr/2, n an integer. For C < -1,
/has no graph. For - I

For C ) l, / is continuous on R. As C increases,-f moves
upward and its oscillations become less pronounced.

23.a :-3,b:7 25.-l/(}n) 27.0 29. -i
31. + 33. 400 ttlh 3s. 13 ftls 39. 3 r/T ,=
41. 4/ '/t cm from D: at C 43. L : C 45. $11.50

47. -2.06342r
49. er - lnlxl + Cr ifx ( 0, €'' - lnl;l + Czifx ) 0

51. f(x) : Ztan-rx 1

53. /(x) : (xs lzg) + (*t /Q + x I

55. (b) O.le.' - cos,r + 0.9
(c) 5

17.

13. Increasing o:r (-/t,0), (0,,',/: ); decreasing on
(-*, -6 ), (.,5,*); local maximum f(r/t ) - 2 rE /g,,
minimum f(- rtr ) - -z,E /g;
CD on (-*, -16 ), (0, ,lA);
CU on (-,,6, 0), ( 6 , *);
IP ( 

'E 
, s ,le lrc), _s

(-,/6,-s./6ft6)

1.5

f

--/
-1.5

-l

l5

\

V
-20

57, No



r Page 345

11. (*12,m'14)

db1
,t, )

13. (a) -ran rl+#

6[. (b) About 8.5 in. by 2 in.
(c) 2ol tE in. by zo t/zll ,n.

63. (a) r,'€oo : 28 ft
(b) drfdt - -480ft(ft 4)llft 4)' + 16oo1v:

where k is the constant of proportionality

Focus on Problem Solving

5. (-2, 4), (2, - 4) 7. i
I+-
b

sec d

tl b= + c2 Lbc cos o

15. (a) xf (x2 + 1) (b) + 19. 11.204 cm3/min

CHAPTER 5

Exercises 5,1 r Page 359

1. (a) 40, 52

(b) 43.2, 49 .2

3. (a) 15, 12.1875

7.6815

APPENDIX I ANSWERS TO ODD-ll|Jl.IBENID E)(ERCISIS 497

(c) 9 .37 5, 9 .65625 (d) M6

,v

5. 1.9835, 1.9982 ,, 1.9993: 2
7. (a) Left: 4.5148, 4.6165,4.6366;
right: 4.8148, 4.7 165,, 4.6966
9. 34.1 ft. 44.8 ft 11. 155 ft

rs. (a) 
l,:, #I i5

(b) n'(n + 1)2(2n2 + 2n l) ll2 (c) +
17. sin b, I

Exercises 5.2 r page 370

1. 0.25 3. (a) 4 ( b) 6 (c) l0 5. 153. I 250

7. 1.8100 9. 1.81001414, 1.81007263, 1.81008347

11. i,i .o* x clx 13. .i,t, ,(2*' - 5x) r/x 15. i

17. 3.is le. lim i (r," sT!) 
+ - 

2

11-x[:r \ l't /n 5

2L (a) 4 (b) 10 (c) -3 (d) 2 23. 10

25. 3 + 9nl4 27. 0 29. .l'lt /(r) a" 31. -0.8
33.3 35. et e'

Exercises 5.3 I page 380

1. The increase in the child's weight (in pounds) between

the ages of 5 and l0
3. Number of gallons of oil leaked in the first 2 hours

5. Increase in revenue when production is increased from

1000 to 5000 units
7. -rz 9. -2_+ r/t 11. + !3. o(: VT - 2)15

15.

23. 28/rnz 25. n/2 27. *t' + e - + 29. ^+

31. T 33. 2 35. o, 1.32; 0.84

37. 3.75 4L. ixs/2 + C

43. 4x $r'lt + ] x2 + C
4s. (a) -Jm (b) f;m
51. (a) u(t) - !t2 + 4t + 5

53. 46{ kg 55. 1.4 mi
59. (b) At most 40o/o; fi

45. x'+ secx * C

m/s (b) al6i m

57. $58,000
61. 3

(b)

(b)

47. 3

v - f(x) )': "f(x)
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l. One process undoes
Fundamental Theorem

5. 2 = .f l, e"'dx { Ze

7. (a) 0,2,5,7,3
(b) [0, 3] (c) x -

APPENDIX I Al{SWTRS TO ODD-T,IU1'|BIRID E)(TRCISES

Exercises 5.4 r page 390

what the other one does. See the
of Calculus, page 388.

g'(x):1 + x'

35. f sinax + C 0.35

F

\

35. (b) 3, * 39. x[(ln x)3 3(ln x)2 + 6ln
4I. 2 e-'(t2 + Zt + Z) m

Exercises 5.7 r page 413

1. *rt - r 4ln(;2 + 9) + { tan-t (*13) + C
3. *u-t'(-3cos4x + 4sin4x) + C
5. (-Jg*r-tti +3lnl3x*.,6*'-rl+ c
7. jfx?sin '(*') + /r -7] + c

-(+2,- 9 _r+?9. 2 n'5 4x rr *;sin't* C

9.

(d) .),

25. (a) -zr/i, ,f4,, - 2, n any inreger > 0
(b) (0, l), (- ,/4" - | , -r/4u - 3 ), an,c

QT; - t,J4n + | ), n any inreger > 0
(c) 0.7

27. "f(r) - .l'i Q'/t) dr 29. f(x) : r't', e- g

31. (b) Average expenditure over [0, rl; minimize average
expend it ure.

Exercises 5.5 r page 400

1. (*t tltoo/zoo + c 3. iro, + c
5. -tllz(xz + 6x)l + C 7. (tn x)73 + C
g. i(r l):/z+ c ll. (z + xa13tzf6 + c
13. -z/15(t + t)tl + c 15. (l + er)nfn + C
17. {tan30+ C 19. -{costx+ C

21. -{cosrx+f cos'tr-}costx+ C

23.jtnlzx ll+C zs. lnltn;l+C
27. x e'r + c 29.*tnlx'+ 2*l+ C
31.ran-rx+ jtn(t+xt) + C

33. tt, , -l , + C6(3r' - 2x + 1)' t.j

-0.35

37. # 39. ir/B 41. l* 43. 0
4s. (+rE tz) - (s,/i ltz) 47. o 4s.I rn s
53. /t - + 5s. 6n
sT.jtnlx ll *rnl"+ll+C
se. frtnlzr tl- *lnlx + zl + {rnlxl+ c
63. -r?l +7 /@x) + c
65. l5l @n)llt cos(2zr rl5)l L G7. 5

Exercises 5.6 r page 407

l. (xr" /2) (r" /4) + C
3. -|xcos4x + *r sin4x + C

5. Jx2sin 3x + fi"cos 3x - h sin 3x + C
7. r(lnx)r 2xlnx+2x*C
9. j lsin Z0 20 cos}?) + C ll. r,q3 ln r t)/g +
13. e'u(Z sin 30 3 cos 30)ll3 + C
15. I - z/t t7" - + 19. (n tz + 6\/T)/tz
2I.2ln4 - i 23. -l
25. 2(sin ,/i - .'6-.o116- ) + C
27. t"'=51*0 121 x'+ l] + c
29. (xsin rrx)/n + (cos rrx)fnz + C

31. (7x + l)e' + C

51.2

I 1. g' (x) - (" t l;:tt
15. h'(x) _. - sina( llx) lx2

19. g'(x) - -2(?x - l)
2x + I

23. (a) Local maxima at

and 5; minima at 3 and 7

(b) e
(c) (* ,z) , (4 ,6), (8, 9)
(d) See graph at right.

13. g'(u) - U0 + uo)
17 . .,,' : - sin (tanox) sec tx

3(3,r l)+ zL. ,/zsl3x+1

C

1.5

r 6l+C

t.2

it| /--

I
I

f!
1

i

\U
-t.2

-

f.i
-r'i -/

F

i ',,.f
I '",

-t.7

-0.75



+ ? sin-'(*l '/i) + c

-r z'-tr/F-l ln(r/zu_ t +2')
JJ. _ +C

APPEIIDIX I At'lSWtRS T0 0DD-ilU1'lBERtD tXERClltS

19.

Observations are the same as after Example l.

21. (a) ll.5 (b) 12 (c) ll.6 23.8.57mi
25. Zl .11 ttls 27 . 29 .3Vo

Exercises 5.9 r page 435

1. (a) Infinite interval (b) Infinite discontinuity
(c) Infinite discontinuity (d) Infinite interval
3. + - UQtn); 0.495, 0.49995, 0.4999995; 0.5 5. I
7, + 9. Divergent 11. 0 13. Divergent

A99

11.

13.

15.

19.

21.

25.

27,

29.

31.
I
2

I tanxsec'x + $ tan,rsecx + $

$ sin3x [3 ln(sin x) 1] + C
* !7. {rnlxs+,tf'-2 1

(l + e")ln(l * e"') e"'+ C

@-r-cos'("-")+C
- ix(5 - x2)3t2 + i* Ji=-F
- { sin2xcos3x - * cos'x + C

frtt + zxlstz -*ft + Zxlttz +
jtantx - |tnlt + tanzr) + C

tanzx lnlsecxl+ C

lnlsecx + tanxl* C

+C

C

ln2
35. F(x)-f ln(x2

maximum at - 1.

minimum at 1;

IP at -L.7,0, and

2ln 2

x+1)-jtnqxz+ x+

1.1

37. F(x) - - Tb sin3xcostx - *f,

+ fr cos'x sin x * t*i cos x sin x
sin x costx +
+#t

15
160- cos-,r sln J

15. Divergent 17, etl4
2L. Divergent 23. 2 6
27. Divergent 29. ; 31.

33. e 35.

19. Divergent
25. Divergent
__L

A

I
0.04

0

Exercises 5.8 r page 425

1. (a) Lz : 6, Rr : 12, Ms: 9.8

(b) L2 is an underestimate, R: and M2 are overestimates.
(c) Tz:9<I (d) L, 17,, 1l<M,,{Rn
3' (a) Tt : 0.895759 (underestimate)
(b) Mq - 0.908907 (overestimate)

T+11 l Mo

5. (a) 0.7462rr (b) 0.747131 (c) 0.146825

7. (a) 0.132165 (b) 0.132857 (c) 0,132721

9. (a) 0.409140 (b) 0.388849 (c) 0.395802

1[. (a) 1.098004 (b) 1.098709 (c) 1.109031

13. (a) Tn : 0.881839, M t, : Q .882202
(b) lerl < o.ot3, lE*l = o.006
(c) n : 366 for 4, n : 259 for Mn

15. (a) Tn - 1.719713, E7: -0.001432;
S'to: 1.718283, Es: -0.000001
(b) lnrl < o.002266, lE'l = o.oooool6
(c) n: 151 for Tn, lt: 107 for M,,, n:8 for S,,

17. (a) 2.8 (b) 7 .954926518 (c) 0.287 (d) 1 .954926s2r
(e) The actual error is much smaller (f) 10.9

(e) 7.9s3789422 (h) 0.0sez
(i) The actual error is smaller U) n > 50

37. Divergent

),' - tan J sec x

39. (a)
t J' [{rtn'*) /*'f d*

2

5

10

100

I,000
10,000

0.447 453
0.577101
0.621 306
0.688479
0.672957
0.673390

0.2

-0.r

G

,t- 
2

n MnTnR,,L,,

4

I
16

0.140625 0.390625 0.26562s 0.242188

0. 191406 0.316406 0.253906 0.248047

0.219721 0.282227 0.250977 0.249512

n Er E,wEnEr

4

I
t6

0. 109375 -0.140625 -0.015625 0.007813

0.0s8594 -0.066406 -0.003906 0.001953

0.030273 -0.032227 -0.000977 0.000488

it'rf
i\

\F

It appears that the integral is convergent.
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(c) 57. Ce-rz/(+tll1U@
59. f(x) : ,'*(2* + l)/Q - e-')

Focus on Problem Solving r page 444

l. About 1.85 in. from the center 3. rr/2
7. e-z g. Does not exist 11. l-1,21
13. 1f + stn-x cos x 15. 0

CHAPTER 6

"f(x) 
: I

1

-r-

.l

stn-rq$l- - 1
lu' ' -t' 5. I

I

41.
47.

53.

-0.1

Convergent 43. Convergent
rr 49. l/(l p), p I I

45. Divergent

n > 30

Convergent

Exercises 6.1

1.+ 3.i
5.*

r page 453
(a) v

I

): F(r)

t
(in hours)

(b) The rate at which the fraction F(t) increases as / increases
(c) l; all bulbs burn out eventually
55. 8264.5 years 59. 1000

Chapter 5 Review r page 437

True-False Quiz
1. True 3, False 5. True 7. True 9. True
ll. False

Exercises

l. (a) 8 (b) 5.6

3. ++ n/4 5. 3 7. f : c,,f' : b,l; fU)dt - a
g. ft ll. I tnz 13. # 15. 2
17. (l/n)(e" - l) 19. -rsec,r lnlsecx + tanxl * C
2t. ln(e" + 1) + C 23. je*(cosx + sinx) + C
25. 2e6 + C 27.2.,/r + sin* + C Zg.+
31. F'(x) - v/l + F 33. g'(x) : 3xs/rn + x,
35. *lr' 1F rr, + sin-'(r')] + C

37. IQ* + t) ffi+
f tnl"r+++ffi1 + c
39. (a) 1.090608 (overestimate)
(b) 1.088840 (underestimare)
(c) 1.089429 (unknown)
41. (a) 0.0067 (b) 0.003
43. (a) 3.8 (b) 1.7867,,0.000646 (c)
45. * 47. Divergent 49. Z 51.
53. (a) 29.16 (b) 29.5 55. 44.47o

7. Itt e +

9.4

11. +

13. i

.,

}'n:x-

Y 
: 

"f(r) -y' 
:,f(x)

Ay

xR: 2y +
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15. n -i

17. -1.02, 1.02:
23. 84 m2

25. +

27. rrab
35. 4z/t

41.01m
Exercises

1. n|5

3. 8rr

5. 3rr/10

7. 64rrl15

9. 208n/45

11. 832rr/21 15.

19. nhIlr (hl3)) 2L.

25. 24 27. 2 29. +

tl* * y' ay (b) zrr?rzR

37.81;.,frt-f l*-t;

Alol

l0l2 cm3

2b7hl3

33. (b) nrth

dy 39. nll\

2.10 21. 118 ft rrr'h f3
10 cm3

(a) 8n.R J[
't{

fr.'ffr'

L7.

23.

31,

35,

4L.

v

29, (rn/' D 12

37. f(t) - 3t?

6.2 I page 467

31. 24 \/3 /5 33. -r-6

n/2 )

fr
2

Exercises 6.3 r page 468

1. 4 'lj3. ,/i (rrr - l)

5. (r: .,/t: - B) lz7

7.1.548
11. (a), (b)

9.3.820
J Lt: 4,

Lz : 6.43 ',

L+ : 7.50

(4,2\

)' : sin 2x

2

(l,l)

-l

y

y2:x

x-2y
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(c) lJ dx
13. (81 ln 3)/512 15. ln(€ + l)
21. (a) ls 0<r

Chapter 6 Review r page 496

Exercises

l. 108 3. (a) 0.38 (b) 0.87
5. (a) 2n/15 (b) ,16 (c) Brr/t5 7. (-2,3); #g. 36 11. 125 \/3 /3 ^t 13. Z(S r/i - l)
15. 3.2 J L7. (a) 8000rr/3 ft-lb (b) 2.t ft
19. :458 lb 2I. $7166.67 23. f (x)
25. (a) I - e-3/s : 0.31 (b) e-s/q : 0.29
(c) 8ln 2 : J.55 min

Focus on Problem Solving r page 499

l. ,f(x) - 'E*/n3. (b) 0.2261 (c) 0.6736 m
(d) (i) t/(I}Srr) : 0.003 inls
(ii) 370n/3 s : 6.5 min
7. (a) P(t) : Po * s I; pQ) ax
(b) (&, - pogH)(nrz) + pogHett'[l,r't'.zF - *r dx
11. ln(rr/Z)

CHAPTER 7

Exercises 7.1 r page 508

3. (a) +3 5. (b) and (c)

7. (a) It must be either 0 or decreasing
(c) y - 0 (d) )' - Il(* + 2)
9.(a)0<P<4200 (b) P>4200 (c) P-0,P:4200
ll. (a) At the beginning; stays positive, but decreases
(c) P(t)

M

P(0)

0

Exercises 7.2 r page 513

3. IV 5. III

\

I

r2r i r-r1r
t\\\\\
t\\\\\
l\\\\\
l\\\\\
t\\\\\

r'-{.,",',} J

r-I

r?

ll
tl
II
II
lt
tl

-2
I

I

I

rlr
\\
\\
ll
tt
It

)-tl
tt
tl
tl

(d) 7.7e88

17. 29.36
< 4rt (b) :294

Exercises 6.4 r page 472

l. o 3. (e' - Dlz
s. (a) $ (b) z/rlT 7. (a) z (b) -1.32

(c) (c) 7

ll. (50 + 28ln) oF : 59'F
15. s/Urr) : Q .1 L

13. 6 kg/m

Exercises 6.5 I page 482

l. * rt-tu 3. f, rt-tu
5. (a) #: 1.04 J (b) 10.8 cm
7. 625 ft-lb 9. 650,000 ft-lb 11. :2.45 x 103 J

13. (a) :1.06 x 106 J (b) 2.0 m
17. (a) Gmtmzl\la) (Ub)l (b) :8.50 x lOe J

19. 6.5 x lOn N 21. 1.56 x lOj lb
23. (a) 5.63 x 103 tb (b) 5.06 x 104 lb
(c) 4.88 x 104 lb (d) 3.03 x lOs lb
25.40, 12,(1,+) zz.(t/ (e t),(e+t)/4)
29. (0,,rr/8) 31. $, 0, (0, 3) ff . (b) (+, i)

Exercises 6,6 r page 488

1. $14,516,000 3. $399,290,000 5. $316.29
7. $4166.67 9. $112,500 11. 1.19 X l0 u r-%
13. i t-/t

Exercises 6.7 r page 494

1. (a) .l'iJ,i fCr) rtt is rhe probability that a randomly chosen
battery will have a lifetime between 100 and 200 hours.
(b) .|r;, /(t) dr is the probability thar a randomly chosen
battery will have a lifetime of at least 200 hours.
3. (a) /(x) > 0 for all x and .ll," /(*) d* - I (b) 5

7. (a) e-4t2's - 0.20 (b) I - e-zlL"s : 0.55
(c) If you aren't served within 10 minutes, you get a free
hamburger.

9.:44.37o

1. \\
\\
\\
\\
\\
\\

9.

_ .r)

I

-v,---Z / / / I /t/ I /
tt///////

\\

\\\\\\\\\
I\\\\\\\\

\ \ \ \\ \ \
\\\ \ \ \\ \ \

_v

lltttr
ttttt
t/t//

til tttt/-
tlt l | / /\\//,/-\\ \

::.Nl
/ lt,F x \ \ \ \ \\\
\\ \\ \ \\\ \ \ \ l

\\\\t--2 r l\ \ I I I

\ r\
\

\\

a

11. :0.9545 13. 2/n, l/rr
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5. Lt: -tn(c - *rt') 7..)' - tan(x l)

9.r _W 11.u-l-fi'+t+4
13. .), - Je*o 15. ), - ,l-cos'r

L7. cos \, : cos,r I 19. (a), (c)

At03

11.
I

:

13.
ttl

////
,/ ,/ ,/ ,/

tl

tt
tl
tt

tl

/(0,6)

tl tl tt

/t
tt
tt
tt

- 2.5

21.

(b) .)' : t.[k + .J
23. _l''t - 3(r + c:)

6

-2 < c { 2: (b) 3 (c) Yes; Q:3
Exercises 7.3 I page 517

1.

(b)
(a) (i) r.4 (ii) t.44 (iii) t.1641

t.4

1.3

t.2

l.l

1.0

h:0.1
h: 0.2

h:0.4

Underesti mates
0.2 0.3

(c) (i) 0.0918 (ii) 0.0518 (iii) 0.0277
It appears that the error is also halved (approximately).
3. 2,2.75,3.5,,4.25 5. 1.8371

7. (a) (i) 3 (ii) 2.3928 (iii) 2.370r (iv) 2.3681

(c) (i) -0.6321 (ii) -0.024e (iii) -0.0022
(iv) -0.0002
It appears that the error is also divided by 10

(approx i mately) .

9. 2.17 C

Exercises 7.4 I page 524

l.)': -l/(* +C)or)-0

+27,2:C

25. QU) - i 3e-4';3 27. P(r) - M - Me r': M
29. (a) C(t) : (C,, rlk)e kt + r/k
(b) rf k; the concentration approaches rlk regardless of the

value of Co

31.(a)l5e-tltrmp* (b)15"-u2:l2.3kg 33.g/k
3s. (a) dAldr - klTw - A)

(b) A - Ml(Cu'Mkt l)lQer"Mkt + l)]t, where

c - (rffi + va;)l(,rM - ,1A,, ) and Ao : A(o)

[If Ao : 0, then C - l.l
37. (b) y(r) - (J6 - #r)' (c) 144 1G's: 5 min 53 s

Exercises 7.5 : page 534

l. About 235
3. (a) 500 x 16'r'r (b) :20,159 (c) (3 ln 61)lln 16 : 4.4h
5. (a) 1403 million , 1746 million (b) 2208 million
(c) 3667 million; wars in first half of century, increased

life expectancy in second half
7. (a) 6'u -0 0005r (b) - 2000 ln 0.9 : 2ll s

g. (a) 50 X 2-t/0"a00ta (b) :1.57 x 10-20 mg
(c) :4.5 x l0 5 

s

11. :2500 yr
13. (a) ctl,lclt - fty, y(0) : 110; f,(r) : lI}ek'
(b) :137 "F (c) :116 min
15. (a) :64.5 kPa (b) :39.9 kPa
L7. (a) (i) $3828.84 (ii) $3840.2s (iii) $38s0.08
(iv)$38s1.61 (v)$38s2.01 (vi)$38s2.08
(b) dAldr : 0.054, A(0) : 3000
19. (a) P(t) -- (^/k) + (& - mf k)ek' (b) m I kPn

(c) m: kPct,trt

19. (a), (d)
or
6
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(c)

P,,: 140

P': 120
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Exercises 7.6 I page 544

l. (a) 100; 0.05 (b) Where P is close to 0 or 100; on rhe
lineP- 50; 0<P <100; Pn>100

(c) P(r) -
m(K - Po) + K(Po m)etK-mt\k/K)t

K-&+(Pr m)e(K-rn)(klK)r

15. (a) P(t) : Pa€(ft/r)lsin(rr 
ql)+sinf]

(b) Does not exist

Exercises 7.7 r page 551

l. (a) r : predators,.I : prey; growth is restricted only by
predators, which feed only on prey.
(b) r - prey, .)' - predators; growth is restricted by carry-
ing capacity and by predators, which feed only on prey.
3. (a) The rabbit population starts at about 300, increases

Species 2

200

/:0,5

9. (a) Population stabilizes at 5000
(b) (i) W - 0, R - 0: Zero populations
(ii) W - 0, R : 5000: In the absence of wolves. the rabbit
population is always 5000.
(iii) W - 64, R : 1000: Both populations are stable.

Chapter 7 Review r page 553

True-False Quiz
l. False 3. False 5. True

P

rIg

P,,:80
Pu:60

P':40
Pn: 20

Solutions approach 100; some increase and sorne decrease,
some have an inflection point but others don't; solutions
with Po : 20 and Pr, : 40 have inflection points at P - 50
(d) P - 0, P : 100; other solutions move away from P : 0
andtowardP-100
3. (a) 3.23 x 107 kg (b) -1.55 yr
5. (a) dPldt - 0 .0037tP(r P/r00)
(b) In billions: 5.49,7.81,27.72
(c) In billions: 5.48 ,, 7.61, 22.41
7. (a) dy/dr : fry(l y) (b) .)' : yo/l_)'o * (1 - )'o)e-*']
(c) 3:36 p. r',r

11. (a) Fish are caught at a rate of 15 per week.
(b) See part (d) (c) P - 250, P - 750

n decreases back to 300.

, decreases to about 20, i
100, and the cycle starts

^A' Ai Il{ 11 |/r\ / '\'. I

the
100

sto

to 2400,
starts at
decrease
(b) R

2500

2000

1500

1000

500

The fox
ncreases

agaln.

tt
I

i\ i'no
\ i{'oo\ ,l

\1'oo

population
to about 315,

J.
(d) P

1200

0 < Po 1 250: P ---+ 0; Pu : 250: P ---> 250:
Pr, ) 250: P - + 750

2 50 7 50ce't2s
(e) P(r) - I - ,rrl25
where c : *, - +

13. (b)

0 < Pn < 200: P ---> 0; Pc, : 200: P --> 200;
Po ) 200; p ---> 1000

\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\'\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\-\\\
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=
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4
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1400
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APPENDIX I AIISWERS TO ODD,}'IUI,IBERED T)(ERCISES

7. (b) f (r) : (*' - L') I VL) (Llz) tn(r /L)

CHAPTER 8

AtoS

Exercises

l. (a) )

(b) 0<cS4; ,r':0,.)t -2,)':4

(b) 0.7568
(c) )' : r and )' - -J; there is a local maximum or minimum
s. -\: - pu r- r1/3 2 7, r.fin 

") 
t + 4

9. y' 2lnlyl + ;r2: K
11. (a) 1000e(rns)t/2 - 1000 x 3' (b) 27,000
(c) (ln?)lln3:0.63 h

13. (a) Cae-k' (b) :100 h
15. (a) L(t) : L* lL* L(O)le-k'
(b) L(t) : 53 - 43e:o 2t 17. 15 days

19. (a) Stabilizes at 200,000
(b) (i) x : 0, lr,' - 0: Zeto PoPulations
(ii) r - 200,000, ),' : 0: In the absence of birds, the insect
population is always 200,000.
(iii) x - 25,000, )' : 175: Both populations are stable.

(c) The populations stabilize at 25,000 insects and 175 birds.

(c) No

Exercises 8.1 r page 567

1. (a) A sequence is an ordered list of numbers. It can also

be defined as a function whose domain is the set of positive

integers.
(b) The terms d, approach 8 as n becomes large.
(c) The terms au become large as n becomes large.

3. +,t,+,*, +,*; yes; + 5. a,,: Il2'
7. a,, : (n + 2)1fu + 3)t 9. 0 11. I

13. Diverges (to oc; 15. Diverges 17. Diverges (to m1

19. 0 2I. 0 23. 0 25. 0 27. Diverges

29. nl4 31. 0 33. (a) Divergent (b) Convergent

35. (b) (t + ,li ) tz 37. Decreasing 39. Increasing

4I. Convergent by the Monotonic Sequence Theorem;
5<L<8
43. (: + ,/i ) tz 4s. 62

Exercises 8.2 ; page 577

1. (a) A sequence is an ordered list of numbers whereas a

series is the sutn of a list of numbers.
(b) A series is convergent if the sequence of partial sums

is a convergent sequence. A series is divergent if it is not

convergent.
3. 3.33333, 4,44444,
4.81481, 4 .93821,,

4 .97942, 4 .99314 ,,

4.9977 t, 4.99924,
4.99975,4.99992
Convergent, sum - 5

5. 0.50000, r.16661 ,

t.gt667 ,, 2.7 1667 ,

3.55000, 4.40714,
5.28214, 6.17103,
7.01103, 7.98012
Divergent (terms do not
approach 0)

7. 0.64645, 0.80755,

0.87500, 0.91056,

0.93196, 0.94601,
0.95581, 0 .96296,,

0.96838,0.97259
Convergent, sum - t

3. (a) 0.8

I

4

\\
\t
\l
tt

35,000

25,000

15,000

birds./'
250

200

150

100

50

8

{r,, }

{n,, }

allll'

{r,, }

' lori
a

aa
Focus on Problem Solving r
1. ./(") - -r10e'

5. (a) 9.8 h (b) 3l ,900rr :
(c) 5.1 h

page 556

100,000 ft2; 6283 ff ln
0

9. (a) Convergent (b) Divergent ll.
15. Divergent 17. # 19. Divergent

+ 13.+
2L. i

5,000
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23. l 25. sin I 27. Divergenr Zg. ; 31. 3g
33.21x<4, llg -x) 35. lrl
37. * 39. e1 : 0, an: z/ln(n + 1)] for n
41. (a) Sn : D(l - cn)/Q c) (b) 5

43. (,8 - D/z 4s. r/fn(n + 1)l
47. The series is divergent.
51. {r,} is bounded and increasing.
53. (a) 0, +, 3,+ ,1,9,3,1
ss. (a) +, ; ,#, i#; [(o + l)! r7/@ + l)l (c) I

g. 2, (-2.,21 ll. 2, (- i, ;) 13. l, (0, 2l
15. 0.5, 12.5, 3.5 ) 17. o, { } } 19. kk
21. (a) (-*, *)
(b), (c) z sr ss se

Jl
I

Exercises 8.3

Abbreviations:
l,)

r page 588

C, convergent, D, divergent

IY:F
Convergent

3. (a) Nothing (b) Convergent
5. p-series; geometric series; b < -l; -l
7. C 9. D ll. D 13. C 15. D 17.
19.D 21. D 23.p>l
25. (a) 1.54977, error < 0.1 (b) 1.64522, error s
(c) n
27. 2.6124 29. 0.567975, error < 0.0003 35.

-2 Sj S7 Srr

23. (- I ,l),, f(x) : (l + zx)/(l - x') 25. 2

Exercises 8.6 r page 607

1. l0
X&

3. )f -l)"x',(-1,l) s. )f _ l)" nxr",(-+,+)
n:0 n:0

x 
/"\" 

a:

7.
,F \3/ n:0

11. + i (-l)"(ru + 2)(n+ l)x", R : I
n-0

ixn
13. ln 5

,,I,, n5,, '

' ( 
- l\r-l

15. ln3 +
=r nJ-

-l

C

0.00s

Yes

Exercises 8.4 t page 595

l. (a) A series whose terms are alternately positive
negative
(b) 0 < b,t+t 4 b,, and lim,, nn bn: 0, where bn:
(c) ln"l{ b,r+r

3. C 5. D 7. C 9. Underestimate 11. p > 0
13. 7

15. 0.8415 l.s

/
/'.t'

a -r/
-'r'i:r{

-t.2

-ts .s,j sl

Itand

I o"l .f2

stt

6

.S4

17. = 
2*2n+l

3rz" + | R-l

17, 0.6065 19. No 21. No 23. Yes
27. Yes 29. Diverges 31. (a) and (d)
35. (a) ffi : 0.68854, error < 0.00521
(b) n

Exercises 8.5 r page 602

l. A series of the form II:o c,,(x - a) n, where
variable and a and the c,,'s are constants
3. (a) Yes (b) No 5. l, [-1, l) 7. @,

x ( 
-l)nx4unt aC+ Eu 4n + I

0.199936 25. 0.000065
(b) 0.920 33. [- l, 1], [ - 1,

25, Yes

xisa

(-*, *)

+ i (-l )n , 
*'"*' 

=n:o \2n + l)'
27. 0.09531

l), (-1,1)

19.

23.
29.

!\\
" 

\l,,r. ,r'. 

\4\\ A'
iy

\ \X-/
\ 

tt, 
"',,

\\:

{t,,, }

[o^]

-0.5

s-r = so
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Exercises 8.7 r page 618
r:c _2n

l. ba : /(8)(5)/gl 3.

& ;fo ' (Zn)l 
,

5.

";o n:0 n!

3.
n:0

x4
5. l___

4

I l:7.-+-2 27'

+ l)(n + 2)(n + 3)2"

6

3.7.11
4nnl

4,"7

X', R : +

x4n, R - I

Atot

x'n

n:2

(- l)"1 (3n 2)
Xn, R - 8

11.

'Enl
3n xo

n

15. 'R:oo

T3

T2

Tl

-8

9.(a)l+
n:l

24"n|

I

0

1'3'5' (2n

1.3.5
2"nl

"" (2n l)

,R:@

: (-1)'x2n+2

E, (Zn)t

m

1I

n/4)"

t-0
x

n:0
m

n:0
r

n:l

l+

n

n

n

n! ' -*

(-l)"x2n*2

M
( - 1)'*122n-t*2n

(2n)l
€

s
L/
n:2

,R:@

1'3'5' (2n 3)

T"l

17.

,R:

23. I (-1;"-'

19.

21.

25.

27.

29.

x
-+2 xn, R: I l)

x2n
Tl

T3

f
T?

T4

To

(b) x*
n:l 2"n!

2

(-l)'-'

*2n+l

11. (a) 2 ,*"
n:l

x'
13. (a) r* ,
(b) 99,225

Exercises 8.9 t
1. (a) fo(x) : I

To(x) : I - **'
TuQ) : | - **'
(b)

2n + I

1'3'5' "" (2n 3)

T"I

(b)

n

+
n:2

.1 (-l)'L " @+
n-0 L

f

1) (n + 2)x", R - I

10

page 630

: Z,(x), Tz(x) : 1 -
+ *xo : Ir(x),
* **o - h*o

33. 0.310 35. 0.09999750
41. I - 1*' + Tro 43. -x
47. l/ ,E 49, e' - 1

Exercises 8.8 t page 622

31. c+x*{*i(-t)'-'
6 n:2 Z"nl (3n + l)

37. + 39. +6
+ i*' - **t 45. e-"0

3'5 '(2n 3)

**': TtQ),

(c) An n increases, 4(x) is a good approximation to /(x) on

a larger and larger interval.

T+: Ts

T,: T,

2n

T6

-0.6

_, xn

-.0-, 0.09531
n

(-l)"xo"*t
Fo (4n + 3) (2n + 1)!

T4

T2

r,
I

Tl

T3

i
n-l

C

( - l)'
@

+

*3n+l

\ r,\

/

./ /'
.tt //

--i--
)c f Tt Tz: Tt T*: Ts Ts

7f

4

7r

2

7r

0.747 |

0

-l

I

I

I

0.6916

-0.2337

-3.9348

0,707 4

0.0200

0.1239

0.707 |

-0.0009

-t.2tt4

l

1

t I

I

\\/ \;' f/

\ /t/a
J'

il
V\\\\\\,x *- t.l. 1+*+,,

L n:2 2"n!
.I'rft:1

-2r

-2 Tz: Tt
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5. x +ir'

3 +.+(.-+)

-+) +

- +(' - +)' -#(" - +)'

-5

,( .- ')' * "6 (*- '\''\'" t/ 3 \* tl

Exercises 8.10 I page 637

:6".-
l.

,:o " n! Eo 3"nt.

.#oQ
37. i , - r)nxn*',I 39. i {, t

n:0 n:l n

r , -l)"2'5' . (3n l)'n ' 
\l --3n+l

:,:,.:Review:;:l ,,,
True-False Quiz
1. False 3. False 5. False 7. False 9. True
ll, True 13. False 15. True

Exercises

1.C,+ 3.D 5.D 7.C,€t'
9. D 11. C 13. D 15. C 17. C
19. 8 21. ,14 23. +j+b

25. 0.9721 27. 0.18976224, error ( 6.4 X 10-7

31. 3, [-3,3] 33. 0.5, [2.5,3.5)

3s. 
t * 6 (--') - r t (-- "')' -2 2 \ 6/ 22! \ 6/
Et(-- 3)'*
2 3! \ 6/
: l i ..,,[ t ( \2"

zo,(-r)'L#(" -+)

f
T3

T4

7.2+rJt(.

l5

+)'".'l

9. fs(x)

-5

_ | + lx, + **u + ffixu + ffi*r
f 8 T8T6T4 4r. ) f -l)'

n:0

l-
43.r+.,

1- n:l

45. lnlxl+

47. (a) I +
(b) r.s

*8n+4
OO

(2n + l)! '
1'5'9""'@n 3)

x'r 16
T2

cLi -^,
,:1 tl ' ll'.

*(" l)-*(" l)'+*(" t)'
(c) 0.000006

11. (a) t + jx (b) 0.00125

I , r ( "'\ | ( "\'13. (a) O* €\'- ^)-;E\'- i)
t ( 

"r\t 
I / \+ I | 

\s

-l-r I r 
-{*- 

t}
6Jz\ 4/ z4J2\ 4/.#('-+)

(b) 0.00033
15. (a) 1 * xt (U) 0.00006 17. 0.5735g 19. 3

2L -1.037 ( x ( 1.037 23. 2l m. no

0

49, 1 51. i ?2)"nl 
*2n+l

Fo (2n + l)!

1.1 r
/

-l

I
ff

/
I,

.''t..:\[ jt,
I a

-4

T3
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Focus on Problem Solving r page 640

1. l5l,l5! - 10,997,286,400
3. (b) 0if x- 0,(l/x) cotxif x *nr,nan integer
5. (a) su : 3 4',lu: U3^, pn: 4n13n-t (c) zr/t /5
g. (*1, 1), (x3 + 4xz + x)10 - .{)u

APPENDIXES

J.ZX
forx ) -1
forx { -l 

9' x'+ I

13. [- 1, *)

A6Exercises A r page

1. l8 3. 5 t/i

7.1.r + tl : l- +

l-r I

11. (-2, *)

33.

37.
41.
45.
47.

-2

15. (0, 1l

19. (- 
'/T 

,, '/t )

-1 0

17. (-*, 1) U (2, *)

21. (-*, 1]

0l

25. (-*,0) U (i,*)

(x 3)t + (y + l)2 : 25

(1,-2) 13. (b) (4,9)
(b) 4x- 3y 24 -0

39. (2,,-5),4

(a) F

-V'3 o \"3

23. (- 1,0) U (1, *)

(b) Slope - ? represents the
change in "F for every I "C
change; F-intercept - 32

represents the oF temperature
corresponding to 0 

oC.

49. (a) T-*ru+ 45

Slope - * represents the rate of change of temperature
h respect to chirping rate.

76"F
(a) P - 0.43d + 15 (b) 196 ft

27. l0 < c < 35

29. (a) T - 20 10h,,0 < ft

(b) -30'c
33. (-3,3) 35. (3,5) 37. (-m, -71 U [-3, *)
39. [ 1 .3, I .7 ] 41. x =.- (a + b\c/ (ab)

ExercisesB r pageAlT

1. 5 3. -i

ll. ), : 6x 15 13. 5x + .Y : 11

15. y-3x 2 17.y-3x 3 19.y:5
21. x*2v+ll-0 23.5x 2v* 1:0

01
4

-l (b)
wit
(c)

51.
59.

9.

ExercisesC r pageA30

l. (a) 7nl6 (b) n/20 3. (a) 720"
5, 3n cm 7. { rad - (l20ln)'

(b) -61.5"

9. (a) (b)

11. sin(3rrl4) - l/'/2, cos(3rrld - -l/tl,
tan(3nf4) - -1, cscGn/$ - J2, secQr/$ : - 'f 

2.,

cot(3rr/4) - - 1

13. cosg - +, tang - i, csc 0 -J, sec 0 _ f, cot 0 - \
15. 5.73576 cm 17. 24.62141 cm 27. (4 + 6 r/2 )/15
29. n/3, 5n13 31. n/6, nlz,5nf 6, 3nf 2

25, m- -*,b-0 27. m - i, b - -3
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0 <.r < n/6 and 5nl6 { x { 2n
0 < x 1n/4,3rrf4 ( x ( 5rf4,7nl4 ( x €

(b) * ir/4

4822 t34(b) _lnl5x + 2l 
=tnl2x+ 

ll4879 ', 323 '

3146 I 1.049

-lnl3x-71+ -ln(x-* 

x +5)+
80,155 ' ' 260,015

75,772 _, 2x + I -_tan-'----:+C26o,ot5Jr9 Jtg
The CAS omits the absolute value signs and the constant of
integration.

33.
35.
37.

2rr

5r
6

39.

41. (a) n/6 (b) -Tl4 43. (a) 0.7

47. t- 3,0], l-r/z,nlzf

ExercisesD t pageA3S

l. I (or any smaller positive number)
3. 0.6875 (or any smaller positive number)
5. 0.11, 0.012 (or smaller positive numbers)

11. (a) 'M cm (b) Within approximately 0.0445 cm

(c) Radius; area; [00W; 1000; 5; -0.0445
13. N > 13 15. (a) x ) 100 17. (a) 0 (b) 9, 11

Exercises G.l t page

l. (a)

(3,2
(b)

A59

(b)

(',f)

+ 2n), (-3,2 + n)

(1,6n/5), (- l,lln/5)
(a)

ExercisesF r pageAS0

ABl. +-2x* I x 2

ABCD
5.-T-TrT-x x" x' x- I

A Bx+C A7. 

-- 

9.x x' +2 x

AB5. 1+-x-l x + I
B Cx*D

I-J--'x2 
x2 *x*2

(0, -1.5)
(a) (,8,3n/a)

(_+,,_,8/z)
(4,111116)(b)

9.

')x'
11. ^ - x + lnlx + 1l+ C

2
13. ln3+31n6 3ln4:lnfL
15.21n2 ++ 17.4ln6 3ln5
19.2lnlxl+ 3lnlx+21 + Q/x) + C

zt. ln
23. ln(x- l)' + lnl?z+l - 3tan-tx*C
25. {tnl,r 1l- f tnl;z + x + t)
I , 2x + I

- 
ral-r 

- -J
'/l Jz
27. J ln1;t + 1) 3tan-rx + ,E tan-t(rlrE ) + C
29. - * tn J - -0.55 31. ln 3

24,rt0 I 669 I 9438 I

13. !:2 15. !2:2x + I

33. (a)

I

260pl s

4879 5x + Z- ZZI 2x + I - S0J55 3x -',
22,098x + 48,935

x' + x +5

(1,5n/2), (- l,3n/2)
(c) e,z)

(1,1)

?r'i) t

L7. rsin 0 : 5 19. r-5
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51. By counterclockwise rotation through angle n/6, nf 3,, ar
a about the origin
53. (a) A rose with ru loops if n is odd ancl 2n loops if n is
even (b) Iltrumber of loops is always 2n

55. For 0 I a <-1, the curve is an oval, which develops a

dimple as a ---+ 1 . When a ) l, the curve splits into two
parts, one of which has a loop.

Exercises G.2 r page A65

3. (nl6) + ( rh 14)
7. 33rrl2

9. 9rr/2

ntl6
4

1l . rr/20
13. n $"ry/z)
ls. (e ,lT /il (rrla)

17. (4n/21 + 2\/f
19. (n 2)/S
2L. (n/2) I

zJ. (n + 3,/3 )/4

35. t/ \/3 37. -Zln
39. Horizontal at (1,3n/2), (1, nlT), (3,o), (i,,7 a),
(1 ,, + a), (!,2, a), where 0 : sin-t( t/tlO );
vertical at (1,0), (l.n), (\,ZnlZ CI), (\,Zrr/Z + a),
(?, ,/2 o), (\,r/2 + a)

41. Horizontal ut (i , ,r/3), (i , 5nl3), and rhe pole;

verrical at (2,0), ( |,Zn/l), (+ ,4n13)
43. Cente r (b/2, alz), rad ,ut ,t'7F-+-F /2
45. (a) For c ( -1, the loop begins at 0- sin-'(-t/.) and
ends at 0 - n sin t(-l/r); for c: ) 1, it begins at

0 - n + sin-t(tld and ends at 0 : 2rr sin-t(tlr).
47. 49. I

-3.3
25. (i,nl3), (+, 5nl3), and rtre pole

27. (,/{ tz,rr/3), (r/t lz,znf3), ancl rhe pole
29. Intersection at 0 : Q.89,2.25; area : 3.46
3r.@(1"-\ltn?
33. $[(nt + l)t/t l] 35. ?.122

ExercisesH I pageAT5

l. l0 i 3. 13 i 5. 12 li 7.
g. +-li ll. -i 13.5i ls.3 4i,
19. t+i zI. 4 -+- i 23. -+ t (tTlDi
25.3v6tcos(3rr/4) + i sin(3rr/4)l
27. 5 { cos[tan '( + )] + i sin [tan '(i )] ]
29. llcos(rr/Z) + i sin(nl2)1, cos (- nl6) + i sin( - n/6),
j [cos( -n/6) + i sin( -nl6))
31. + ,fT lcos(7rr/ 12) + i sin(7n/ l2)1,

Q'/, ) [cos( t3n/r2) + i sin( t3rrl r2)1,

f tcos(1116) + isin(1116)l
33. -1024 35. -512r/3 + 5l2i
37. *1, ti, (V,/f )Ctr t t) 39. t(\6/il + +i, -i

4r. i 43. (-t/,/r) + ul,/r)i
47. cos 39 - cost0 3 cos 0 sin20,
sin30 - 3cost0sin 0 - sin30

-i+ii
5 17. 4i, 4

2.6

)

)
-7.6

sL1\y

-l
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Index

Abel. I.{iels . ?42
Absolutely convergent series, 592
Absolute maximum and rninimum.

214

Absolute value,20, A4
Absolute value function. 20

Acceleration, 166

Ach i lles and the tortoise, 6
Addition tormulas for sine ancl cosine.

A25
Algebraic function,29
Alternating harmonic series, 590
Alternating series, 589
Alternating Series Test, 589
Analytic geometry, A8
Angle, standard position, A21
Angle between curves , 265
Antiderivative, 178, 333

Approximate integration, 416

Approximation:
by diff-erentials , 256
to e. 198

linear, IJz, 254
by the Midpoint Rule, 367, 416

by Newton's method , 3?7
quadratic, 259

by Riemann sums, 362
by Simpson's Rule , 422
tangent line, 172, 254
by Tarylor's Inequality' 6l I
by the Trapezoidal Rule , 4lJ

Arc length , 466, ,4'64

Area, 3" 350

under a curve, 355 , 35J, 362
between curves. 448
by exhaustion, 3

under a parametric curve , 152
in polatr coordinates, A6l
of a seetor of a circle, .46l

Area Problem, 3, 350
Arithmetic-geometric mean, 569

Arrow diagrarn, 13

Astroid, 55, 245
Asymptote , 132

horizontal. 135

of a hyperbola, A17

vertical , 132
Average cost function, 322
Average rate of change, 147,208
Average value of a function, 470
Average velocity, 5, 99. 145

A xes, coordinate, AB
A xes of an ellipse , A l5

Bacterial growth,, 527
Barrow, Isaac, 4, 157, 383

Baseball, 536
Base of cylinder, 455

Base of logarithm, 68

Bernoulli, John, 52, 303

Bessel function, 24J,558, 598, 602
Bdzier curve,5l,23l
Binomial series. 620 -621
Binomial Theorem, 619

Blood f low, 214, 319, 320, 4-86

Bounded sequence. 566
Boyle's Law, 183, 218

Brachistoch rone problem , 5 1

Branches of hyperbola, A17

Buffon's needle probleffi,' 495
Bullet-nose curve. 48. 235

Cable (hanging), 253
Calculators " 1I-16

graphin g, 4l - 46
Calculus,9
Cancellation equations, 65

Cantor, Georg , 579
Cantor set, 579

Carcliac output , 48J

Cardioid, A54.

Cartesian coordinate system, A8, A54
Cartesian plane, A8
Cassini, Giovanni, A60
Catenar y, 253
Cavalieri's Principle , 464

Center of gravity, 478

Center of mass, 478, 480, 48?
Centroid of a plane region, 480
Chain Rule, 228

Change of variables , 394
Charge , 2lI
Chemical reaction. 2l I
Circle, A9
Circular cylinder, 455

Cissoid, 86, A59
Closed interval, A2
Coefficient of friction. 281

Coefficient of a power series, 597

Cornparison Test, 583

Cornparison Theorem t-or integrals, 434
Complex conjugate, A68
Complex exporlentials, A7 4

Complex numbers, A67
argument of, A70
division of. A71

imaginary part of, A67
modulus of. 4.69

multiplication of, ,{68
polar fbrm" A70
real part of, 4,67

roots of, A73

Composition of functions, 36

continuity of, 125

derivative of, 228
Compound interest, 532

Compressibility, 212

Cornputer algebra systems, 105 , 294.
410, 424, 564

Computers, 41, 291, A57
Concavity, 177,286
Concentration , 2ll
Conchoid, 52 , 245
Cone , 463
Conic section, A13-A17, A66

clirectri x. A66
eccentricity, A66
focus, 4,66
polar equation, ,{67

Constant function .26. 192
Constant Multiple Rule, 195

Consumer surplus, 485

Continuity:
of a function, 120

on an interval. 122

AI I3



Al14 r ['lDtx

Continu rty (c ont inue d)

from the left , 122

from the right, 122

Continuous function, 120

Continuous ranclom variable, 489
Convergence:

absolut e, 592

interval of. 600
radius of, 599
of a sequence, 600

of a series. 571

Convergent sequence, 561

Convergent series , 571

Coordinate(s), 'A.7

Cartesian, A8
polar. A5 i

rectangular, A8
Coordinate axes, A8

Cornu's spi ra I , 469

Cosine function,, /,'22

derivative.223
graph , 29, ,{26
power series,614

Cost function. 215, 322

Critical numbe r,, 27J

Cross-section, 455

Cubic function. 28

Current, 2l I

C urve (s) :

Blzier, 5 l, 23J

bullet-nose,, 48, 235

length of, 465" 464
orthogonal, 243
parametric, 48

polar, A53
smooth. 465

swallowtail catastrophe, 55

Curve fitting.76
Cusp , 52

Cycloid, 51 , 152
Cylinder, 455

Cylindrical shell,46l

Decay, law of natural, 528

Decay, radioactive, 531

Decreasing function, 23, 285

Decreasing sequence, 565

Definite integral,361
Definite integration:

by parts,, 402, 405

by substitution , 397

D*gree of a polynomial , 27

Delta (6) notation, A32

Demand function, 323, 485

De Moivre's Theorem, A72
Density:

linear, 210

liquid , 477

Dependent variable, I 3

Derivative(s). l5l, 158

of a constant function, 192

domain of, 158

of hyperbolic functions, 254

of an integral, 386

of an inverse function. 216

213
of logarithmic functions , 247

notation. 162

of a pou'er series, 604
ofaproduct,202
of a quotient, 205

as a rate of change, 153

second. 165

as the slope of tangent, 152

Descartes, Ren6, AB

Difference Rule, 196

Differentiable function, 162

Differentiarl. 256

f irst-order. 518

general solution, 507
logistic,505,538
order of, 506

second-order. 506
separable, 518

series solution of, 633

solution of, 506

Differentiation operator, 162

Differentiation , 162

implicit, 210
logarithmic, ?49
operators,, 162

of power series, 604
Direction field. 510

Directrix. A66
Discontinuity, 120, 122
Discontinuous function, 120

Displacement, 93, 589

Di stance:

of a power function, 193, 194,250 Empirical model, 76

Distance formula, A5, A9
Distance Problem. 357

Divergence:

of an improper integral, 428, 4-31

of an infinite series. 571

of a sequence, 561

test for, 575

Divergent improper integral, 128. 431

Divergent sequence, 561

Divergent series, 571

Double-angle formulas, A25
Dye dilution method, 486

e (the number), 60, 198, 251

Eccentricity, A66

Ellipse, A 15

toci, Al5
ref lection property, Al6

Endpoint extrema, 278

Epicycloid, 55

Equation(s):
cancellation,65
of a circle. A9
of a c-urve. A9

of a graph, A9
of a line, A10, Al1, A18

linear, A 1l

logistic differential, 505, 538, 569

of a parabola, A14
parametric, 48
point-slope, A 10

polar, A52
predator-prey,547
slope-intercept, A I I

two-intercept form, A18

Equilibrium solution, 547

Error, 257, 418
percentage, 258

relative , 257

in Taylor approxirnation, 625
Error bounds , 119

Error estimate:
for alternating series, 591

for the Midpoint Rule,418,4l9
for Simpson's Rule , 423

f or the Trapezoidal Rule, 418, 419

Eudoxus, 3

Euler's formula. A74

of an irnproper integral, 428, 431 of composite functions, 228

of exponential functions, 19J,198 Domain of a function, 12

as a function. l4J , 158

Converger-rt improper integral, 428 , 431 higher, 165, 168

of inverse trigonornetric functions, Elementary functions, 413

of trigonometric functions , 220, 224 differential (see Differential equation)

Diff.erential equation, 201, 335', 506, 528 Lotka-Volterra, 54J

between points in a plane. Al I Evaluation Theorem ,372
between real numbers. Ab Even function, 21. 399
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Exponential decay,527 elementary, 413 of a function, 13

Exponential function, 30,56, 197 even,2l,399 of a parametric curve, 49
derivative of,197 exponential, 30,56,197 polar, A53
limits of, 138 extreme values of, 274 of trigonometric functions, 426
power series for, 610 family of, 46 Graphical addition, 36
properties of, 58 fixed point of, 188 Graphing calculators, 41, 50,294, A57

Exponential growth, 527 Fresnel, 387 Gravitational acceleration,474
Exponents, laws of, 58 graph of, 13 Gravitation law, 483
Extreme value,274 greatest integer, 116 Greatest integer function, 116

Extreme Value Theorem, 275 Heaviside,40, 106 Gregory, James, 606
hyperbolic, 253 Gregory's series,606

Family of functions, 46 implicit, 240 Growth, law of natural, 528
Fermat, Pierre, 4, 157,2'17 increasing, 23,285 Growth rate,213
Fermat's Principle, 318 inverse, 64
Fermat's Theorem, 276, A4l inverse hyperbolic, 254 Half-angle formulas, 4,26
Fibonacci, 560, 568 inverse trigonometric, 125,243, A27 Half-life, 59, 531
Fibonacci sequence, 560, 568 limit of, 102,107,120,122 Harmonic series, 574,582
First Derivative Test, 286 linear, 28, A11 Heat conductiviry, 948

for absolute maximum or minimum logarithmic, 31, 68,247 Heat equation, 786
values,3l3 machine diagram of, 13 Heat flow,948

First-order optics, 630 marginal cost,216,322 Heaviside, Oliver, 106
Fixed point of a function, 188 marginal profit,324 Heaviside function, 40, 106
Focus (foci): marginal revenue, 323 Higher derivatives, 167

of an ellipse, Al5 maximum and minimum values of, Hooke's Law,475
of a hyperbola, A16 274 Horizontal asymprote, 135

of a parabola, Al3 natural logarithmic, 69 Horizontal line, A1l
Folium of Descartes, 239 odd,21,399 Florizontal Line Test. 64
Force,473 one-to-one, 64 Huygens, 52

exerted by liquid, 477 polynomial 27 Hydrostatic pressure and force, 477
Fourier, Joseph, 217 position, 145 Hyperbola, ,4,16

Four-leaved rose, A55 power,26,25O asymptotes, Al7
Fractions (partial), A42 profit,324 branches, Al7
Fresnel, Augustin, 387 quadratic, 28 equation, 4,16
Fresnel function, 387 ramp, 40 foci, ,4.16

Frustum: range of, 12 Hyperbolic functions, 253
of a cone, 463 rational, 28 Hyperbolic identities, 253,254
of a pyramid, 463 revenue, 323 Hyperbolic paraboloid, 720

Function(s), 12 root,21 Hypocycloid,55
absolute value, 20 sine integral, 391

algebraic,29 step, 2l i, A67
arrow diagram of, 13 ranscendental, 31 I/D Test, 285
average cost,322 translation of, 31 Implicit differentiation,240
average value of, 470 trigonometric, 29, A22 Implicit function, 240
Bessel, 598 value of, 12 Improper integrals, 428,431
composite, 36 Fundamental Theorem of Calculus, 386, Increasing/Decreasing Test, 285
constant,26 388 Increasing function, 23,285
continuous, 120 Increasing sequence,565
cost,2l5,322 G (gravitational constant), 483 Increment, 146
cubic, 28 Galileo, 51 Indefinite integral,374
decreasing, 23,285 Galois, Evariste,242 table of, 375
demand, 323,485 Gauss, Karl Friedrich, 630 Independent variable, 13

derivative of, l5l Gaussian optics, 630 Indeterminate form, 302, 306
differentiable, 162 Geometric series, 571 Inequalities, A2
discontinuous, 120 Graph(s): rules for, A2
domain of, 12 of an equation, A8, Al7 Infinite discontinuity, 122
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Infinite interval, A2 Kinetic energy,9l4 Local maximum and minimum, 176,

Infinite timit, 108, 139, A35 Kirchhoff's Laws, 511, 514 275

Infinite sequence (see Sequence) Logarithm(s), 68

Infinite series (.ree Series) Lagrange, Joseph, 284 laws of, 69

Inflection point, 178,287 Lamina,480 natural, 69

Initial condition, 507 Law of Cosines, A31 Logarithmic differentiation, 249

Initial-value problem, 507 Law of laminar flow, 214 Logarithmic function, 31, 68

Instantaneous rate of change,99, 147, Law of natural decay, 528 derivative of,247
208 Law of natural growth, 528 limits of, 133

Instantaneous rate of growth, 213 Laws of exponents, 58 Logistic difference equation, 569

Instantaneous rate of reaction, 212 Laws of logarithms, 69 Logistic differential equation, 505, 538

Instantaneous velocity,99,145,208 Learning curve,509 Lorenz curve,38l
Integral(s): Least squares method, 77 Lotka-Volterra equations, 547

approximations to, 368, 416 Left-hand limit, 107

change of variables in,394 Leibniz, Gottfried Wilhelm, 4, 162,392 Machine diagram of a function, 13

definite. 361.372 Leibniz notation, 162 Maclaurin, Colin,610
derivative of, 386 Lemniscate, 245 Maclaurin series, 610

indefinite, 374 Length: Marginal cost function, 216,322
properties of, 368 of a curve, 465, A64 Marginal profit function, 324

table of, back endpaper of a line segment, A6, A9 Marginal revenue function, 323

Integral Test, 581 of a parametric curve, 466 Mass, 210

Integrand, 336 of a polar curve, ,{64 center of, 4'18,480,482
Integration, 361 I'Hospital, Marquis de, 303, 310 Mathematical model, 15, 75

approximate, 367 I'Hospital's Rule, 303 Maximum and minimum values, 176,

formulas, back endpaper Limauon, A58 2'75

indefinite, 374 Limit Comparison Test, 584 Mean of a probability density function,
limits of, 361 Limit Laws, 111 491

numerical, 367 Limit laws for sequences, 562 Mean Value Theorem, 283

by partial fractions, A43 Limit(s), 3-9 Mean Value Theorem for integrals, 470

by parts, 402,405 of a function, 102, A33 Method of cylindrical shells, 461

of power series, 604 at infinity, 131, 134, A35 Method of exhaustion, 3

by substitution,394,397 of integration, 361 Method of least squares, 77

tables, use of, 408 left-hand, 107 Midpoint formula, A18

Intercepts, .416 one-sided, 107 Midpoint Rule, 367, 416

Interest compounded continuously,532 properties of, 111 Modeling,75
Intermediate Value Theorem, 127 right-hand, 107 Modulus, 4'69

Intermediate variable, 796 of a sequence, A37 Moment:

Intersection of polar graphs, 4,63 of a trigonometric function, 221 about axis, 479

Interval, A2 Linear approximation, 172,254 of a lamina, 480

Interval of convergence, 600 Linear density, 210 of a particle, 479

Inverse function, 64 Linear equation, All of a system of particles, 479

Inverse hyperbolic functions, 254 Linear function, 28, Al1 Monotonic sequence, 565, 566

derivative of,254 Linearization,172,254
Inverse trigonometric functions, 243, Line(s) in the plane, A7 Natural exponential function, 61

A27 equations of, Al0, All derivative of, 198

derivatives, 243 horizontal, A11 Natural growth law, 528

Involute,500 normal, 200 Natural logarithm function, 69

Isothermal compressibility, 212 parallel, Al2 derivative of ,247
perpendicular, Al2 Newton, Sir Isaac, 4,9, Il4, 157,282,

Jerk, 168 secant, 4, 97 328,392,623
Jol;Je, 4'14 slope of, Al0 Newton (unit of force), 474

Jump discontin:uity, 122 tangent, 4,96, 143 Newton's Law of Cooling, 509
Liquid force, 477 Newton's Law of Gravitation, 483

Kampyle of Eudoxus, 245 Lissajous figure, 55 Newton's method, 327

Kepler's Laws, A51 Lithotripsy, ,4.16 Newton's Second Lavt,4'74
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Normal distribution, 493 Population, 213 Reflection property:
Normal line, 200 of bacteria, 214, 527 of ellipse, A16
Number, complex, 4,67 of world, 529 of parabola, 265
Numerical integration, 367 Position function, 145 Region:

Pound,474 under a graph, 350, 363
Odd function, 21,399 Power function,26, 192 berween two graphs, 448
One-sided limits, 107 Power model, 82 Regression line, ij
One-to-one function, 64 Power Rule, 193, 194,250 Related rates, 268
Open interval, ^A2 Power series, 597 Relative error,257
Optics, 630 differentiation of, 604 Relative maximum and minimum, 275

first-order, 630 division of, 617 Remainder estimates:
Gaussian, 630 integration of, 604 for Alternating Series, 591
third-order, 630 interval of convergence, 600 for Comparison Test, 584

Ordered pair, A7 multiplication of, 617 for Integral Test, 585
Order of a differential equation, 506 radius of convergence, 599. for Ratio Test, 594
Oresme, Nicole, 574 representation of functions, 609 Removabie discontinuity, 122
Origin, A7 Predator, 546 Revenue function, 323
Orthogonal curves, 243 Predator-prey equations, 547 Riemann, Georg Bernhard,362
Orthogonal trajectory, 243, 521 Prey,546 Riemann sum, 362
Ovals of Cassini, ,{60 Pressure exerted by aliquid,471 Right-hand limit, 107

Principle of mathematical induction, Roberval, Gilles,374, 452
p-series, 582 88 Root function, 27
Pappus's Theorem, 530 Probability density function, 489
Parabola, Al3 Problem-solving principles, 87 Sample point, 355

axis, A14 Producer surplus,488 Secant function, A22
directrix, A13 Product formulas, A25 graph, A27
equation, A14 Product Rule, 202 Secant line, 4, 97
focus, A13 Profit function, 324 Second derivative, 165
reflection property, 265 Projectile, 54 Second Derivative Test, 286
vertex, A14 Properties of logarithms, 68 Sector of a circle, A20, A61

Paradoxes of Zeno,6,7 Sensitivity to stimulus, 220
Parallel lines, Al2 Quadrant, A8 Separable differential equation, 518
Parameter,48 Quadratic approximation,25g Sequence,6,560
Parametric curve,48 Quadratic function, 28 bounded,566
Parametric equations,48 Quotient Rule,205 convergent, 561
Partial fractions, A42 decreasing,565
Partial sum of a series, 570 Radian measure, 220, Al9 divergent,56l
Parts, integration by, 402,405 Radioactive decay, 531 increasing, 565
Percentage error, 258 Radiocarbon dating, 535 limit of, 6,561, A37
Perpendicular lines, A12 Radius of convbrgence, 599 monotonic,570
Phase plane, 549 Rainbow problem,282 of partial sums, 609
Phase portrait, 549 Ramp function,40 term of,560
Phase trajectory, 549 Range of a function, 12 Series, 7, 570
Piriform, 245 Rate of change: absolutely convergent, 592
Point ofinflection, 178,287 average, 147,208 alternating,58g
Point-slope equation of a line, Al0 derivative as, 153 alternating harmonic, 590
Poiseuille, Jean Louis Marie,2l4 instantaneous, gg, 147,208 binomial, 620, 621
Poiseuille's Law,214,320, 486 Rate of growth, 213 convergent, 571
Polar axis, A5l Rate of reaction,2l2 divergent,57l
Polar coordinates, A51 Rates, related, 268 geometric, 571
Polar equations, A52 Rational function, 28 harmonic, 574, 582

of conics, ,4'66 Ratio Test, 594 infinite, 570
graph of, A53 Rectangular coordinate system, A8 Maclaurin, 610

Pole, A51 Reduction formula, 406 p-,582
Polynomial,27 Reflecting a function, 32 parrial sum of, 570
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Series (continued)
power, 597

sum of ,J,57t
Taylor, 610

term of, 560
Serpentine , 206
Shell method,, 461

Shifts of functions , 32

Sierpinski carpet, 579

Sigma notation, 355

Simple harmonic motion,, 236
Simpson, Thomas 422

Simpson's Rule, 422

error in. 423
Sine function,29, A22

graph,29, A26
power series, 614

Sine integral function, 391

Slope, A 10

Slope-intercept equation of a line,
All

Smooth curve. 465

Snell's Law, 318

Snowf lake curve, 641

Solid,455
volume of . 457

Solution curve, 509

Speed, 154

Spring constant, 475, 506

Squeeze Theorem, 117, 563

Standard deviation, 493

Step function, 2l
Strategy:

problem-solving, 87

for solving optimization problems,
310

for solving related rates problems,
2t0

Stretching functions, 32

Substitution Rule , 394,397
Subtraction formulas for sine and

cosine , A25
Sum:

of a geometric series, 571

of an infinite series. 571

Riemann,362
Sum Law, A40

Sum Rule, I94
Summation notation, 355

Supply function, 488

Swallowtail catastrophe curves, 55

Symmetry, 21, 399

in polar graphs, A55
Symmetry principle, 480

Tables of integrals, back endpaper
use of, 408

Tangent function, 1^22

graph , A27

Tangent line:
to a curve, 4, 143

to a parametric curve,233
to a polar curve, A56

Tangent line approximation , 172,254
Tangent problem, 4, 96
Tautochrone problem , 52

Taylor, Brook, 610

Taylor polynom tal, 259, 6ll, 624
Taylor series, 610

Taylor's Inequality, 61 I
Telescoping sum , 573

Term of a sequence, 560
Term of a series, 570

Test for Concavity, 287
Tests for convergence and divergence

of series:

Alternating Series Test, 589

Comparison Test, 583

Integral Test,581
Limit Comparison Test, 584

Ratio Test . 594

Tbst for Divergence , 575

Third derivative, 167

Toroidal spiral , 726

Torricelli, Evangelista , 452
Torricelli's Law, 281

Torsion ,740
Torus , 463
Total Change Theorem, 377

Transcendental function, 3l
Transformation of a function, 3l
Translation of a function, 3l
Trapezoidal Rule , 417

error in. 418

Triangle inequality, A40
Trigonometric functions, 29, A22

derivatives of, 22O
graphs of, '4'26
inverse , A27
limits of ,221

Trigonometric identities, A24
Trochoid, 54

Tschirnhausen cubic . 245

Value of a function, 12

Variable:
change of, 394, 397

dependent, l3
independent, 13

Vascular branching , 320
Velocity, 4, 98 , 145

average , 5, 99, 145

instantaneous , 49, 93, 122

Verhulst,505
Vertex of a parabola, A14
Vertical asymptote , I32
Vertical Line Test, l8
Vertical tangent line, 165

Viewing rectangle, 41

Volume , 457

by cross-sections, 456

by cylindrical shells , 461

Wallis, John, 4

Wallis product, 408
Witch of Maria Agnesi, 54 , 206
Work , 473, 474

Wren, Sir Christopher, 468

J-axis, A7
x-coordinate , A7
x-intercept, A 16

)'-axis, A7
y-coordinate , A7
y-intercept, A 16

Zeno, 6
Zeno's paradoxes, 6, 7
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About the Cover

The photograph shows an electric violin made by David

Bruce Johnson.
An acoustic violin, with its sound hole in the shape of an

integral sign, became a symbol of James Stewart's previous

calculus textbooks. Stewart plays both an lSth-century
French violin and the blue electric violin that appears on the
cover of this book.

The electric violin reflects the increased use of technology
in calculus instruction, as well as a more informal approach

to the subject. The quadruple image symbolizes the use of
the Rule of Four throughout the book-four ways of
looking at the same object.



ARITHMETIC OPERATIONS GEOMETRIC FORMULAS

Formulas for area A, circumference C, and volume V:

a*c a c
l__

I

bbb

a(b+c):ab*ac

EXPONENTS AND

mnm+nxx -x

(x'")n - x^n

(xy)" : xnln

lln n /-
X : \/X
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SPECIAL POLYNOMIALS

y)(x - y)

y) (x' - xy * yt)

y) (x2 * xy * yt)

HEOREM

Zxy * y2 (x - !)2 : x' - 2xy * y2

3*'y+3xy2*y'
3*'y+3xy2-y'

nx"-') * ry*n-2r2

ac
-+-:bd
a

b 
-o x

cb
e

RADICALS

ad*bc
bd

d _ad
cbc

Triangle

e:lun
: iobsing

Sphere

v-tn,
A-4nr

Circle

A: rrr2

C:2rr

Cyl inder

V : trr'h

Sector of Circle

A - ir'e
s : r0 (0 in radians)

Cone

v - lnr'h
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DISTANCE AND MIDPOINT FORMULAS

Distance between P1(xr, y' ) and Pz(xz, !z):

d-

\P,,(+t+)

LINES

Slope of line through PtQr, 1lr) and Pz@z,yz):

m_ lz-lt
xz- xt

Point-slope equation of line through hlr,1lr) with slope n:

y-yr:rlt(x-xr)

Slope-intercept equation of line with slope m and y-intercept b:

y:mx*b

CIRCLES

Equation of the circle with center (h, k) and radius r:

l'2'3""'n

QUADRATIC FORMULA

If axz + bx * c:0, then

-b+rmx:
2a

TNEQUALITIES AND ABSOLUTE VALUE

lf a < b and b 1 c, then a I c.

lf a 1 b, then a * c 1 b * c.

lf a < b and.;' 0, then ca 1cb.

lf a < b andc ( 0, then ca ) cb.

lfa>0,then
l*l:o means x:a or x--a
l*l<o means -a<x1a
lrl>o means xla or x<-a (x- h)'+ (y- k)':r'



ANGLE MEASUREMENT

zr radians : l80o

FUNDAMENTAL

I
csc0 : 

-
sin 0

sin 0
tan0: 

-
cos 0

I
cotO _ 

-
tan 0

IDENTITIES

I
secO : 

-
cos 0

cos 0cot0: 
,irro

TT

lo:-rad
180

s:r0

(0 in radians)

190"
lrad:-

TT

RIGHT ANGLE TRIGONOMETRY
I * tan20 - sec20

sin(-0): -sin0

tan( -0) : -tan9
/\

.or{ ! - el: sing
\2 /

sin'g + coszo: I

l*cot?0:csc20

cos( -0) : cos 0
/\

*in( a - o) : coso
\2 /
/\

,un( ! - el: cot o
\2 /

oPP cos 0 :

adj tan0:

opp
slnfl : 

-

hvp
csc 0 : ---

opp

hvp
sec 0

adj

adi
cot 0

opp

hvp

adj

hvp

opp

adj

v
sin0 :. -

r

x
cos 0

r

v
tan0 ::

x

GRAPHS

TRIGONOMETRIC FUNCTIONS

r
csc0: -y

r
secO : -x

x
cotO : -y

OF THE TRIGONOMETRIC FUNCTIONS

}' - csc.rii\ll
tl

FORMULAS

DOUBLE.ANGLE FORMULAS

sin 2x : 2 sin .r cos J

cos2x: costJ - sin2x:2cos2x - 1 : I - 2sin2x

Ztan x
tanZx: 

- 

"'I - tan'.r

HALF.ANGLE FORMULAS

THE LA\^/ OF SINES

sinA _ sinB _ sinC

THE LAW

o':b2+cz
b2:a'+r'
c':a'+b'

ADDITION

sin(x * y) :

sin(x - )) :

cos(x * y) :

cos(x - )) :

tan(x * )) -

tan(x - )) :

C

oF coslNEs

- 2bc cos A

- Zac cos .B

- 2ab cos C

AND SUBTRACTION

sinxcosy * cosxsiny

sinxcosy - cosxsiny

cosxcosy - sinxsiny

cosJcos) * sinxsinl'

tan x * tany

I - tanxtany

tan.r - tany

I + tan.r tan y

rr 2rr x

iA
TRIGONOM ETRIC FUNCTIONS OF
IMPORTANT ANGLES

0 radians sin 0 cos 0 tan 0
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nl2
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r/2

JT Iz
,E tz

I

I

,f tz
,E tz

r/2
0

0

,E tz
I

6 . j I - cos2x
sln-x : 

-

')
L

z | * cos2x
cos"r:-

2

2rx
I


